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Abstract

A method for obtaining quasi-analytic solutions to the three-dimensional (3D) Helmholtz equation for the case of an
acoustic medium bounded by two identical curved surfaces is presented. The method can be extended to a semi-infinite
medium with a curved boundary for the study of Rayleigh waves on a non-planar surface, albeit the solution procedure
entails the numerical matrix method. The formulation of the method is based on the differential-geometry argument
employing the curved coordinates (u',4?, 1) where u' and u? are along the local tangent plane of one of the bounding
surfaces z = z(x) and #’ is perpendicular to the local tangent plane. This choice of coordinates allows the 3D Helmholtz
equation, subject to boundary conditions specified on non-planar surfaces, to be solved with relative ease. Normal-mode
solutions are shown for the case of a fluid layer with two pressure-release boundaries, where the bounding surfaces are
given by the ramp, the Gaussian, and the sinusoidal functions, respectively.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of finding acoustic-wave solutions in fluid-layer structures with simple geometry can be found
in several classical textbooks [1-3]. We present quasi-analytical solutions of eigenmodes in curved fluid-layer
structures in cases where the layer surface can be described mathematically as (x, y, z(x)). The analysis can be
extended to the study of surface waves in curved solid-layer structures (or Rayleigh-wave solutions in semi-
infinite solid structures subject to curved surfaces), however, the stress-free boundary conditions imposed at
curved surfaces require, e.g., a numerical matrix method based on expanding the solution in terms of
eigenmodes obeying three ordinary differential equations (ODEs) (which—the present work shows—can be
found quasi-analytically). Surface waves [4-6] and their propagation characteristics are important for the
understanding of, e.g. earthquake spectra [7-10], surface and subsurface defect detection [11], and vibrations
near crystal substrate—film interfaces being of interest in the application of surface acoustic wave spectroscopy
to thin-film characterization [12].

Surface waves are characterized by their confinement to a small-region near a certain (two-dimensional, 2D)
surface. Hence, such waves are basically 2D in character. This fact allows considerable simplification in their
mathematical description in the general surface geometry case by use of differential-geometry methods. In the
present paper, a study of solutions to the three-dimensional (3D) Helmholtz equation is given for waves
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confined near a surface (x,y,z(x)) where z(x) denotes any function of x. The 3D Laplacian operator is
expressed in terms of curved coordinates (u', u?, 4*) with u! and #? along the local tangent plane of the surface
z = z(x) and «’ perpendicular to the local tangent plane. Discarding terms of order one and higher in 3 in the
expansion of the Laplacian allows the 3D Helmholtz equation to be separated in three ODEs. Previous studies
indicate that this approximation (1} = 0) works surprisingly well in several concrete examples [13]. Two of the
three ODEs can be solved analytically while the third ODE in the general case can be easily solved using, e.g.,
the finite-difference method.

Three case studies (of relevance in the study of waves in fluid-layer structures) are finally presented and
solved in terms of eigenstates and eigenvalues (wavenumbers) for pressure-release boundary conditions
corresponding to the plane-sloped surface, the Gaussian surface, and the sinusoidal-shaped surface,
respectively. We also present the general stress-free boundary conditions in curved coordinates relevant for
determining Rayleigh-wave states propagating near a solid surface z = z(x). The solution to this problem,
however, involves numerical methods in the general case and will not be pursued in the present work.

2. Theory
In papers by Jensen and Koppe and da Costa [14-16] studying a quantum mechanical particle confined to a
surface X, a crucial ingredient was the approximation of the Laplace operator in R® near the surface X
A &~ Ay + (M?* — K) + 83, (1)

where Ay is the Laplace—Beltrami operator on the surface X, M and K are the mean and Gaussian curvatures,
respectively, and 03 is the derivative in the direction normal to the surface. Recently, it was found that the
approximation is surprisingly good for several concrete examples [13].

In this paper we will use the same technique [13] to study waves confined near a surface z = z(x).

2.1. Laplacian in the curvilinear coordinates

The first fundamental form of a surface z = z(x, y) is given by

g 912 1+z7 2z
= 2 | (2)
g2 92 21z 1423
where
0 0
=0iz=— and z =0z = . (3)
Ox oy
We shall also make use of the second-order derivatives:
o’z o’z o’z
M= =g e =ga “4)
The determinant of the first fundamental form is
g=1+z+2, (5)
and the inverse is
1 g12 1 1 —i—z% —Z12, 6
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so the mean and Gaussian curvature is

M= Tz + 23) = 2z1pz122 + z;o(1 + 23)

, (8)
2 (1+ 22+ 232
_ nn—1j o)
(1422 423"
Using tensor notation the Laplace—Beltrami operator is
1/24 ke 1/2 ke 9" deg ke
Ay =g~ '120eg"g" 0 = ¢"0,0, + (77+afg )ak (10)
1425 221z 1+z3
= — 0,0
t2+2 0 1212 2 52420
2M
— ——=(2101 + 220). (1D
A1+ z% + Z%
If z is a function of x only, z = z(x), then z; = z;» = z; = 0 and we have
K =0, (13)
I zi
=537 (14)
2(1 4 22)%2
1 2 Z1Z211 2
Ay = — 01+ 03, 15
> l+Z% 1 (1_’_2%)2 1 ( )
Aps ~ As +(M* — K) + 03 (16)
1 2 ZlZ]] 2 1 Z%] 2
= — +0; + - ——55+03. 17
T+2 0 a+22 2T aa w2y 0 (17

2.2. Rayleigh-wave solutions in the curvilinear coordinates

In the previous Section, an expression [Eq. (17)] for the Laplacian in the relevant curved coordinates was
derived. Substitution into the Helmholtz equation leads to
Ao+ k2 = g2 _Z170 al+az+li+62 v+ kKo =0 (18)
R’ 1+Z% 1 (1 _’_Z%)Z 2 4(1 +Z%)3 3 5
where v is the acoustic pressure in a fluid or any component of the longitudinal or transverse
particle-displacement vector in a solid due to acoustic vibrations, kK = w/c is the wavenumber, ¢ is the
wave speed, and o is the angular frequency of the acoustic disturbance. Proceeding in the usual fashion
(stimulated by the simple form of the Laplacian), we introduce a general separable solution to Eq. (18)

o', u?,0’) = 1)), (19)

and simple manipulations allow us to obtain

2
Z1Z11 A 1z

— 011
1+z3

0% i § S
141 (1 401 +z%)2

— (1 + )1 +2D)|x =0, (20)
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2
0+ 212 =0, @3y

B+ (K +a) =0, (22)

where ¢y, ¢, are separation constants to be determined by imposing appropriate boundary conditions.

Consider now a finite surface corresponding to the parameter values: 0<u' <L, 0<u?<H and assume that
the surface boundary is free, i.e., v = 0 in the case of a fluid layer (pressure-release boundary conditions).
Application of the boundary conditions immediately leads to

= (). e= ()

Xz_sm(Hu ce=(3) (23)
where n = 1,2,3,... . Next, the possible set of wavenumber values k as a function of ¢; are determined by the
boundary conditions along the curved surfaces specified by the two u* values

1B =0=0, 1@ =-T)=0, (24)
where T is the layer thickness. These boundary conditions imposed on Eq. (22) immediately give
(1 In\*
23 = sin (%Lﬁ), k=y[—ci+ (;) : 25)

where [ =1,2,3,... .
The possible discrete set of ¢; values are found by solving Eq. (20) [in the present work by use of the finite-
difference method] subject to the pressure-release boundary conditions:

n' =0)=z @ =L)=0. (26)

Once possible ¢; values are determined the eigennumber values k are fixed by Eq. (25). Specification of ¢;
values will be given for three different cases of curved surfaces in the “Results and Discussions’ section.
In the case of surface waves in solid structures the above boundary conditions [Eq. (24)] are replaced by
lim y; =0. (27)
w—>—oc0
In the latter case, we assume that wave propagation is restricted to the semi-infinite medium «* <0 and that
waves are damped towards the interior of the medium in agreement with the boundary conditions in Eq. (24).

This yields
13) = exp(\/ K- c1u3), (28)

K< —ci. (29)

Note that wave speed ¢ has the value ¢; (¢;) in the case of longitudinal (transverse) wave components. In the
case of Rayleigh waves, the appropriate boundary conditions are stress-free boundary conditions at u®> =0
[derived in curved coordinates in the following subsection] and the full displacement vector will be a linear
combination of longitudinal and transverse eigenstate solutions. This solution, due to the complexity of the
stress-free boundary conditions in the general case of curved solid surfaces, must be found employing a
numerical procedure.

where

2.3. Stress-free boundary conditions in curved coordinates

In this section, we derive the general stress-free boundary conditions in curved coordinates relevant for solid
structures and, e.g., Rayleigh-wave problems. We assume first that the surface varies with both x and y, hence
allowing for more general surfaces than considered elsewhere in this work.

Consider a surface given by the function:

z = z(x, ). (30)
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The normal to the surface N is then

1 !
Nee—— |-z 31

v/ 1+ z% + Z% 1
and the parametrization of a neighborhood to the surface (with #* small) reads
] ul—u321/\/1+zf—i—zg
X
X = | x? uz—u322/\/l+zf—i—zg . (32)
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We now see that
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If the displacement vector has components v’ then the components &, of the strain are given by
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The components oy, of the stress are given by [5]
E c
Okt = l+o (E’kf + 1- 20 <"ii5k€>a 41)

where E and ¢ are Young’s modulus and Poisson’s ratio, respectively. The components of the normal are
denoted NY, hence the stress-free condition is

oeNI =0, k=123 < o3—z1001 — 2202 =0, k=1,2,3. 42)
In the case where z; = 0, i.e., the surface does not depend on y, we have
1 Z1
1+ Z% 1+ Z%
) i
oX w3=0 —Z] 0 1
AR Z% A1+ Z%
and the stress-free condition reads
616,3 - Zlo-k,l = Oa k = ],29 33 (44)
or,
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e 1 0! . 1 ov? 1 ov? 51)
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Inserting these expressions into Eqs. (45)—(47) yields Eqs. (54)—(56), respectively:
ov' ov' ov?
—Zig 7+ ((1 =20)+2(1 — 0)z7)4/1 +z$@— 20z(1 —i—z%)@
o’ o’
+((l—20)—202%)@—21\/14—2%@:0, (54)
ov! 5 o’ o’
“hgatVIitigataa=0 (53)
o' / ov! o’
(2(7—(1 —20)2%)$—Z] 1 +Z%@+20’(] +Z%)@
ov? o’
+21$+(2(1—0)—}—(1—20)2%)1/14—2%@:0. (56)

The above equations are the appropriate boundary conditions describing surface-wave states in solids with
curved surfaces: (x, y, z(x)). The solution to these equations must be carried out numerically in the general case
since each of the (total) displacement components v’ can be written as a sum of longitudinal and transverse
displacement components which again are linear combinations of states satisfying the separable set: Egs.
(20)~(22). We point out that (not surprisingly) in the simple case with an infinite planar surface, analytical
expressions can be obtained for Rayleigh-wave dispersion results. In actual fact, it follows immediately from
Eq. (18) that the Helmholtz equation in curvilinear coordinates: u',i = 1,2, 3 is identical to the Cartesian form
of the Helmholtz equation (in X, y, z coordinates) in this specific case. Hence, for an infinite planar surface, the
dispersion relation for Rayleigh waves propagating along the u!'-axis:

& =f)exp(itku’ + o), (57)

with & the total displacement and f some function of #*, obtained by invoking stress-free boundary conditions
at the surface z = 0, evidently reads:

w? ! 4 w? ’
AP —=) =16k K- ) (=5 ), (58)
? ¢ c%

in agreement with the classical result [5].

3. Results and discussions

In the following, three cases of surface functions will be analyzed: (a) the plane-sloped surface (including the
flat surface), (b) the Gaussian-shaped surface, and (c) the sinusoidal-shaped surface. In all cases, the functional
form of the acoustic displacement component v—assumed to obey the Helmholtz equation with pressure-
release boundary conditions—is determined as well as allowed wavenumber values associated with eigenvalues
¢1, ¢y determined from the y;, y, separable differential equations.
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3.1. Example 1. Plane-sloped surface
This case, illustrated in Fig. 1, corresponds to the surface function:
2, 1) = zo + ou', (59)
1.€.,
21=96, z11 =0, (60)
where ¢ is the surface slope. Inserting Egs. (59), (60) into Eq. (20) gives
Otu1 = (c1 + )1+ =0, (61)

which can be easily solved so as to give

— n(M _ b oz 1 mmy2 2
Xl_sm(L”)’ a= 1+52(L) 2= 1+52(L) (H) 62)
where m = 1,2,3,... and n = 1,2,3,... . Thus, the possible values for the wavenumber k are
1 mm\ 2 nm\ 2 In\?
b=\ () + () +(7)- (63)

3.2. Example 2. Gaussian-shaped surface

Consider next the Gaussian-shaped surface (Fig. 2), i.e.,

-2
z(u') = 2

zoexp| ——=——1, (64)

;
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Fig. 1. Schematics of the plane-sloped surface.
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Fig. 2. Schematics of the Gaussian-shaped surface.

Table 1

The first five eigenvalues for ¢; [in units of m~2] corresponding to the flat-plane surface [Case 1], the Gaussian-shaped surface with
0= L/2,zy =1 m [Case 2], the Gaussian-shaped surface with 6 = 10L, zo = 1 m [Case 3], the sinusoidal-shaped surface with N = 1 [Case
4], and the sinusoidal-shaped surface with N = 2 [Case 5], respectively

m ¢ [Case 1] ¢ [Case 2] c; [Case 3] ¢ [Case 4] c1 [Case 5]
1 —0.0987 —0.3944 —0.0987 —0.0681 —0.0819
2 —0.3948 —0.7382 —0.3948 —0.3070 —0.3583
3 —0.8883 —1.546 —0.8881 —0.7208 —0.6561
4 —1.579 —2.265 —1.579 —1.3107 —1.2903
5 —2.467 —3413 —2.466 —2.0521 —1.9049

The eigenvalue number index is denoted m. Note that only negative ¢; values are sought for as the Rayleigh criteria &> = w?/c* < — ¢
requires ¢; to be negative (for real frequencies). The computed values are for the geometry-parameter values: L = 10m and H = oo.

corresponding to a Gaussian-shaped surface centered at u' = L/2 of width §. The first- and second-order
derivatives of z with respect to u' read

1 L ?
u _——
22()( 1 L> 2
= — u eXp| ————

5

52

2
2 2 L\? (“I_E)
) = —5220<1—<u1 —2> )exp N 2] . (65)

Next, insertion of these expressions in Eq. (20) yields a second-order differential equation in y; which can be
solved for eigenvalues and eigenstates using the finite-difference method.

In Table 1, the first five eigenvalues ¢; are given corresponding to the parameter values: L = 10m, zo = I m,
H = oo (H = oo implies that ¢; = 0) for two cases with 6 = L/2 and é = 10L (in Table 1 denoted Cases 2 and
3, respectively). Note in particular that for a Gaussian-shaped surface with 6 = 10L, approximately the same
¢ values are obtained as in the plane surface case (compare Case 3 and Case 1 results). This result is
understandable since the Gaussian function with 6 = 10L is almost constant along the u' direction.
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Fig. 3. Plots of the first three eigenstates along the u' direction for the Gaussian-shaped surface with 6 = L/2, zo = 1 m [Case 2]. The
upper, middle, and lower plots correspond to the ¢; values: —0.3944, —0.7382, and —1.546, respectively.
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In Fig. 3, the first three eigenstates are plotted corresponding to the first three ¢; eigenvalues in Table 1,
Case 2. Note that all states are symmetrical/antisymmetrical with respect to reflection around u! = L/2 as they
must be due to the symmetry of the differential equation in y,, i.e., all terms are unchanged by the symmetry
operation u! = L/2 — x — L/2+ x and 0, — —0;. It is also observed that the nth state has n nodes along the
u' direction. A solution with a positive ¢| eigenvalue is also found (not listed in Table 1) representing Rayleigh
waves with imaginary eigenfrequencies, hence, such waves are damped exponentially with time.

Similar to the case considered in Example 1, the allowed wavenumber eigenvalues become [rewriting
Eq. 29)]:

k= I\’ 66
o+ (F) (66)

with ¢; values as mentioned above.

3.3. Example 3. Sinusoidal-shaped surface
Consider finally the sinusoidal-shaped surface (Fig. 4), i.e.,
. (2nN
z(u') = sin (nT ul) (67)

corresponding to a sinusoidal corrugation with N periods along the u' direction. The first- and second-order
derivatives of z with respect to u' read

_ 27INCOS 2nN
zZ1 = 7[4 7]4 u 1,

22N> . /2
= — (ET) sin<"TNu‘>. (68)

Again, insertion of these expressions in Eq. (20) yields a second-order differential equation in y; which can be
solved using the finite-difference method.

In Table 1, the first five eigenvalues ¢| are given corresponding to the parameter values: L = 10 m, H = oo
for two cases with N =1 and 2 (in Table 1 denoted Cases 4 and 5, respectively).

In Fig. 5, the first three eigenstates are plotted corresponding to the first three ¢; eigenvalues in Table 1,
Case 5. Note that all states are symmetrical/antisymmetrical with respect to reflection around u' = L/2 as they
must be due to the symmetry of the differential equation in y, i.e., all terms are unchanged by the symmetry
operation u' = L/2 —x — L/2 + x and 8; — —0;. Again, it is found that the nth (real-frequency) state has n
nodes along the u' direction.
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Fig. 4. Schematics of the sinusoidal-shaped surface.
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Fig. 5. Plots of the first three eigenstates along the u' direction for the sinusoidal-shaped surface with N = 2 [Case 5]. The upper, middle,
and lower plots correspond to the ¢; values: —0.0819, —0.3583, and —0.6561, respectively.
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Similar to the cases considered in Examples 1 and 2, the allowed wavenumber eigenvalues become [rewriting
Eq. 29)]:

k= Im\* 69
- —c1+<f), (69)

with ¢; values as mentioned above.
4. Conclusions

We have presented a quasi-analytical solution method for determining fluid curved-layer eigenstates and
eigenvalues corresponding to a general surface z = z(x) using differential-geometry arguments. The latter
method allows solution of the 3D Helmholtz equation in terms of three ODEs, hence simplifying the
mathematical problem considerably, by choosing the curved coordinates (u', u?, 4*) with u', u* along the local
tangent plane of the surface z = z(x) and »® perpendicular to the local tangent plane. The general model is
finally solved in terms of eigenstates and eigenvalues for three case studies with pressure-release boundary
conditions: the flat (sloped) plane, the Gaussian-shaped surface, and the sinusoidal-shaped surface,
respectively. Stress-free boundary conditions relevant for solid structures are also derived in curved
coordinates. The general solution to a Rayleigh-wave problem in solids with curved surfaces involves a
numerical solution method, e.g., based on expansion in eigenstates obeying three ODEs (which can be found
quasi-analytically according to this work).
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