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Abstract

The supersonic complex-velocity versus real-frequency dispersion spectrum of the leaky waves in fluid-loaded

anisotropic plates is discussed. Utilizing the sextic plate formalism provides approximate solutions for leaky-wave velocity

in a form that reveals their basic features, such as the unique correspondence of the signs of its imaginary part and of the

free-plate group velocity, the relation between the leakage and the rate of frequency dispersion, and the principal trends at

low, high and near-cutoff frequencies in arbitrary anisotropic plates. A particular thrust of the study is the derivation of

closed-form asymptotics for the fundamental leaky-wave velocity branch(es) at low frequency and for the continuum of

leaky-wave branches near the fluid-coupled and fluid-uncoupled thickness resonances. Conditions for the asymptotics

accuracy are analysed, and a comparison between an analytical approximation and exact numerical curves is presented for

various cases.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many ultrasonic methods of studying immersed plates, such as reflection-transmission, acoustic microscopy
and others, are intimately related to the leaky waves. These waves propagate along the plate at a phase
velocity higher than the speed of sound cf in the loading fluid (supersonic interval) and radiate energy into the
fluid exterior. Various aspects of their properties have been explored in detail both experimentally and
theoretically; see e.g. Refs. [1,2] for the ample references on this subject. The algebraic dispersion equation,
underlying calculation of the leaky-wave spectrum, is well known and is an obvious starting point, but its
exact solution is accessible only numerically. At the same time, an analytical perspective is indispensable for a
unified understanding of the basic spectral trends, especially for arbitrarily anisotropic immersed plates.
Analytical approximations also provide a benchmark for computer calculations, which tend to become more
challenging with increasing anisotropy. Approximate solutions generally have to assume relatively light fluid
loading and are obtained as a perturbation about the free-plate dispersion, which is also unknown explicitly;
however, certain cases are capable of furnishing explicit asymptotics of the dispersion dependence directly in
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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terms of material constants. The latter is significant for treating the inverse problem of material
characterization.

The present study is concerned with an analytical treatment of the spectrum of leaky-wave complex velocity
versus real frequency branches. These are understood in the conventional sense, as evolving from the real
velocity branches of the free plate by way of acquiring a relatively small imaginary part and hence having the
real part close to the free-plate velocity (although this restriction will be relaxed for some cases, particularly in
the vicinity of thickness resonances). The treatment is based on the sextic plate formalism, which is
particularly helpful for pursuing analytical results. By this means, firstly, the principal features of the leaky-
wave dispersion in a fluid-loaded plate of unrestricted anisotropy are highlighted. Then their closed-form
asymptotics at low and near-cutoff frequency are derived and analysed in detail.

It is noted that this paper follows up the paper [3], which has used the same theoretical framework for
dealing with complex velocity branches in the subsonic interval (below cf ) of immersed-plate spectra.

2. Theoretical background

2.1. Sextic plate formalism

Consider an infinite anisotropic elastic plate with the density r and the elasticity tensor cijkl . Denote its
thickness by 2h and the through-plate coordinate by y. Let n be the unit normal to the plate faces, and m be the
unit vector parallel to the faces and is taken as the plane-wave propagation direction. The wavenumber k and
trace velocity v ¼ o=k along m may be complex, whereas the frequency o is assumed real and positive (unless
otherwise specified). For future references, we will need the Stroh matrix

NðvÞ ¼
N1 N2

N3 � rv2I NT
1

 !
;

N1 ¼ �ðnnÞ�1ðnmÞ; N2 ¼ �ðnnÞ�1;

N3 ¼ ðmmÞ � ðmnÞðnnÞ�1ðnmÞ;
(1)

where ðabÞ � aicijklbl with a; b ¼ m or n; I is the identity matrix; T denotes transpose. Throughout the paper,
whenever components cijkl appear explicitly, they are referred to the coordinate system X 1; X 2; X 3 with X 1km

and X 2kn.
Basic concepts of the sextic plate formalism and its application to fluid-loaded plates [4,5] have already been

introduced in the companion paper [3], so we will outline only some aspects, which are directly related to the
problem at hand. The dispersion equation for a fluid-loaded plate (see below) involves the normal components
of the 3� 3 blocks of the plate admittance matrix Y;

Y
ðnÞ

1 ¼ in �M�13 MT
1 n; Y

ðnÞ

2 ¼ �in �M
�1
3 n, (2)

where M1 and M3 are the upper diagonal and the left off-diagonal blocks of the 6� 6 propagator matrix
M ¼ exp½2ikhNðvÞ�, relating the displacements and stresses at the plate faces. The condition of traction-free
faces implies that det M3 ¼ 0; hence Y

ðnÞ

1 and Y
ðnÞ

2 are singular along the free-plate velocity branches, denoted
by v̂jðoÞ (j is the branch number). The singularity is the first-order pole in v; except the folding points on v̂jðoÞ,
which are the second-order poles. The folding points are defined by the condition dv̂j=do!1 and hence
imply that the in-plane component gj �m of the group velocity gjðoÞ turns to zero for a finite v̂j. Otherwise,
near an arbitrary point v̂jðoÞ, for which gj �ma0 and which is locally detached from other free-plate branches,

Y
ðnÞ

1 ðv;oÞ /
ajðoÞ

r v̂2j ðoÞ � v2
h i , (3)

whereas the singular part of Y
ðnÞ

2 ðv;oÞ for real v;o differs from that of Y
ðnÞ

1 only by a phase factor of a unit
absolute value. Further analytical developments strongly hinge on the residue ajðoÞ. It can be obtained in the
form

ajðoÞ ¼
rv̂2j ojÂj � nj

2

8hhKjigj �m
, (4)
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where hKji ¼
1
2h

R h

�h
Kj dy with Kj ¼

1
4
ro2jÂj yð Þj2 being the time-averaged kinetic energy in the plate with

traction-free faces; Âj yð Þ is the displacement at v ¼ v̂jðoÞ; and Âj is short for Âj �hð Þ; the displacement on either
of the plate faces y ¼ �h. By Eq. (4), aj and gj �m have the same signs:

sgn aj ¼ sgn gj �m
� �

. (5)

Using the identity [6]

dv̂j

do
¼

oÂj � ðN3 � rv̂2j IÞÂ
�

j

8hKjigj �m
(6)

(* denotes complex conjugate) allows re-writing the residue as

ajðoÞ ¼
rv̂2j jÂj � nj

2

Âj � N3 � rv̂2j I
� �

Â
�

j

dv̂j

dðohÞ
. (7)

2.2. Dispersion equation for leaky waves

Let the plate be immersed in a non-viscous fluid with the density rf and speed of sound cf . A fluid half-space
admits two types of acoustic modes, one decreasing and one increasing into the fluid depth. Correspondingly,
the dispersion equation for a fluid-loaded plate depends on the choice of modes in the fluids. The
‘antisymmetric choice’, which assumes the decreasing mode in one of the fluid half-spaces and the increasing
mode in the other, leads in the supersonic interval to the equation for zeros of the reflection coefficient and is
therefore irrelevant to the present context. The remaining options are associated with the ‘symmetric choice’,
assuming that the modes in the both loading fluids are either decreasing or increasing. The corresponding
forms of the dispersion equation are

Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
� ðsgn v0ÞY f

� �
Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
� ðsgn v0ÞY f

� �
¼ 0 (8)

for the choice of decreasing modes, and

Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
þ ðsgn v0ÞY f

� �
Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
þ ðsgn v0ÞY f

� �
¼ 0, (9)

for the choice of increasing modes. Here Y
ðnÞ�

2 � Y
ðnÞ�

2 ðv;oÞ (a½Y
ðnÞ

2 ðv;oÞ�
� unless v;o are real); sgn v0 ¼ �1 for

v0_0; and

Y f ¼ �i
Sð1ÞðvÞ

rf v2
, (10)

where Sð1ÞðvÞ is one of the Riemann sheets SðnÞðvÞ (n ¼ 1; 2) of the square root function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðv2=c2f Þ � 1�

q
, which

are separated by the cut taken along the semi-axis Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2f � 1

q
¼ 0. By this definition,

Sð1ÞðvÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂2j =c2f � 1

q
þ i0 for v ¼ v̂j � i0 and v̂j4cf .For more details, see Ref. [3].

Two methodological aspects are essential in specifying the dispersion equation for leaky waves in the

vicinity of the free-plate branches v̂jðoÞ. First of them concerns the plate-related entries Y
ðnÞ

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
and

Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
: Barring for the moment the special cases (they are addressed in Section 2.3), both Y

ðnÞ

1 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
have the same residue at the first-order poles v̂j . The former term changes its sign on passing the

pole, the latter does not. Hence, their adding and subtracting defines two locally different patterns, one
diverging and the other smooth at v̂j : With reference to Eq. (3), denote the combination, diverging on both
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sides of v̂j ; by

Fplateðv;oÞ � Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
¼

2ajðoÞ

r v̂2j ðoÞ � v2
h iþ Gðv;oÞ (11)

(Gðv;oÞ is a locally smooth function), where � implies different signs on the opposite sides of v̂j: either þ for
vov̂j and � for v4v̂j if gj �m and hence aj are positive; or vice versa if aj and gj �m are negative (see Eq. (5)).
The inverse sign setting leads to the pattern with a smooth behaviour. The point is that only the diverging
pattern (11) is relevant to seeking the leaky waves.

The second aspect concerns a choice of either increasing or decreasing modes in the loading fluids, see Eqs.
(8) and (9). It is no longer optional once the dispersion equation is sought specifically in the form, which
describes the leaky waves, i.e., admits the supersonic-velocity solutions vjðoÞ ¼ v0j þ iv00j originating from the
free-plate branches v̂j oð Þ. With such a premise, the ‘correct’ choice is unique (though not uniform across the
spectrum): it prescribes taking the increasing fluid modes, if the in-plane group velocity gj �m of the reference
free-plate solution v̂jðoÞ is positive, and the decreasing modes, if gj �m is negative. Thus, the dispersion
equation for leaky waves incorporates Eqs. (8) and (9) into the form

Fplateðv;oÞ þ ðsgn v0Þ½sgn ðgj �mÞ�Y f ¼ 0, (12)

with Fplateðv;oÞ defined by Eq. (11). Eq. (12) provides a set of four reciprocally equivalent solutions �fvj ; v�j g,
defining the waves with forward or backward direction of the phase-front propagation along m and with the
energy flux directed away or towards the plate. Among these waves, the outflowing ones are the leaky waves.
All four waves of the reciprocal set are either increasing or decreasing into the fluids, in agreement with the
prerequisite setup fixed by the sign of gj �m. The alternative choice of fluid modes leads to the dispersion
equation in the form, which has minus between the two terms of Eq. (12). Such equation simply does not
admit solutions evolving from the free-plate velocity.1 Properly fixing the fluid modes is important for both
analytical and numerical treatment of leaky waves, based on whichever explicit approach (whether basing on
the plate admittance and propagator or using decomposition into partial plate modes [1,2]).

The outlined leaky-wave setup can be verified on purely formal grounds. A complementary physical
interpretation is, however, in order. It follows from the energy flux balance: For definiteness, consider the
forward-propagating waves (v040). To the leading approximation in small v00j =v0j ,

P
ðf Þ
n;j ¼ 2k00j hhPji �m, (13)

where k00j ¼Im ðo=vjÞ; P
ðf Þ
n;j is the normal component of the fluid-mode flux, which is taken at v̂j on one of the

fluid/plate interfaces and defined as being positive or negative when it is directed away or towards the plate,
respectively; hPji ¼

1
2h

R h

�h
Pj dy with Pj ¼ Pðv̂jÞ standing for the time-averaged flux in the free plate, so that [7]

hPji �m ¼ 2hKjigj �m. (14)

Eqs. (13) and (14) confirm that for gj �m40 the velocity vj ; having a negative imaginary part v00j and hence
implying a decay along m, corresponds to the leaky wave incorporating the outflowing fluid modes (with the
flux away from the plate), i.e., to the leaky wave. The complex conjugated v�j corresponds to the wave growing
along m due to the inflowing fluid modes (with the flux towards the plate). Both the outflowing and the
inflowing modes, involved in this case, are increasing into the depth of the loading fluids (see Table 1 and Eqs.
(8) and (9) in Ref. [3]). Choosing increasing fluid modes selects the dispersion equation in the form Eq. (9) and
hence leads to Eq. (12). If, alternatively, gj �mo0, then by Eq. (13) the leaky wave with the outflowing fluid
modes has v00j 40 and hence decreases along the direction �m (inverse to phase-front propagation direction),
whereas the wave with the inflowing fluid modes has v00j o0 and so increases along �m: In this case, both the
outflowing and the inflowing fluid modes are decreasing, which means selecting the dispersion equation in the
form (8) and thus also arriving at Eq. (12). Interestingly, on seeking a complex-frequency solution oj as a
1In the light of this, the more non-trivial is the fact that the free-plate flexural branch v̂1 gives rise to two immersed-plate branches (A and

the A0), satisfying two different dispersion equations associated with the alternative options of the symmetric choice of fluid modes [3]. The

clue is real-valuedness of the A velocity branch confined to the subsonic range vocf .



ARTICLE IN PRESS
A.L. Shuvalov et al. / Journal of Sound and Vibration 296 (2006) 494–517498
function of real v (‘temporal leakage’, see Refs. [8,9]), the sign of its imaginary part o00j induced by fluid
loading is prescribed by the sign of ðgj �m� v̂jÞ.

Eq. (12) may be further modified in order to yield only the forward-propagating leaky wave instead of four
reciprocal solutions. Setting v040 leaves us with two complex conjugated roots for inflowing and outflowing
waves, and the leaky (outflowing) one is identified by the condition sgn v00j ¼ �sgn ðgj �mÞ. Thus, recalling
definition (10) of Y f and, besides, inserting the local representation (11) of Fplate specifies Eq. (12) as follows:

2ajðoÞ

r v̂2j ðoÞ � v2
h iþ Gðv;oÞ � i ½sgn ðgj �mÞ�

Sð1ÞðvÞ

rf v2
¼ 0, (15)

with

Sð1ÞðvÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂2j =c2f � 1

q
þ i0 for v ¼ v0 þ iv00 ! v̂j . (16)

This formulation underlies the forthcoming analytical derivations for the leaky waves. It is noted that the case
of a plate, which is fluid-loaded on one side and free on the other, is described by the same equations but with
Fplate ¼ Y

ðnÞ

1 ¼ aj=rðv̂
2
j � v2Þ þ G1 (G1aG).

2.3. Perturbation-theory solution and the special cases

Assuming small v00=v0 enables seeking an approximate solution of Eq. (15) for the leaky-wave velocity
vjðoÞ ¼ v0j þ iv00j with a relatively small imaginary part, which implies a weak leakage into the loading fluids in
the sense of the energy flux relation (13) (whereas the absolute value of the displacement amplitudes in the
fluid and the plate near their interface is generally of the same order, because their ratio contains the product
of v00j =v0j and r=rf ): The leading-order solution of Eq. (15) for v00j ðoÞ is

v00j ðoÞ

v̂jðoÞ
¼ �

rf

r
ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂2j =c2f � 1
q . (17)

It can also be obtained by combining Eqs. (4), (13) and (14) with the continuity of the normal displacements at
the plate/fluid interfaces. The stipulation of small v00j =v0j is typically ensured by a small value of rf =r or,
sometimes, of aj. By Eqs. (4) and (17), the sign of v00j is decided by that of gj �m; in agreement with Section 2.2.

Eq. (17) along with Eq. (7), expressing aj via dv̂j=do; illuminate the link between the ‘dispersion rate’ of a
given free-plate branch v̂jðoÞ and the leakage v00j ðoÞ; associated with this branch on fluid loading. The
coefficient of proportionality between v00j ðoÞ and dv̂j=do is usually a relatively slow function of o. Thus the
maximal leakage for the upper continuum of velocity branches and for the supersonic fundamental branch(es)
corresponds to their steepest descend from the cutoffs for the former and from the low-frequency plateau for
the latter (see comments to Figs. 1 and Fig. 3 below).

The approximate solution of Eq. (15) for the real part v0jðoÞ of the leaky-wave velocity is given by

v0jðoÞ � v̂jðoÞ

v̂jðoÞ
¼

1

2

rf

r

� �2 a2
j

v̂2j =c2f � 1

2rv̂2j Gj

aj

�
v̂2j � 3c2f

v̂2j � c2f

 !
, (18)

where Gj ¼ Gðo; v̂jÞ: The difference between v0jðoÞ and the reference free-plate velocity v̂jðoÞ is therefore small
in the measure of ðrf =rÞ

2. Fluid-loading usually raises v0jðoÞ with respect to v̂jðoÞ for the fundamental branches
(see Section 3), however, their difference is not strictly sign-definite. A possibility of v0jðoÞov̂jðoÞ may be
readily observed by appealing to the fluid-coupled thickness resonances, for which v̂�1j ¼ 0 while v0j is finite.

Let us point out the special cases, violating or specifying the leaky-wave dispersion equation and its
solutions (17) and (18). First, these solutions are certainly invalid near the point, at which the free-plate
fundamental branch crosses the threshold cf : This situation is considered in Section 3.1. The other special
cases reside in ‘the plate term’ Fplateðv;oÞ, see Eq. (11). A certain care is needed for dealing with the
fundamental branches at high frequency. This is elaborated in Section 2.4. Near a folding point gj �m ¼ 0,
which breaks up a given free-plate branch v̂j into two separate complex branches under fluid loading [10,11],
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Fig. 1. The A0 and S0 velocity branches (bold lines), numerically calculated for the [1 1 0] propagation direction in a water-loaded ð1 1̄ 0Þ-

cut copper plate. The level 2v00lR is marked and related to the free-plate A
ðfreeÞ
0 and S

ðfreeÞ
0 branches (thin lines).
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Eq. (11) is to be replaced by the expansion with respect to the second-order pole. Inserting this expansion into
Eq. (12) reveals a locally increasing impact of fluid loading,

v002j � ðv
0
j � v̂jÞ

2
	
rf

r
v̂jcf . (19)

If the reference pole is a point of intersection of two free-plate branches, Eq. (11) holds true but with a
modified residue. If dv̂j=do ¼ 0 and hence v̂j ¼ gj �m, which is when Âj � ðN3 � rv̂2j IÞÂ

�

j ¼ 0 [6], the residue
representation (4) remains valid, whereas its derivative form (7) is replaced by the expression through the
second derivative d2v̂j=do2: One more particular case is related to the points o ¼ ~o of fluid/plate uncoupling
Âj � n ¼ 0; at which v̂jðoÞ and v0jðoÞ touch each other (see Ref. [5]). Near such points the factor jÂj � nj

2 in Eq.
(4) and (7) is to be substituted by its perturbation proportional to ðo� ~oÞ2. Note that the plate/fluid
uncoupling is the only possibility for Eq. (12) to have the solutions v0j4cf with zero imaginary part v00j : Lastly,
the treatment of leaky waves in the vicinity of the free-plate thickness resonances v̂�1j ðoÞ ¼ 0 requires a
modified approach, which is discussed in Section 4.
2.4. High-frequency trends of leakage

Assume hereafter that cf ovR o vL; where vR is the Rayleigh velocity and vL is the so-called limiting velocity
of the bulk-wave threshold [12] (the case vRocf is inspected in Ref. [3]). Generally, the free-plate branches
v̂jðoÞ at high o tend to vL, except for the two fundamental branches v̂1;2ðoÞ; which tend to vR. Both these limits
imply waning frequency dispersion v̂jðoÞ ! const., however, they yield different trends of the leakage v00j ðoÞ
under fluid loading.
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Consider first the upper branches v̂jðoÞ: Typically their dispersion along the intermediate plateaus (transonic
states) and along the bulk-wave threshold vL is of the order of ðj=oÞ2 [13]. Hence, by Eqs. (7) and (17), the
corresponding leakage v00j ðoÞ caused by fluid loading tends to zero as ajðoÞ	o�3:Note that asymptotic nearing
of the branches v̂jðoÞ ! vL is 	o�2; whereas the asymptotic formula (3) applies in the vicinity jv�
v̂jj5aj=2rvL	o�3 of each of these branches, so the consideration based on Eq. (3) remains valid. Interestingly,
dealing with a complex frequency versus real velocity leads to the different conclusion: the imaginary part of
frequency is not scaled by the dispersion derivative and hence the ‘temporal leakage’ o00j ; associated with the
upper branches under fluid loading, does not tend to zero with growing o0j.

The free-plate fundamental branches v̂1;2ðoÞ approach vR with an exponentially weak frequency
dependence. Hence, by Eq. (7), the numerator of the residues a1;2ðoÞ decreases as dv̂j=do	e�2oh=vR : But the
denominator of a1;2ðoÞ also vanishes in the limit o!1 (recall the identity ÂR � ðN3 � rv2RIÞÂ

�

R ¼ 0 [14]);
moreover, it can be shown to decrease with exactly the same rate as the numerator. This is why the residues
a1;2ðoÞ do not tend to zero and, via (17), yield a non-zero high-frequency limit of the leakage for A0 and S0

branches2 evolving from v̂1;2ðoÞ under fluid loading. Indeed, this limit is nothing other than the imaginary part
of the leaky Rayleigh-wave velocity vlR for a fluid-loaded solid half-space: v00A0;S0

ðoÞ ! v00lR. The leading-order
evaluation of v00lR for isotropic solids goes back to Ref. [15]. For general anisotropy, the formalism developed in
Ref. [16] readily yields

v00lR
vR

¼ �
rf

r
aR

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2R=c2f � 1

q , (20)

with

aR ¼ �2rvR
dð1=Y ðnÞ1 Þ

dv

� ��1
vR

¼
2rvRjÂR � nj

2

ð�dz1=dvÞvR

. (21)

Here Y ðnÞ1 ðvÞ ¼ n � Z�11 ðvÞn; and Z1 is the Lothe–Barnett 3�3 impedance matrix of the solid half-space [12]. It
defines the Rayleigh wave by Z1ðvRÞÂR ¼ 0, and z1ðvÞ in Eq. (21) is that one of its eigenvalues (real, single and
decreasing for vovL) which turns to zero at vR. Explicit evaluation of Z1 for anisotropic solids can be handled
by various methods, see e.g. Refs. [12,14,17]. Note that in many typical cases vR is fairly close to vL; and then
the leakage v00lR acquires a small numerical factor because of large ð�dz1=dvÞvR

/ ðvL � vRÞ
�1=2: The case of

‘double leakage’ into both the fluid and the (anisotropic) solid half-spaces, which is stipulated by the Rayleigh
wave with vR4vL; has been studied in Ref. [18].

It is instructive to compare Eqs. (17) and (20). Generally, by Eqs. (11) and (12), a pole at v̂j affects v00j with

the ‘force’ proportional to 2aj, which accounts for the equal contributions of Y
ðnÞ

1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
: Now

consider o!1 and vovL: Then Y
ðnÞ

1 ðv;oÞ ! Y ðnÞ1 ðvÞ and so its residues a1;2ðoÞ referred, respectively, to

v̂1;2ðoÞ tend to aR; but at the same time Y
ðnÞ

2 ðv;oÞ ! 0 for vavR. It is also noted that asymptotical nearing of

the branches (poles) v̂1;2ðoÞ ! vR leads to merging rather than adding their contributions, for, Z1 has a single

zero at vR. Thus, the Rayleigh pole vR affects v00lR with the ‘force’ proportional to aR; instead of 2aj in Eq. (11).

This is the reason for the additional factor 1
2
acquired by v00A0

and v00S0
in their high-frequency limit (20)

comparatively to Eq. (17). This effect of a ‘weakening’ pole modifies appropriately Eqs. (11), (17) and (18),
when these are used for the A0 and S0 branches at high frequency. The same point is evident on invoking the
case of one-sided fluid loading (see the remark below (15)): for low and intermediate frequency, the leakage
v001;2ðoÞ is approximately twice less than for the two-sided loading, but the high-frequency limit v00lR of v00A0

ðoÞ
and v00S0

ðoÞ for both two-sided and one-sided loading is certainly identical.
2The conventional notations A0 and S0 (or vA0
and vS0

) are actually related to the assumption of a symmetry plane parallel to the plate

faces, however, we shall follow Ref. [3] in using them as well for the case of arbitrary anisotropy. For the reference branches in a free plate,

the notations v̂1; v̂2 will be used alongside A
ðfreeÞ
0 and S

ðfreeÞ
0 (or v̂A0

and v̂S0
).
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3. Fundamental leaky branches

3.1. A0 branch

We continue with the case cf ovR; so that v̂1ðoÞ (the free-plate flexural A
ðfreeÞ
0 branch) and the real part

v0A0
ðoÞ of the A0 branch cross the cf level. The subsonic behaviour of this branch and, in particular, the

condition for existence of the A0 loop of purely real solutions have been examined in Ref. [3]. A strong impact
of fluid loading, characterizing transformation of A

ðfreeÞ
0 to A0 branch in the subsonic domain, is taken over by

a comparatively weaker effect in the supersonic velocity interval. This two different trends adjust to each other
in the intermediate range jv̂21=c2f � 1j1=2trf =r; which is where v̂1ðoÞ and v0A0

ðoÞ cross the cf -level. Here ‘the
supersonic’ equations (17) and (18) are not valid yet; instead, vA0

may be locally estimated by

v0A0
� v̂1 ¼ Crcf

rf

r
a1

� �2=3

; v00A0
¼ �Cicf

rf

r
a1

� �2=3

, (22)

with the coefficients Cr markedly smaller than 1 and Ci of the order of 1 (note that the subsonic A branch,
arising from A

ðfreeÞ
0 due to decreasing fluid modes, departs downwards from v̂1ðoÞ	cf in the same measure of

ðrf =rÞ
2=3). With further growing o and hence the fluid impact falling off, Eq. (22) is superseded by Eqs. (17)

and (18).
An overall shape of the curves v0A0

ðoÞ and v00A0
ðoÞ largely depends on the presence or absence of the real

subsonic loop. If it exists, then the curve v00A0
ðoÞ has a maximum on both sides of the frequency interval

v00A0
ðoÞ ¼ 0 of the real loop existence. With rf =r taken as a continuously growing variable, the loop shrinks

and then disappears; correspondingly, the two maxima of v00A0
ðoÞ approach each other and then merge

into a single extremum, associated with the region of strongest dispersion along the A
ðfreeÞ
0 branch (see Fig. 7 in

Ref. [3]).
Another general feature of the A0-branch leakage has to do with its high-frequency adjustment from Eqs.

(17) to (20) (see Section 2.4). The A
ðfreeÞ
0 branch v̂1ðoÞ commonly reaches an essentially flat plateau when the

frequency is not very high and so v00A0
ðoÞ may be described by Eq. (17). A waning dispersion of the velocity

v̂1ðoÞ ! vR with further growing frequency entails small variation of a1ðoÞ on its tendency to aR. At the same
time, the leakage v00A0

ðoÞ decreases approximately by half from its value (17) at the beginning of the Rayleigh
shoulder to the high-frequency limit v00lR given by Eq. (20). A similar trend pertains to the upper fundamental
branch S0, although in a less conspicuous fashion, because flattening along the Rayleigh shoulder becomes
prominent for the S

ðfreeÞ
0 branch usually from a higher frequency than for A

ðfreeÞ
0 :

The outlined observations are exemplified for the ½1 1 0� propagation in a water-loaded ð1 1̄ 0Þ-cut copper
plate in Fig. 1. The density of copper is r ¼ 8:932 g=cm3 and the elastic coefficients in the basis with X 1k½1 1 0�
and X 2k½1 1̄ 0� (see Section 2.1) are c11 ¼ c22 ¼ 222, c33 ¼ 170, c12 ¼ 71, c13 ¼ c23 ¼ 123, c44 ¼ c55 ¼ 75:5,
c66 ¼ 23:5GPa.

In conclusion, let us address a possibility of evaluating the supersonic extent of the A0 branch by means of
the low-frequency approximation. The necessary condition is that the free-plate branch A

ðfreeÞ
0 crosses cf at a

frequency low enough to admit such approximation. The low-frequency asymptotics for the A
ðfreeÞ
0 branch,

truncated by the leading order, read

v̂1ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2koh
p

; a1ðoÞ ¼

ffiffiffiffiffiffiffiffiffi
k

8oh

r
, (23)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=12rÞm �N3m

p
(N3 is the Stroh-matrix block, see Eq. (1)). Taking v̂1 ¼ cf with v̂1 ¼ 2kkh and

demanding 2khð¼ 2oh=v̂1Þ51 yields the sought condition in the form

cf 5k. (24)

This strong inequality is certainly not applicable to typical plate materials and loading fluids, for which the
A
ðfreeÞ
0 branch crosses cf far beyond the low-frequency range. It is, however, feasible if cf stands for the speed of

sound in gas. In the case of gas loading, the low-frequency estimate can still be used in Eq. (17) for
approximating a certain supersonic range of the A0 branch as long as 2oh=v̂151 (with actual v̂1ðoÞ) remains
valid. Fig. 2, plotted for a copper plate (k � 2:73mm=ms) loaded by air (rf ¼ 0:0012 g=cm3, cf ¼ 0:34mm=ms),
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ðoÞ of the A0 branch for the [1 1 0] propagation direction in a ð1 1̄ 0Þ-cut copper plate loaded by air. Solid
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2koh
p
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demonstrates a comparison between the exact curve v00A0
ðoÞ and its explicit approximation via Eq. (17) with

Eq. (23). Regarding the subsonic part of the A0 branch, we recall that under air loading it is dominated by the
broad real-valued loop, see Ref. [3].

3.2. The low-frequency asymptotics for the upper fundamental branches

For low o, the leading-order frequency dependence of the velocity and displacement vector for the two
upper fundamental branches in a free plate is

v̂jðoÞ ¼ v̂
ð0Þ
j 1� bBj

oh

v̂
ð0Þ
j

 !2
24 35; ÂjðyÞ ¼ Uj ej þ

io

v̂
ð0Þ
j

ðyIþ hej 
 ejÞN1ej

" #
; j ¼ 2; 3, (25)

where Uj is a disposable normalization constant and the plate faces are located at y ¼ �h. The values v̂
ð0Þ
j and

ej ; referred to the limit o! 0; are defined by the eigenspectrum of N3:

N3 � rv̂
ð0Þ2
j I

� �
ej ¼ 0; ej � n ¼ 0; j ¼ 2; 3 (26)

and

bBj ¼ �
1

6rv̂
ð0Þ2
j

ej �N
T
1 N3 � rv̂

ð0Þ2
j I

� �
N1ej ; j ¼ 2; 3. (27)

In the case of generic anisotropy both these branches are dispersive, and the onset for the lower of v̂2ðoÞ; v̂3ðoÞ
may be either decreasing or increasing whereas that for the higher branch is always decreasing. The coefficients
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of asymptotics simplify in the presence of a symmetry plane m. For instance, if the plate faces are parallel to a
symmetry plane m, then bBj ¼

1
6ðn �N1ejÞ

2; j ¼ 2; 3. If m coincides with the sagittal plane ðm; nÞ; so that one of
the branches v̂2;3ðoÞ is the SH non-dispersive branch, then the onset of the other branch, starting off either
above or below the SH-wave velocity, has the coefficient bBj ¼

1
6
ðn �N1mÞ

2 (see details in Refs. [4,19]).
Assume the typical case, when the least of v̂

ð0Þ
j exceeds cf of the loading fluid and so both (dispersive)

fundamental branches vjðoÞ in the immersed plate are complex off the zero frequency limit. Consider their
low-frequency approximation. Utilizing Eq. (7) with Eqs. (25) and (26) gives

ajðoÞ ¼
oh

2v̂
ð0Þ
j

ðn �N1ejÞ
2; j ¼ 2; 3. (28)

Inserting this into Eq. (17) yields the leading-order estimate of the leakage,

v00j ðoÞ ¼ �
rf

r
oh

ðn �N1ejÞ
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂
ð0Þ2
j =c2f � 1

q ; j ¼ 2; 3. (29)

Eq. (29) evaluates the linear slope of v00j ðoÞ for any rf =r; not necessarily small. This is due to proportionality of
the residues ajðoÞ to oh=v̂

ð0Þ
j 51 (by contrast to the case of the flexural branch), so that the aggregate small

parameter is a product of rf =r and oh=v̂
ð0Þ
j . Moreover, the quantity n �N1ej, which is of the order of ratio of

the non-diagonal to diagonal elasticity coefficients cIJ ; usually entails an additional numerical smallness
reducing the initial slope of v00j ðoÞ. Note that if neither the plane of plate faces nor the sagittal plane coincide
with a symmetry plane whereas the propagation direction m is orthogonal to a symmetry plane, then the
residue for the quasi-SH wave is of the order of ðohÞ3, and therefore so is this wave leakage.

Substituting Eq. (28) along with evaluated Gj	oh=v̂
ð0Þ
j (see Ref. [5]) into Eq. (18) gives the leading-order

asymptotics for the real part in the form

v0jðoÞ ¼ v̂jðoÞ 1þ
rf

r

� �2

Bj

oh

v̂
ð0Þ
j

 !2
24 35 � v̂

ð0Þ
j 1� bBj �

rf

r

� �2

Bj

" #
oh

v̂
ð0Þ
j

 !2
8<:

9=;, (30)

with

Bj ¼
ðn �N1ejÞ

2

2 v̂
ð0Þ2
j =c2f � 1

� � ðn �N1ekÞ
2

v̂
ð0Þ2
k =v̂

ð0Þ2
j � 1

� rv̂
ð0Þ2
j n �N2n þ

v̂
ð0Þ2
j þ c2f

4 v̂
ð0Þ2
j � c2f

� � ðn �N1ejÞ
2

24 35; j; k ¼ 2; 3; kaj. (31)

By Eq. (31), in which N2 is negative definite (see Eq. (1)), a positive value of Bj is ensured for the lower of two
(dispersive) fundamental branches v0jðoÞ, so that its low-frequency onset is always higher than in the free plate,

v0jðoÞ4v̂jðoÞ (32)

and this is also true as a rule for the higher branch. In the presence of the SH non-dispersive and fluid-
uncoupled branch vj ¼ v̂SH (n �N1ej ¼ 0 for ej ¼ m� n), the other branch always has Bj40: Thus, the overall
conclusion is that typically the coefficients bBj and Bj are positive. Assuming this hereafter, it is seen from Eq.
(30) that the low-frequency trend of v0jðoÞ is described by the two competitive factors: the free-plate dispersion
proportional to bBj drives the curve v0jðoÞ downward, whereas the ‘fluid-induced’ dispersion proportional to
ðrf =rÞ

2Bj forces it upward. As a result,

v0jðoÞov̂
ð0Þ
j for ðrf =rÞ

2BjobBj ; v0jðoÞ4v̂
ð0Þ
j for ðrf =rÞ

2Bj4bBj. (33)

It is obvious indeed that the low-frequency onset of v0jðoÞ bends downward alongside v̂jðoÞ if rf =r is small;
what is interesting is that v0jðoÞ goes upward if rf =r is large enough (recall to this end that asymptotics (30)
does not require the assumption of small rf =r).

As an example, consider the S0 leaky fundamental branch in an immersed plate with the faces and the
sagittal plane ðm; nÞ parallel to the symmetry planes: Hereafter in this subsection, the branch label j ¼ S0 is
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adopted. With X 1km and X 2kn; Eq. (29) specifies as

v00S0
ðoÞ ¼ �

rf

r
oh

c212=c222

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂
ð0Þ 2
S0

=c2f � 1
q (34)

and Eq. (30) holds with v̂
ð0Þ2
S0
¼ 12k2 ¼ 1

r ðc11 � c212=c22Þ and

bBS0
¼

1

6

c212
c222

; BS0
¼

c212=c222

8 v̂
ð0Þ 2
S0

=c2f � 1
� � 4

c11

c22
� 3

c212
c222
þ

2c212=c222

v̂
ð0Þ 2
S0

=c2f � 1

0@ 1A, (35)

where BS0
40: To improve the approximation accuracy, the asymptotics (25)1 for the S

ðfreeÞ
0 branch will be

complemented by the next-order asymptotics

v̂2S0
ðoÞ ¼ v̂

ð0Þ2
S0

1�
1

3

c212
c222

oh

v̂
ð0Þ
S0

0@ 1A2

�
2

15

c212
c222

c11

c22
þ

1

3

c12

c22
�

c212
c222

� �
oh

v̂
ð0Þ
S0

0@ 1A424 35. (36)

Fig. 3 shows a comparison between the exact calculation and the low-frequency approximations for the S0

branch in water-loaded plates of copper and Plexiglas (r ¼ 1:18 g=cm3; c11 ¼ 7:375; c12 ¼ 3:977GPa). The
leading-order asymptotics (34), which identifies only the linear slope of leakage v00S0

ðoÞ, may be complemented
by an estimate of the frequency of v00S0

ðoÞ extremum, assuming that the latter occurs near the steepest descend
of the free-plate branch v̂S0

ðoÞ: For the plate materials at hand, the extremes of dv̂S0
=do and of v00S0

are
located, respectively, at fh � 1:15 and 1:17MHzmm for copper (see Fig. 1) and at fh � 0:45 and
0:52MHzmm for Plexiglas (see Fig. 3b). These values are in a good agreement with Eq. (17) incorporating Eq.
(7). Consider now the real part of the S0 branch. For the copper plate (rf =r51), the curve v0S0

ðoÞ is very close
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Fig. 3. Low-frequency onset of the S0 branch: (a) for the [1 1 0] propagation direction in a water-loaded ð1 1̄ 0Þ-cut copper plate; (b) for a

water-loaded Plexiglas plate. Solid lines represent the exactly calculated real and imaginary parts v0S0
ðoÞ; v00S0

ðoÞ. Dashed lines show the

leading-order asymptotics of v0S0
ðoÞ; given by Eq. (30) with Eq. (35), and of v00S0

ðoÞ, given by Eq. (34); the dotted line is the asymptotics for

v0S0
ðoÞ, given by Eq. (30) with Eq. (36). Thin line in (b) is the free-plate branch v̂S0

ðoÞ, added for comparison.



ARTICLE IN PRESS
A.L. Shuvalov et al. / Journal of Sound and Vibration 296 (2006) 494–517 505
to the free-plate branch v̂S0
ðoÞ: their difference is less than 10�3 mm=ms at fh ¼ 0:5MHzmm (too small to

separate these curves in Fig. 3a). On the other hand, a relatively large value of rf =r in the case of a Plexiglas
plate entails the curve v0S0

ðoÞ, which differs drastically from the free-plate branch v̂S0
ðoÞ and folds upward in

accord with Eq. (33), see Fig. 3b.
The case of a relatively large rf =r is fairly often encountered in practical applications, e.g., it is typical for

many types of light composites. In this regard, it is interesting to explore the evolution of the low-frequency
onset of v0S0

ðoÞ from descending to ascending pattern with growing density ratio rf =r. (Similar phenomena
due to internal absorption in unloaded plates has been discussed in Refs. [20–22].) Corresponding simulation
is presented in Fig. 4. Its qualitative interpretation is as follows. At small rf =r the branch v0S0

ðoÞ is close to
steadily descending free plate branch S

ðfreeÞ
0 (the bold curve 1 in Fig. 4). The effect of growing rf =r; which is at

first more prominent for low frequency, flattens the initial trend of v0S0
ðoÞ and hence makes its subsequent

descend steeper. This causes a decrease of the average (integrated across the plate) horizontal energy flux,
related to this part of the dispersion curve. As rf =r continues to increase, the flux becomes too small to remain
compatible with the wave-field distribution pertaining to the S0 branch, and so v0S0

ðoÞ has to jump onto the
‘trajectory’ of the real part of the S1 branch. Hence, for a certain value of density ratio, denoted, say, by
ðrf =rÞc; both the real and imaginary parts of the immersed-plate branches vS0

ðoÞ and vS1
ðoÞ must intersect at

the same frequency oint (see the curves 2 in Fig. 4). With further growing rf =r4ðrf =rÞc; the branches vS0
ðoÞ

and vS1
ðoÞ break apart (the curves 3 in Fig. 4). The low-frequency part v0S0

ðoÞ, approximated by Eq. (30),
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Fig. 4. Simulation of low-frequency evolution of the S0 branch in a Plexiglas plate with growing density of the loading fluid

(cf ¼ 1:5mm=ms). The two curves 1 are the free-plate branches S
ðfreeÞ
0 (bold line) and S

ðfreeÞ
1 (thin line for both the complex-valued segment,

running from the folding point to o ¼ 0, and for the continuation of the real branch). The curves 2 correspond to the critical value ðrf =rÞc;
which entails intersection of the complex branches S0; S1 and triggers their changeover. The curves 3, representing S0 (bold line) and S1

(thin line) after the changeover, are plotted for water loading. The filled circle indicates the point of plate/fluid uncoupling at v ¼ vl and

o ¼ p=h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2t � v�2l

q
: Note that a kink on the curve 2 slightly below v ¼ cf pinpoints the opening of real-valued arch (cf. Fig. 9 in Ref. [3]).
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raises upward in order to adjust to the ‘new’ trajectory on the right-hand side of oint, where the same leaky-
wave branch is no longer topologically related to the S

ðfreeÞ
0 branch but rather to the non-propagating S

ðfreeÞ
1

branch of the free plate. Note that the value ðrf =rÞc; which triggers S0! S1 changeover, is slightly less than
another reference value ðrf =rÞ0; for which the onset of v0S0

ðoÞ becomes horizontal. Thus, with reference to Eqs.
(30) and (33),

ðrf =rÞctðrf =rÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibBS0

=BS0

q
. (37)

For the case of Plexiglas, ðrf =rÞc ¼ 0:37 and ðrf =rÞ0 ¼ 0:59:
Fig. 4 demonstrates in passing a noteworthy general property: for the symmetrical branches v̂Sn ðoÞ

(n ¼ 1; 2; . . .) of a free plate, the wave field does not penetrate into an arbitrary adjoined fluid (plate/fluid
uncoupling, see Section 2.3) at the points, where v̂Sn ðoÞ meet the velocity vl of the pure longitudinal bulk wave
propagating along m. This is because for such points the normal displacement of the plate faces turns to zero:
ÂSn � n ¼ 0: Hence, v̂Snðo

ðnÞÞ ¼ vl entails v00Sn
ðoðnÞÞ ¼ 0 and the tangency of the curves v0Sn

ðoÞ and v̂Sn ðoÞ at o
ðnÞ;

see Fig. 4.
In conclusion, it is noted that the low-frequency dispersion of the real part of S0 branch has been studied for

isotropic immersed plates in Ref. [23] with a purpose to emphasize inequality (32). The coefficient of the ‘fluid-
induced’ dispersion BS0

was inferred there by truncating the Taylor expansion in complex v after the first
order. This is incorrect. The first-order variation of the real part ðv0 � v̂Þ=v̂ is in fact of the same order as the
omitted second-order term ðv00=v̂Þ2. As a result, the formula obtained for BS0

in Ref. [23] differs from the
correct expression (Eq. (35)2 reduced to the case of isotropy) by missing the term �3c212=c222 ¼ �3ð1�

2c66=c11Þ
2 in the parentheses. Another oversight in Ref. [23] is that the ‘fluid-induced’ relative velocity

difference BS0
ðrf =rÞ

2 oh=v̂
ð0Þ
S0

� �2
equal to ½v0S0

ðoÞ � v̂S0
ðoÞ�=v̂S0

ðoÞ (see Eq. (30)) was attributed to ½v0S0
ðoÞ �

v̂
ð0Þ
S0
�=v̂
ð0Þ
S0
; i.e. referred to the origin point v̂

ð0Þ
S0
ð¼ v̂S0

ð0ÞÞ rather than to the branch v̂S0
ðoÞ: Such writing would

mean that a positive BS0
40 implies v0S0

ðoÞ4v̂
ð0Þ
S0

(raising of v0S0
ðoÞ above the v̂

ð0Þ
S0

at any small rf =r) instead of

the correct consequence v0S0
ðoÞ4v̂S0

ðoÞ:

4. Leaky waves near the thickness resonances

4.1. Preliminaries for an unloaded plate

Consider a free plate. The nth thickness resonance, associated with the ath bulk mode propagating along the
normal n with the velocity ca and the (unit) polarization aa, occurs at the cutoff frequency

oa;n ¼
pn

2h
ca ða ¼ 1; 2; 3; n ¼ 1; 2; . . .Þ. (38)

The (trace) velocity v becomes infinitely large with o tending to oa;n; and hence its inverse, the slowness
s ¼ v�1; is a more suitable parameter near thickness resonances. It is also convenient to adopt the ‘local’
branch labeling by the subscript ða; nÞ instead of j: In these terms, each cutoff frequency oa;n gives rise to the
slowness branch ŝa;nðoÞ: It emerges from zero slowness and continues as a pure imaginary (non-propagating)
branch on one side of oa;n and as a real (propagating) branch on the other side of oðnÞa : Specifically, the real
branch extends to the right or to the left (o4oðnÞa or oooðnÞa ) if the in-plane group velocity ga;n �m along this
branch is, respectively, positive or negative [7,24]. To link the further analysis to this pivotal point, consider
for the moment the (real) frequency versus (real or imaginary) wavenumber dispersion branch ôa;nðkÞ and its
expansion at small k ¼ os near the cutoff origin,

ôa;nðkÞ ¼ oa;n þW a;nð2khÞ2 þ � � � . (39)

Recall that dôa;n=dk ¼ ga;n �m for real k: By Eq. (39), the leading-order approximation of ŝa;nðoÞ near oa;n is

ŝ2a;nðoÞ ¼
o� oa;n

W a;nð2oa;nhÞ2
, (40)
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implying that ŝa;nðoÞ is real for o4oa;n and purely imaginary for oooa;n if W a;n is positive, and vice versa if
W a;n is negative. For future references, let us write this relationship as

sgnW a;n ¼ sgn ðga;n �mÞreal ŝa;n for Do ¼ o� oa;n !
þ0 if W a;n40;

�0 if W a;no0:

(
(41)

The leading-order approximation (40) discarding the contribution 	ðDoÞ2 remains accurate within the
cutoff vicinity restricted by the conditions

jDoj5oa;n; jDoj5W 2
a;n=Wnext, (42)

where Wnext is the coefficient in front of ðkhÞ4 in the next-order term in Eq. (39). Outside the range (42), the
deviation of the slowness branch ŝa;nðoÞ from the leading-order estimate (40) is especially sizable in two cases.
The first is when either real or imaginary extent of ŝa;nðoÞ near the cutoff has a folding point dŝa;n=do!1,
which brings about a pair of complex-conjugated slowness branches. The second case occurs when there are
two closely situated cutoffs, which give rise to the real-slowness branches with opposite signs of ga;n �m: These
curves move apart each other and, as a result, their imaginary extent curls into a small arch in between the
cutoffs which rounds up the contrary trend of the real curves, see Refs. [7,10,11,24]. From the inverse
viewpoint, it may be said that either of these two cases signals a small numerical value of the leading-order
dispersion coefficient W a;n relatively to the next one, and hence an ‘early’ violation of Eq. (42)2 for a quite
small jDoj.

Analytical derivation of the coefficients of series (39) is of independent interest, which, however, exceeds the
scope of the present paper. To avoid details pertaining to the general case of arbitrary anisotropy, we confine
here to exemplifying W a;n for the in-plane Lamb branches in an orthorhombic plate with the faces and the
sagittal plane ðm; nÞ parallel to symmetry planes. Let the indices a ¼ l; t correspond to the longitudinal and
transverse modes, so that the cutoffs (38), related to these modes, are ol;n ¼ pncl=2h and ot;n ¼ pnct=2h with
cl ¼

ffiffiffiffiffiffiffiffiffiffiffi
c22=r

p
and ct ¼

ffiffiffiffiffiffiffiffiffiffiffi
c66=r

p
(X 1km; X 2kn). Then

W l;nh ¼
1

pn
ffiffiffiffiffiffiffiffiffi
rc22
p

c2
12
þc66ðc22þ2c12Þ

4ðc22�c66Þ
�
ð�1Þn

pn

c
3=2
66 ðc12 þ c22Þ

2

c
1=2
22 ðc22 � c66Þ

2
wl;n

" #
;

W t;nh ¼
1

pn
ffiffiffiffiffiffiffiffiffi
rc66
p

c11

4
�
ðc12 þ c66Þ

2

4ðc22 � c66Þ
�
ð�1Þn

pn

c
3=2
66 ðc12 þ c22Þ

2

c
1=2
22 ðc22 � c66Þ

2
wt;n

" #
;

(43)

where

wl;n ¼
cot ðol;nh=ctÞ if n is odd;

tan ðol;nh=ctÞ if n is even;

(
wt;n ¼

cot ðot;nh=clÞ if n is odd;

tan ðot;nh=clÞ if n is even:

(
(44)

Given that m is parallel to the axis of transverse isotropy, Eqs. (43) and (44) reduce to the result of Ref. [25].

Recall that the dispersion equation for a fluid-loaded plate involves the term Fplate � Y
ðnÞ

1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y
ðnÞ

2 Y
ðnÞ�

2

q
; see

Eq. (11). In the vicinity of the cutoff oa;n; within which the branch ŝa;nðoÞ has no folding points, the singular

part of this term, considered as a function of s;o and pre-multiplied by �s�1; is

�
1

s
Fplateðs;oÞ /

2eaa;nðoÞ

r ŝ2a;nðoÞ � s2
h i , (45)

where eaa;n replaces aj=v̂3j of Eq. (11). Note that, despite the similarity of ga;n �m ¼ 0 and dŝa;n=do!1 at
o ¼ oa;n to the case of folding points (gj �m ¼ 0; dv̂j=do!1 for a finite v̂j), ðdŝ2a;n=doÞoa;n is well defined by
Eq. (40) and the residue ~aa;nðoÞ at the pole ŝ2a;nðoÞ is a locally analytical function of Do ¼ o� oa;n: Denote its
expansion about oa;n by

eaa;nðoÞ ¼ eað0Þa;n þ eað1Þa;nðoÞ þ . . . ; where eað0Þa;n ¼ eaa;nðoa;nÞ; eað1Þa;nðoÞ	Do. (46)
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The leading-order term is

eað0Þa;n ¼ ðaa � nÞ
2

2W a;nhð2oa;nhÞ2
. (47)

If the vertical direction n admits a purely transverse bulk mode (a ¼ t), then at � n ¼ 0 leads in the vicinity of
the transverse cutoffs ot;n to

eað0Þt;n ¼ 0; eað1Þt;n ¼
o� ot;n

2W 2
t;nhð2ot;nhÞ4

V 2
t;n, (48)

where, for arbitrary anisotropy,

V t;n ¼
X3

a¼1;aat

ðaa � nÞ
c2t ca

c2t � c2a
ðat �N1aa þ aa �N1atÞwt;n. (49)

For the orthorhombic-plate setting introduced above, W t;n is given by Eq. (43)2 and Vt;n reduces to

V t;n ¼
c66ffiffiffiffiffiffiffiffiffi
rc22
p

c12 þ c22

c66 � c22
wt;n. (50)

4.2. Dispersion equation for leaky waves near the cutoffs

Consider the leaky waves for a fluid-loaded plate in the vicinity of the free-plate cutoffs oa;n. The leaky-
waves slowness sa;nðoÞ ¼ s0a;n þ is00a;n is sought as a perturbation of the free-plate solution ŝa;nðoÞ: In this
context, two different types of thickness resonances are distinguished depending on the polarization aa of the
resonant mode travelling along n: the fluid-coupled resonances, for which aa is not purely transverse (aa � na0;
hence sa;na0 for o ¼ oa;n), and the fluid-uncoupled, or transverse, resonances associated with the transverse
mode (at � n ¼ 0; hence st;n ¼ 0 for o ¼ ot;n).

The dispersion equation (16) with reference to Eqs. (45)–(48) can be approximated as follows:

2eað0Þa;n
r ŝ2a;nðoÞ � s2
h i� i

rf cf

¼ 0 (51)

in the vicinity of a fluid-coupled resonance oa;n, and

2eað1Þt;n ðoÞ

r ŝ2t;nðoÞ � s2
h i� i

rf cf

¼ 0 (52)

in the vicinity of a fluid-uncoupled resonance ot;n. Here the contribution 	ðcf sÞ2 is neglected in ‘the fluid term’,
and the assumption of a small enough density ratio rf =r allows approximating ‘the plate term’ to the leading
order, which is valid in the frequency range jDoj ¼ jo� oa;nj satisfying Eq. (42). For Eq. (52), it is also
assumed that

js2 � ŝ2t;nðoÞj5cteað1Þa;nðoÞ. (53)

A single-pole expansion used in Eqs. (51) and (52) is accurate insofar as the reference free-plate branch ŝa;nðoÞ
is locally well detached from other branches. For instance, adjacent fluid-coupled and fluid-uncoupled
resonances can be treated independently if the frequency gap between their cutoffs is much greater than the
gauge value 2rf cf =rh; otherwise the approximation validity depends on the local configuration of the free-
plate slowness curves (see Section 4.4).

As discussed in Section 2.2, the formulation of the dispersion equation, which admits the leaky-wave
solutions evolving from the free-plate ones, is unique. It defines the leaky wave, carrying energy away from the
plate, as incorporating the modes that increase into the depth of loading fluids, if the in-plane group velocity
ga;n �m of the reference free-plate solution is positive, and decrease, if ga;n �m is negative. In the vicinity of
thickness resonances, however, this interpretation applies only to the real-valued extent of the reference
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fluid-coupled resonance fluid-uncoupled resonance

free-plate
slowness curves

a b c d
ω ωωt,n ωt,nω

Fig. 5. The type of a partial mode, increasing or decreasing into the fluid half-space, that is incorporated by the leaky wave near the fluid-

coupled and fluid-uncoupled thickness resonances with a positive or negative in-plane group velocity ga;n �m in the vicinity. The solid and

dotted lines indicate, respectively, the real and pure imaginary extent of the free-plate slowness branch ŝa;nðoÞ near the reference cutoff oa;n

(a ¼ t signifies the fluid-uncoupled resonance).
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free-plate branches ŝa;nðoÞ (i.e., for o_oa;n at ga;n �m_0), otherwise appealing to the group velocity is
irrelevant. For the leaky wave, associated with the pure imaginary extent of ŝa;nðoÞ; the link between the free-
plate dispersion and the resulting type of fluid modes in the leaky wave is based on the observation that
the sign of the imaginary part of slowness s00a;n; defined by Eq. (51) or (52) in the case of fluid-coupled or
fluid-uncoupled resonances, coincides with the sign of eað0Þa;n or eað1Þt;n ðoÞ, respectively. By Eqs. (47) and (48), this
means that

sgn s00a;n ¼ sgnW a;n if the resonance is fluid-coupled;

sgn s00t;n ¼ sgn ðo� ot;nÞ if the resonance is fluid-uncoupled.
(54)

Recalling that positive or negative s00a;n implies, respectively, decay or growth along m and hence increase or
decrease into the fluids depth, relationship (54) in conjunction with Eq. (41) is illustrated in the form of a
diagram in Fig. 5. The leaky wave near a fluid-coupled resonance involves the fluid modes of the same type
and thus has the same trend along m on both sides of the cutoff frequency oa;n; which is obvious by continuity.
Less trivial is the case of fluid-uncoupled (transverse) resonance: it is seen that the two interrelated attributes
of the leaky wave—the type of fluid modes and the sign of leakage—must switch on passing the cutoff
frequency ot;n.

4.3. Leaky-wave slowness near the fluid-coupled and fluid-uncoupled resonances

Solving Eq. (51) with Eq. (47) yields the leading-order asymptotics for the slowness of the leaky wave near
the cutoffs oa;n of the fluid-coupled resonances,

½s0a;nðoÞ�
2 ¼

1

2W a;nð2oa;nhÞ2
Doþ ðsgnW a;nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ

rf

r
cf

h

� �2

ðaa � nÞ
4

s24 35,
½s00a;nðoÞ�

2 ¼
1

2W a;nð2oa;nhÞ2
�Doþ ðsgnW a;nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDoÞ2 þ

rf

r
cf

h

� �2

ðaa � nÞ
4

s24 35, ð55Þ

where Do ¼ o� oa;n: The sign of s00a;nðoÞ is determined by Eq. (54)1. Neglecting the next-order terms is
stipulated by small rf =r and additionally fostered by a smallness of cf relatively to the velocities of bulk modes
in the plate material. By Eq. (55), the real part and the absolute value of the imaginary part of the leaky-wave
slowness, taken to the leading order, cross each other at exactly the cutoff frequency:

s0a;nðoa;nÞ � ðsgnW a;nÞs
00
a;nðoa;nÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf

r
cf ðaa � nÞ

2

2jW a;njhð2oa;nhÞ2

s
. (56)

The difference between the exact values appears in the next order of approximation, so that s0a;nðoa;nÞ �

js00a;nðoa;nÞj	ðrf =rÞ
3=2; and it is not sign-definite. Thus for small rf =r the actual intersection of the curves s0a;nðoÞ

and js00a;nðoÞj is only slightly shifted from oa;n to the left- or right-hand side at a distance jDoj	ðrf =rÞ
2:
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Solving Eq. (51) with Eq. (48) gives the asymptotics for the vicinity of the fluid-uncoupled resonances ot;n as
follows:

½s0t;nðoÞ�
2 ¼ ŝ2t;nðoÞ 1þ

rf

r
cf

h

� �2 V4
t;n

4W 2
t;nð2ot;nhÞ4

" #

½s00t;nðoÞ�
2 ¼ ŝ2t;nðoÞ

rf

r
cf

h

� �2 V 4
t;n

4W 2
t;nð2ot;nhÞ4

9>>>>>=>>>>>;
for W t;nDo40,

½s0t;nðoÞ�
2 ¼ �ŝ2t;nðoÞ

rf

r
cf

h

� �2 V4
t;n

4W 2
t;nð2ot;nhÞ4

½s00t;nðoÞ�
2 ¼ �ŝ2t;nðoÞ 1þ

rf

r
cf

h

� �2 V 4
t;n

4W 2
t;nð2ot;nhÞ4

" #
9>>>>>=>>>>>;

for W t;nDoo0, ð57Þ

where ŝ2t;nðoÞ ¼ Do=W t;nð2ot;nhÞ2ð_0Þ by Eq. (40). The sign of Do ¼ o� ot;n determines the sign of s00t;nðoÞ
according to Eq. (54)2. Inserting Eq. (57) into Eq. (53) verifies the latter condition once rf cf =rct is small,
thereby confirming the consistency of approximation. By Eq. (57), the leaky-wave slowness, which is a
perturbation of, specifically, the real extent of the free-plate branch, satisfies s0t;n � ŝt;n	ðrf =rÞ

2 (s0t;n4ŝt;n)
and js00t;nj	rf =r: In turn, the slowness, emerging from the imaginary extent ŝt;n ¼ iŝ00t;n; satisfies
s00t;n � ŝ00t;n	ðrf =rÞ

2
ðjs00t;nj4jŝ

00
t;njÞand s0t;n	rf =r: It is noted that both local asymptotics (55) and (57) show an

approximate symmetry between the curves of real and imaginary parts of the slowness about the cutoff
frequency.

In conclusion, let us recall that a non-zero slowness related to the fluid-coupled resonance is a feature of the
‘spatial leakage’ (real o and complex s), as opposed to the ‘temporal leakage’ (real s and complex o). In the
latter case, fluid loading keeps s ¼ 0 for any thickness resonance, but the cutoff frequency becomes complex
[8,9,26,27]. If the plate faces are parallel to a symmetry plane, then the complex frequency of the longitudinal
(fluid-coupled) resonances is given by the simple relation,

ol;n ¼
cl

2h
pn� i ln

1þ rf cf =rcl

1� rf cf =rcl

�����
�����

 !
, (58)

which is the same as for a fluid layer [28]. It is an exact evaluation for any rf =r: By Eq. (58), fluid loading does
not affect the real part o0l;n of the resonance frequency, which remains equal to the free-plate cutoff pncl=2h. It
is, however, not so if the faces are not parallel to a symmetry plane and hence, generally, there is no pure
longitudinal mode along n. In this case, o0a;n differs from pnca=2h in the measure of ðrf =rÞ

2:

4.4. Examples for light and heavy fluid loading

4.4.1. Light fluid loading

For the numerical illustrations of the light fluid loading, we take the same ð1 1̄ 0Þ-cut copper plate, which has
been used in the previous examples, but change the orientation of the propagation direction m to [1 0 0]
(formerly it was mk½1 1 0�). The elastic coefficients of copper in the adopted reference basis with X 1km and
X 2kn are c11 ¼ 170, c22 ¼ 222; c12 ¼ 123; c66 ¼ 75:5GPa. The reason for such a change is because the free-
plate dispersion spectrum for this new geometry includes the branches with a negative group velocity near
both fluid-coupled (longitudinal) and fluid-uncoupled (transverse) resonances, thus allowing us to test all
possible options categorized in Fig. 5. The spectra for the free and water-loaded copper plate in the same
frequency and slowness (soc�1l � 0:23ms=mm) range are presented in Figs. 6a,b. For a clearer display, the real
curves in Fig. 6a are not continued above the folding points (which give rise to complex branches);
correspondingly the leaky-wave branch, emerging from the free-plate curve above the folding point, is omitted
in Fig. 6b. A general discussion of the topological transformation, arising when the curve breaks apart at the
folding point under the fluid loading, can be found in Refs. [10,11]. The focus of the present study is
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different—it seeks a quantitative evaluation of the spectral features specifically near the thickness resonances.
Application of the near-cutoff asymptotics is demonstrated in Figs. 7a–c.

Fig. 7a displays a vicinity of the relatively well-detached first transverse resonance t; 1 with the ‘positive’
dispersion trend (that is, gt;1 �m40 for o4ot;1; case (c) in Fig. 5). Due to a small water-to-copper density
ratio, the effect of fluid loading on the upper slowness branches is too slight to be captured at the scale of the
figure, where these branches appear as a single line representing merged curves for a free and immersed plate.
This applies both to the exact upper branches and to their analytical estimates by Eqs. (40) and (57)1;4 for a
free and immersed plate, respectively. Thus, the overall error of approximation basically resides in the free-
plate asymptotics (40) truncated by the leading-order term. The immersed-plate asymptotics, however, come
into play for the lower curves, s0t;1 for ooot;1 and s00t;1 for o4ot;1; which emerge due to the fluid loading. Their
zoom inserted in Fig. 7a confirms a good approximation by Eq. (57)2;3.

The next Fig. 7b encloses the first longitudinal resonance l; 1 with the locally ‘negative’ dispersion trend
(gl;1 �mo0 on its left-hand side, case (b) in Fig. 5) and the closely situated second transverse resonance t; 2;
which is of the ‘positive’ dispersion pattern. The presence of a folding point gl;1 �m ¼ 0 on the real extent of
the free-plate branch at oool;1 and of a rapidly curling imaginary arch in between these two resonances
inhibits the conditions, which stipulate the accuracy of asymptotics (see the comment to Eq. (42)2). Therefore,
the approximation rather quickly deteriorates on the left-hand side of the cutoff ol;1 and in between ol;1 and
ot;2: The accuracy is better on the right-hand side of ot;2; where there is no folding points nearby. The same
features pertain to the slowness curves near the neighbouring t; 3 and l; 2 resonances shown in Fig. 7c, except
that now it is the transverse resonance, which has the locally ‘negative’ dispersion pattern, and it precedes the
longitudinal resonance, which is of the ‘positive’ trend (respectively, cases (d) and (a) in Fig. 5).

Altogether, it is clear that the frequency range for a confident application of the leading-order asymptotics
depends on local spectral features near a given resonance; however, once the basic assumption of a small
density ratio rf =r holds true, the approximation is reliable in the appropriately close proximity of any
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Fig. 7. A comparison between the exact slowness curves and their asymptotics near the thickness resonances displayed in Fig. 6b: (a) near

t; 1 (the inset zooms the lower curves); (b) near l; 1 and t; 2; (c) near t; 3 and l; 2. Solid bold and thin lines represent the exact numerical

calculation for the immersed and free plate, respectively. The same display is used for real and imaginary parts. Dashed bold and thin lines

show the asymptotics for the immersed (Eqs. (55) and (57) and free plate (Eq. (40)), respectively. The asymptotics are labelled by s0a;n; s00a;n
for the real and imaginary parts of the leaky-wave slowness, and by ŝ0a;n; ŝ00a;n for the real and pure imaginary extent of the reference free-

plate branches.
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resonance. In particular, Eq. (56) furnishes a remarkably precise evaluation of the real and imaginary parts s0a;n
and js00a;nj at exactly the cutoff frequency oa;n of a fluid-coupled resonance. Moreover, it turns out that the
estimate given by Eq. (56) remains accurate enough even if rf =r is actually not small, i.e. it is no longer a light
fluid loading. This is borne out by the simulation presented in Fig. 8. Here the approximate values s0l;n ¼ js

00
l;nj;

obtained from Eq. (56) for the cutoffs ol;n of two fluid-coupled resonances l; 1 and l; 2 in an immersed copper
plate, are plotted as a function of rf =r varying from 0 up to 1 (while the value of cf is kept fixed). A
comparison to the exact data (see the comment to Eq. (56)) confirms a reasonably good fit up to rf =rt1. At
the same time, it is carefully noted that a successful estimation by Eq. (56) of the slowness value at exactly
the cutoff frequency ol;n does not provide any evidence of an equally persisting validity of Eq. (55) for
approximating a local shape of the slowness curves near ol;n under heavy fluid loading. This caveat is
expanded in more detail below.

4.4.2. Heavy fluid loading

In order to explore the bounds of the asymptotics applicability, let us intentionally model an ‘unfavourable’
example. As such, we consider a Plexiglas plate in water. This case is ‘awkward’ for the two reasons: a
relatively large density ratio rf =r ¼ 1 : 1:18 (which is aggravated by cf 4ct, see the remark to Eq. (55)) and
also an extremely close proximity of the cutoffs of longitudinal (fluid-coupled) and transverse (fluid-
uncoupled) resonances. The consequences largely depend on the local spectral configuration.

The first pair of such neighbouring resonances, t; 2 and l; 1, is concerned in Fig. 9a, showing the range
oXot;2 of principal interest. These resonances give rise to the free-plate slowness branches, whose real
parts diverge from each other (extend into ooot;2 and o4ol;1) and are connected by an imaginary arch
within ot;2ooool;1: Such typical configuration [7,10,11,24], already encountered above for a copper plate
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Fig. 9. Slowness curves near the thickness resonances under heavy fluid loading. (a) Plexiglas plate, spectral evolution near t; 2 and l; 1
resonances. The curves of the slowness real and imaginary parts for the three different values of rf (indicated on the plot) are labelled,

respectively, by 10; 20; 30 and 100; 200; 300; (b) water-loaded Plexiglas plate, the vicinity of t; 4 and l; 2 resonances; (c) water-loaded aluminium

plate, the vicinity l; 2 and t; 4 resonances. In cases (b) and (c), the curves, associated with t; 4 and l; 2 resonances, are distinguished as grey

and black, respectively. Other notations are the same as in Fig. 7: solid lines are the exact curves, bold for a fluid-loaded plate and thin for

a free plate (added as a reference for the longitudinal resonances only); dashed lines are asymptotics (55) and (57).
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(see Figs. 7b,c), may be said to be ‘topologically interacting’. To illustrate its evolution to the case of heavy
fluid loading, assume for the moment that the fluid density rf varies from a fictitious small value up to that of
water. The resulting sets of curves are displayed in Fig. 9a. Light fluid loading leads to a slightly disturbed
pattern (the curves 1 in Fig. 9a), whose local shape near ot;2 and ol;1 is reasonably well approximated by
Eqs. (57) and (55), respectively. The curves of the slowness real and imaginary parts intersect each other in the
vicinity of ol;1. On increasing rf =r; the spectrum transforms so that this intersection point gradually shifts
towards ot;2 and, correspondingly, asymptotics (55) near ol;1 becomes less adequate (the curves 2 in Fig. 9a).
By the stage rf =r reaches the water-to-Plexiglas value, the local spectrum (the curves 3 in Fig. 9a) has already
been drastically modified relatively to its free-plate pattern: the exact branches s0ðoÞ and s00ðoÞ emerge from
ot;2 as monotonic curves satisfying s0ðoÞ_s00ðoÞ for owot;2, which do not intersect at all and no longer show
any evident impact of the l; 1 resonance. As a result, Eq. (55), describing the curves near ol;1 as a small
perturbation about the free-plate pattern, is no longer relevant. What is, however, noteworthy is that Eq. (56),
specifying Eq. (55) for exactly the cutoff point ol;1; still provides a benchmark for the exact values s0ðol;1Þ and
s00ðol;1Þ: This state of affairs is to be borne in mind on interpreting Fig. 8, as noted on its discussion in
Section 4.4.1.

Consider the next pair of closely situated fluid-uncoupled and fluid-coupled resonances, t; 4 and l; 2
(Fig. 9b). Unlike the previous pair, these ones give rise to the free-plate branches of a similar shape: for each of
them, the real extent lies on the right-hand side of the cutoff and is continued by the imaginary extent with the
same trend on the left-hand side of the cutoff. This local pattern may be referred to as ‘topologically non-
interacting’. In particular, there is no small round imaginary arch, which has connected two ‘topologically
interacting’ cutoffs and molded a specific shape of the leakage curve s00ðoÞ under fluid loading. Now the leaky-
wave slowness branches, associated with each of the nearby resonances, develop independently of each other.
As a result, despite the heavy loading exerted by water on a Plexiglas plate, the two pairs of curves s0t;4ðoÞ,
s00t;4ðoÞ and s0l;2ðoÞ, s00l;2ðoÞ stay independent (this is emphasized by the different colour of curves in Fig. 9b), by
contrast to the ‘aggregate’ pair of the curves 3 in Fig. 9a. The curves s0l;2ðoÞ and s00l;2ðoÞ preserve a crossing
point near ol;2 and remain reasonably well approximated by their asymptotics (55). For the t; 4 resonance,
asymptotics (57)1;4 for the upper curves, which only slightly differ from the free-plate branches, are also
acceptable for a relatively large rf =r in hand. On the other hand, asymptotics (57)2;3 of the lower curves,
emerging from zero due to fluid loading, fail fairly rapidly on moving away from the cutoff ot;4; which is
partly because this approximation (not displayed on Fig. 9b) is gauged against a very small reference value.

Fig. 9c shows one more example of a close pair of ‘topologically non-interacting’ longitudinal and
transverse resonances affected by a ‘rather heavy’ fluid loading. It is represented by l; 2 and t; 4 resonances in a
water-loaded aluminium plate (r ¼ 2:7 g=cm3, cl ¼ 6:22mm=ms, ct ¼ 3:133mm=ms). The asymptotics provide
a reasonably good local approximation for the leaky-wave slowness.

5. Conclusions

The sextic plate formalism has been employed for analysing the leaky waves in anisotropic plates immersed
in fluid. This formalism, which does not appeal to partial-mode decomposition, is especially efficient for an
analytical treatment of the problem. With the dispersion equation written in terms of the plate admittance, the
latter may be expanded near its poles v̂jðoÞ; which are the velocities for the unloaded plate. Seeking the leaky-
wave velocity vjðoÞ ¼ v0j þ iv00j (o is real) as a perturbation about v̂jðoÞ allows us to express the approximate
solution via the residue of the plate admittance. The properties of the residue, which is proportional to the
frequency derivative of v̂jðoÞ and has the sign of the in-plane group velocity, are helpful for illuminating the
basic features of the leaky-wave dispersion spectrum. Moreover, this approach provides explicit closed-form
asymptotics for the leaky-wave velocity. Their derivation and analysis has been the main objective of the
paper.

Usefulness of the low-frequency asymptotics for the upper fundamental branch(es) of leaky waves is
enhanced by the fact that the small parameter in this case is a product of the fluid-to-solid density ratio rf =r
times the wavenumber-thickness variable kh: Hence the approximation is not restricted to light fluid loading.
The leading-order estimate for the imaginary part of the fundamental branch is linear in ðrf =rÞkh: The
asymptotics for the real part shows that the shape of this curve transforms with growing rf =r from the
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downward trend to an upward. An explicit condition is given for the critical value of rf =r; above which the
trend of the curve becomes upward.

Special attention is given to the leaky-wave asymptotics near the thickness resonances. The same formalism
is adapted to using the slowness s ¼ v�1 as a more suitable variable. The resonances are known to fall into two
basic types with respect to fluid loading: fluid-coupled and fluid-uncoupled (associated with a transverse
mode), for which, respectively, s0; s00a0 and s ¼ 0 at the cutoff frequency. This implies their different
treatment. In particular, the choice of either increasing or decreasing fluid modes, incorporated by the leaky
wave, is decided in the vicinity of a fluid-coupled resonance in a usual way, that is, by the sign of in-plane
group velocity associated with the real extent of the reference free-plate branch. The link is less trivial in the
case of a fluid-uncoupled resonance. It reads that the leaky-wave branch involves the decreasing fluid modes
for o on the left-hand side of the cutoff and the increasing fluid modes on the right-hand side of the cutoff for
any fluid-uncoupled resonance, regardless of signs of the group velocity.

Efficiency of the asymptotics in the vicinity of the resonances certainly depends on the density ratio rf =r;
and also on the type of resonance and on the local configuration of the reference dispersion branches in the
free-plate spectrum. Near the fluid-uncoupled resonances, the leaky-wave slowness, which evolves from the
real and pure imaginary extents of the free-plate branch, differs from these only to the measure of ðrf =rÞ

2

(hence the accuracy of approximation basically resides in the free-plate asymptotics). In turn, the real and
imaginary curves of leaky-wave slowness, which emerge near a fluid-uncoupled resonance from zero, are of the
order of rf =r. The case of fluid-coupled resonances is, naturally, more involved. Interestingly, the leading-
order estimate of the leaky-wave slowness at exactly the cutoff frequency of a fluid-coupled resonance, giving

the same value 	
ffiffiffiffiffiffiffiffiffiffi
rf =r

q
for both real and imaginary parts, maintains a good accuracy even when rf =r is not

small (heavy fluid loading). The asymptotics assume a leading-order expansion about an isolated pole. Their
reliability in the case of two closely situated resonances largely depends on the local spectral topology. For the
Lamb spectrum in an orthorhombic plate, the neighbouring resonances are the fluid-coupled and fluid-
uncoupled ones. Provided that they are ‘topologically interacting’, which is when the real extents of the two
free-plate slowness branches near their cutoffs have contrary dispersion trends due to the opposite signs of
group velocity, the leaky-wave asymptotics are restricted to small rf =r and narrow frequency band. If these

neighbouring fluid-coupled and uncoupled resonances are ‘topologically non-interacting’, i.e. give rise to the
free-plate branches with a similar dispersion trend, the local asymptotics provide a reasonably good
approximation even for relatively heavy fluid loading.
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