Available online at www.sciencedirect.com

. JOURNAL OF

SCIENCE DIRECT

@ SOUND AND
Sensllas VIBRATION

ELSEVIER Journal of Sound and Vibration 296 (2006) 554—566

www.elsevier.com/locate/jsvi

Study on localization of plane elastic waves in disordered
periodic 2-2 piezoelectric composite structures

. . *
Feng-Ming Li", Yue-Sheng Wang
Institute of Engineering Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People’s Republic of China

Received 2 June 2004; received in revised form 23 May 2005; accepted 31 January 2006
Available online 5 June 2006

Abstract

Considering the effect of mechanic—electric coupling, the propagation and localization of plane elastic waves in
disordered periodic layered piezoelectric composite structures are studied. The transfer matrix between two consecutive
unit cells is obtained by means of the continuity conditions and the expression of the localization factors in disordered
periodic structures is presented by regarding the variables of mechanical and electrical fields as the elements of state
vectors. As examples, numerical results of localization factors are presented and discussed. It can be seen from the results
that ordered periodic structures possess the properties of frequency passbands and stopbands and the phenomenon of
wave localization in disordered periodic structures is observed, and the larger the coefficient of variation is, the larger the
localization factor or the stronger the degree of wave localization is. The characters of wave propagation and localization
are very different for different sorts of piezocomposites or different structural sizes, and even for same sorts of
piezocomposites and same structural sizes the characters of wave propagation and localization are also very different for
different non-dimensional wavenumbers. We may design different piezocomposites or adjust the structural sizes to control
the characters of wave propagation and localization.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The capabilities of self-adaptive and active control are the main characters for intelligent materials and
structures which can perceive the changes of outer environment and properly respond to these changes and
therefore are extensively used in many engineering applications [1]. Presently, piezoelectric composites which
are made up of piezoelectric ceramics and polymers are more and more used among various intelligent
materials, especially, in aeronautic and astronautic engineering. Piezocomposites not only possess the merits
of both piezoceramics and polymers but also greatly enhance the piezoelectric performances of the materials
and will accordingly become the main study and application domain in the development of future intelligent
materials and structures.

For some special using purposes, many piezoelectric components and structures have periodicity and
various periodic piezoelectric composites are extensively employed in intelligent materials and structures [2-4].
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Different from non-periodic engineering structures, periodic ones have many special dynamical characters
such as frequency passband and stopband [5]. Disordered periodic structures can also exhibit wave and
vibration localization characters [6—8]. Localization leads to spatial decay of wave amplitudes, and the
associated exponential decay constant is known as the localization factor which characterizes the average
exponential rates of decay of wave amplitudes in disordered periodic structures. Due to the special dynamic
characters of periodic and disordered periodic structures, many people have studied this problem [9,10].

In previous studies on the problem of wave and vibration localization, most people considered the case of
pure elastic disordered periodic structures and disordered periodic piezocomposites are seldom studied. Only
Baz [5] and Thorp et al. [6] investigated the problems of active vibration control and wave localization in
periodic spring—mass systems controlled by piezoelectric actuators and rods with periodic shunted
piezoelectric patches and drew some significant conclusions. Dynamic loads are often met in practical
engineerings, which makes it necessary to study wave propagation and localization in disordered periodic
piezoelectric composite structures.

In this study, the problem of wave propagation and localization are studied in disordered periodic 2-2
piezoelectric composite structures. The mechanical and electrical coupling characters of piezoelectric
composite materials are considered. The transfer matrix between two consecutive unit cells is obtained by
means of the continuity conditions. Regarding the variables of mechanical and electrical fields as the elements
of state vectors, the formulation for calculating localization factor in disordered periodic structures is
presented. By introducing disorder, wave localization in the mistuned periodic structures is analyzed.

2. Equations of wave motion

A periodic 2-2 piezoelectric composite structure is shown in Fig. 1. The periodic layered structure consists
of polymeric and piezoelectric thin films alternately. Assuming that the thickness of polymers and that of
piezoelectric ceramics are a; and a,. The local coordinates of polymeric film and those of piezoelectric film are
also displayed in Fig. 1.

For the problem of plane strain, the constitutive equations of the polymers and the transversely isotropic
piezoelectric ceramics can be expressed as follows [11,12]:
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Fig. 1. Schematic diagram of a periodic 2-2 piezoelectric composite structure.
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where u,;(x;,z;, ) and uj(x;,z;,t) are the displacements in the x and z directions, q)j(xj,z],t) the electric
potential functions, aw, [ and oj the stresses, D,;and D.; the electric displacements cg’l), c({g, 633 and CEQ the

elastic constants, 6(1/3), ¢Y) and e ) the piezoelectric constants, and s and 8 ) the dielectric constants, with j = 1

referring to the polymers and ] = 2 the piezoelectric ceramics.
The partial differential equation of motion for both the polymers and piezoelectric ceramics is given by

Orgs = piir, Dr,r =0, (2)

where the summation convention is employed and dot denotes differentiation with respect to time, p the mass
density of the polymers or piezoelectric ceramics, r, s = 1, 3 for the case of plane strain and here we will allow
the subscripts x and z in Eq. (1) to be synonymous with 1 and 3 in Eq. (2). Substituting Eq. (1) into Eq. (2)
leads to the following equations of wave motion:
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When P-waves or plane SV-waves polarized in the x direction propagate along the positive z direction, the
displacements and electrical potential functions can be simplified and expressed as the following forms:

ij(Zj, t) = ij(Zj) exp(—iwt), (43)
sz(Zj, t) = Uzj(Zj) exp(—iwl), (4b)
q)j(zj, 1) = Pi(zj)exp(—iwt) (j=1,2), (4c)

where i =+/—1, w is the circular frequency, and U,(z;), U.(z;) and ®(z;) are the amplitudes of the
displacements and electrical potential functions. Substituting Eqs. (4a)—(4c) into Egs. (3a)—(3c) yields

2

U
() X ) 2U=0 5
Caq dz? +pjo” Uy =0, (52)
d*U. d*o
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9 d2’+ §§d2f+pjw U, =0, (5b)

yd*U,  die
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which can be converted into the following form:

d*U,,
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+ k Y] = 09 (63)
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d’U.
P ;f + k3, U =0, (6b)
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where p. = %) /e%) is the ratio of the piezoelectric constant to the dielectric constant, k1, = w/cy; and ky; =
pi= 33 33 p j j )j

w/cy; the wavenumbers, cj; = 4/ Ay p; and ¢y = c33 + pje33 /p; the phase velocities of the bulk waves in

the polymers and the piezoelectric ceramics.
From Egs. (6a)—(6c) we can see that U,; is uncoupled from U_; and @;. And the general solutions of U.(z)),
U.(z;) and @((z;) can be written as

U,j(z) = Ajexp(—iky;z;) + B;exp(iky;z)), (7a)
U(z)) = Cj exp(—iky;zj) + Dj exp(iky;z)), (7b)
Di(z)) = Ej + Fjzj + pj[C; exp(—ikyz;) + D explikyzj)] (= 1,2), (7¢)

where A4;, B;, C;, D;, E; and F; are the unknown coefficients.

3. Transfer matrix

In the following developments, we will introduce non-dimensional local coordinates of the polymeric and
piezoelectric films, which may be convenient and simplifies the analytical process in the numerical simulations.
The following dimensionless local coordinates are introduced

G = 0<§<f) (=12, )

S |\N

where @ is mean value of the thickness of the polymers and {; = ¢; / a; (j = 1,2) are the dimensionless thickness
of the polymers and the piezoelectric ceramics.

Suppose that the periodic piezoelectric composite structure as shown in Fig. 1 consists of n+ 1 unit cells.
The ith unit cell is also displayed in Fig. 1. Every unit cell includes two sub-cells (sub-cell 1 and sub-cell 2),
namely, the polymeric and piezoelectric thin films. The boundary conditions at the left and right sides of the
two sub-cells in the ith unit cell are written by
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where the subscripts L and R denote the left and right sides of the two sub-cells in the ith unit cell.

Substituting Eqgs.
formulations:
4
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where ay; = ki;a; and ay; = ky;a; are the non-dimensional wavenumbers.

(la)—(le), (4a)—(4c), (7a)—(7c) and (8) into Eq. (9), one can get the following
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It can be seen from Egs. (10c)—(10e), (10g) and (10h), that their both sides can be non-dimensionalized if we
define the following non-dimensional variables:

) NG G,
~(i) ala(‘c?gR ~(i) ala(fnR () “1‘7(&/1% ~0) alDEcl/R <) @Dgg ) 1
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Then Egs. (10c)—(10e), (10g) and (10h), can be transformed into the following dimensionless forms:
30 = { (<G + Do) |1+ pyel) /el + Fiael/ €} exp(—ion),
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~(7?1L = {( —i1Cjo; + 1Djor)) [1 +pje33/c } + F; a1e3)/c33} exp(—iw?),
. (12b)
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Fur = [—idjo; exp(—iay;(;) + iBjoy; exp(io; )] exp(—iwt),
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o nom | | (120)
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(0 D) :
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o , (12¢)
D, = {—Fjdlsg’g/eg’g} exp(—iwi).

We can observe that the right sides of Egs. (12¢) and (12d) are equal to each other. So only one of them is
necessary to be considered. Moreover, it is observed from Eq. (12e) that the amplitude values of the non-

dimensional electric displacements ﬁ?R and D(;)L at the right and left sides of the two sub-cells are equal to
each other, i.e. the amplitude values of the waves corresponding to the electric displacement Dg) do not
attenuate along the piezoelectric composite structures. So it is not necessary to study the localization problem
about the waves corresponding to the electric displacement DE,?. Due to the above reasons, Eqgs. (12d) and

(12e) will be omitted during the following studies.
Eqgs. (10a), (10b), (10f) and (12a)—(12c), are chosen to calculate the relational expression between the right

and left sides of the ith unit cell. Eliminating the unknown coefficients 4;, B;, C;, D;, E; and @ F; from these six
chosen equations and solving for ug}R, &g;/R, u(;)R, &gin, N(,’,)JR and goj(z in terms of u(Y’J)L, 5_2/0 u(Z’/)L, &S;/L, N(',)JL and
<p](2 results in the following matrix equation:
) ) : .o
Va=Tw), (=12 i=12...n+1), (13)

where T< is the transfer matrix of the two sub-cells. And the elements of T; are dimensionless and are

(i

given in Appendix A. ViR ) and vf’L) are the state vectors at right and left sides of the two sub-cells and are

written as
() D () O 50 50 (O]
vjR {uqu’ O-rsz’ usz’ Gxij’ zzZjR> (P]R} >

. T
(0 _ D0 0 =) =)
VjL {uv]L’ O-ujL’ uz.jL’ O-VV_]L’ zzjL> (p]L} . (14)
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The following condition is satisfied at the interface between the two sub-cells
ViR =V (15)
Thus the relationship between the right and left sides of the ith unit cell can be obtained from Eq. (13) as
v =TV (i=2,...,n+1). (16)
where T; is the transfer matrix of the ith unit cell and is given by
T, =T,T] (17)

At the interface between the right side of the (i—1)th unit cell and the left side of the ith unit cell, the following
condition is satisfied:

VO =D =2, ., n41). (18)

Substituting Eq. (18) into Eq. (16), one can obtain the following relation between the state vectors of the
(i—1)th and the ith unit cells

vV =TWe" (i=2,....n41), (19)

from which one can observe that T; is the transfer matrix between two consecutive unit cells.

4. Wave localization factor

Lyapunov exponent measures the average exponential rate of convergence or divergence between two
neighboring phase orbits in phase space. Employing the concept of Lyapunov exponent, one can get a
measurable index about the rate of decay of wave amplitudes during studying wave localization in
disordered periodic structures. According to the symmetry of periodic structures, it can be proved that
Lyapunov exponents always occur in pairs, i.e. if 4 is a Lyapunov exponent then —/ is also a Lyapunov
exponent [9]. Therefore, for 2 m x 2 m transfer matrices, the m pairs of Lyapunov exponents have the following
property, MZlaZ o Zhy >0>;Ln1+1(= _/lm)>/lm+2(= _j-mfl)Z cee >)~2m(= _il)~ Localization  factor
which is defined by the smallest positive Lyapunov 4,, is used to characterize the average exponential
rate of decay of wave amplitudes. Since 4,, represents the wave that has the least amount of decay and
transmits energy farther along the structure than any other waves. So, it characterizes the main decay behavior
of elastic waves.

In the present work, the algorithm for calculating Lyapunov exponents in continuous dynamical systems by
Wolf et al. [13] is applied to calculate the Lyapunov exponents in the discrete dynamical system, Eq. (19). The
formulation for calculating the mth, 1<m<2d, Lyapunov exponent is written as follows:

L1
A = nlggo Z;ln
~(i+1)

where the vector v, - will be defined in what follows. To calculate the mth Lyapunov exponent (1 <m<2d), m
orthogonal unit vectors of 2d-dimension, u(ll) , u(zl), e ,uf,?, are chosen as the initial state vectors. Then Eq. (19)

is used to compute the state vectors iteratively. At the ith iteration

~@i+1)
VZR,m

, (20)

Wl =T (=12...m k=12,...,m), 1)
where the vectors ug) are unit and orthogonal, while the vectors v(z’;,lc) (k=1,2,...,m) are usually not

orthogonal. The Gram—Schmidt orthonormalization procedure is now applied to produce m orthogonal unit
vectors
~(i+1)
Sl _ ) G+l _ V2R
Vart = Vo M =0T
Var1 H
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~(i+1)
A(i+1) A(1+1) A+ (+1)y. (i+1) (1+1) 2R2
Vary = Voo — (Vagos Ju; u,
A(l+1)
2R2
{’(i+1)
~(i+1) (i+1) (1) Dy D) (+1) (D). G+ i+ _  Yorm
v2Rm VZRm - (VZR,m’ m— 1) m—1 — T (VZRm’ul )ul > Wy, TN (22)
2R.m

where (-,-) denotes the dot-product. By means of Eq. (20), each of the m pairs of contrary Lyapunov
exponents can be calculated. The mth Lyapunov exponent 4,, is the localization factor. Then it is implied that
the wave amplitudes decay at the magnitude exp(—4,,) when they propagate through each unit cell.

5. Example and discussions

In this section, numerical simulation for randomly disordered periodic layered piezoelectric composite
structures is performed to study the characters of propagation and localization of plane elastic waves with
different frequencies. The non-dimensional thickness of the polymers, (i, is assumed to be uniformly
distributed random variable with mean value, {,, and coefficient of variance, 6. So (; is a random number
distributed in the interval [{;(1 — +/30),{;(1 + +/36)]. Hence, if z is a standard uniformly distributed random
variable, i.e. z € (0, 1), then {; can be expressed as the following formulation

¢ = [1 +v3602z — 1] (23)

The material constants of the polymers and piezoelectric ceramics are from Refs. [12,14,15] and listed in
Table 1.

The localization factors for disordered periodic layered piezoelectric composite structures are determined
using Eq. (20). For the ith iteration, a random number z is generated for the non-dimensional thickness of the
polymers and the elements of the transfer matrices are calculated. Three values of the coefficient of variation
of the dimensionless thickness {;, i.e. 6 = 0, 0.05 and 0.1 are considered. The case of 6 = 0 corresponds to the
perfectly periodic structures.

For three kinds of disordered periodic piezoelectric composite structures, i.e. PVDF-PZT-2, PVDF-PZT-4
and PVDF-PZT-5H piezocomposites, Figs. 2—4 display the variations of the localization factors versus non-
dimensional wavenumber o;; for 6 =0, 0.05 and 0.1. It can be observed from these figures that ordered
periodic structures (6 = 0) have the properties of frequency passbands and stopbands, and a localization
phenomenon can occur in disordered periodic structures. For example, as seen in Fig. 2 by the solid line, the
interval o € (2.6,3.45) in which the localization factors are zero is called the passband and the interval
o1 € (3.45,4.6) is known as the stopband for the localization factors are bigger than zero at this frequency

Table 1

Material constants of the polymers and piezoceramics

Materials Mass density Elastic constants (10'°N/m?) Piezoelectric constant (C/m?) Dielectric constants
(10°kg/m®) (107'°F/m)
p c13 €33 Ca4 €3 els €33 €33

Polymer

PVDF 1.78 1.0 1.2 0.7 0.024 0.0 —0.027 0.6726

Piezoceramics

PZT-2 7.60 6.81 11.3 2.22 -1.90 9.80 9.00 23.02

PZT-4 7.50 7.43 11.3 2.56 —6.98 12.7 13.8 54.70

PZT-5H 7.50 8.41 11.7 2.30 —6.50 17.0 233 130.0
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Fig. 2. Localization factors versus non-dimensional wavenumber «;; for disordered periodic PVDF-PZT-2 piezocomposites.
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Fig. 3. Localization factors versus non-dimensional wavenumber «;; for disordered periodic PVDF-PZT-4 piezocomposites.
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Fig. 4. Localization factors versus non-dimensional wavenumber o,; for disordered periodic PVDF-PZT-5H piezocomposites.
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region. However, we can see that for disordered periodic structures the localization factors are not zero but
positive in the frequency passbands of the corresponding tuned periodic structures, which means that the
phenomenon of wave localization occurs. Moreover, with the increase of the coefficient of variation §, the
magnitudes of the localization factors in passbands are also increased and consequently the degree of wave
localization is strengthened.

It can also be seen from Figs. 2—4 that for different disordered periodic piezocomposites the characters of
wave localization have some changes. In these three figures, the characters of the third stopbands (near
o1 = 6.0) are more different between Figs. 2 and 3 and Figs. 3 and 4. But there are little differences between
Figs. 2 and 4. We can also see from these three figures that in the first passband of the corresponding ordered
periodic structures the degrees of wave localization in disordered periodic ones are very weak even for lager
coefficient of variation o (e.g. 6 = 0.1), but in the second and fourth passbands the degrees of wave localization
in disordered periodic structures are strong even for smaller § (e.g. 0 = 0.05).

For two kinds of disordered periodic piezocomposites, i.e. PVDF-PZT-4 and PVDF-PZT-5H, Figs. 5 and 6
show the variations of the localization factors versus the ratio of the non-dimensional thickness {, of the
piezoelectric ceramics to the mean value {; of the non-dimensional thickness of the polymers for «;; = 2.0 and
3.0. From Figs. 5 and 6 we can observe some interesting phenomena. For example, for ordered periodic
structures, the intervals of passbands and stopbands periodically appear with the increase of the ratio {, / Z.
For the case of o1; = 2.0, weak localization phenomena occur as the localization factors are close to zero in
larger regions of the passbands for the disordered periodic structures. But for the case of o, = 3.0, strong
localization phenomena appear as the localization factors are bigger than zero in the passbands regions except
for some points when 6 >0.

It can be seen from Figs. 5(a) and 5(b) or 6(a) and 6(b) that for «;; = 2.0 the width of the passbands is
narrower than that of the stopbands for ordered periodic structures. But for oy = 3.0 the width of the
stopbands is very narrow and that of the passbands is very broad. So we can adjust the ratio of the thickness
of the piezoelectric ceramics to that of the polymers to control the characters of wave propagation. Moreover,
it is observed from Figs. 5(a) and 6(a) or 5(b) and 6(b) that for different ordered periodic piezocompo-
sites (0 = 0) the locations of passbands or stopbands are also different. The passbands or stopbands of the
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Fig. 5. Localization factors versus the ratio of Cz/fl for disordered periodic PVDF-PZT-4 piezocomposites with the consideration of
o] = 2.0 and 3.0.
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Fig. 6. Localization factors versus the ratio of {, / ¢, for disordered periodic PVDF-PZT-5H piezocomposites with the consideration of
o1 = 2.0 and 3.0.

PVDF-PZT-4 piezocomposites shift a little distance towards left compared with those of the PVDF-PZT-5H
piezocomposites.

6. Conclusions

In the present work, wave propagation and localization in disordered periodic 2-2 piezoelectric composite
structures are studied. The mechanical and electrical coupling characters of piezoelectric composite materials
are considered. The transfer matrix between two consecutive unit cells is obtained and the expression of
localization factor in disordered periodic structures is presented. As examples, numerical simulations of
localization factors for three kinds of disordered periodic piezoelectric composite structures, i.e. PVDF-PZT-
2, PVDF-PZT-4 and PVDF-PZT-5H piezocomposites are presented and discussed. From the results we can
draw the following conclusions:

(1) The properties of frequency passbands and stopbands in ordered periodic structures and the phenomenon
of wave localization in disordered periodic structures are observed, and the larger the coefficient of
variation, the stronger the degree of wave localization.

(2) For one sort of piezocomposites the properties of wave propagation and localization are very different for
different ratios of the thickness of the piezoelectric ceramics to that of the polymers, and even for the same
ratios the characters of wave localization are also very different for different non-dimensional
wavenumbers .

(3) For different sorts of periodic piezocomposites the locations of passbands or stopbands are different for
same non-dimensional wavenumbers o;;. We may design different piezocomposites or adjust the ratio of
the thickness of the piezoelectric ceramics to that of the polymers to control the characters of wave
propagation.
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Appendix A
The elements of the transfer matrices of two sub-cells in the ith unit cell of disordered periodic 2-2

piezoelectric composite structures are written as

exp(—iay;{;) + exp(io;;) —i[— exp(—ioy;;) + exp(io;(;)]

/ _ ! —
T/(l’ 1) - 2 H TJ(I,Z) - 20“.]. El
Ti(1,3) = T;(1,4) = T(1,5) = T)(1,6) = 0,
T = o [— exp(—iocl_fj) + exp(ioy; ;)] . T2)= exp(—ia1j§,)2+ exp(ialjéj)’

T/(2,3) = T)(2,4) = T)(2,5) = T/(2,6) = 0,

exp(—iny;(;) + exp(ioz;{;)
2 9
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—2¢Re + e} exp (i) {0(32 [1+ exp(2iayly)] + pyey [~ +exp(iny )] 2}
4@@ mm] '
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p;exp(—iay(;) [—1 +exp (i“2jcj)]2
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T)(6,6)=1.0, (j=12). (A.1)
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