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Abstract

A new method has been presented for analytically solving the Duffing-harmonic oscillator. The method is obtained by
combining Newton’s method with the harmonic balance method. By using the method, one obtains linear algebraic
equations instead of nonlinear algebraic equations. The complexity of the HB method is greatly simplified. Iteration of
procedure yields rapid convergence with respect to exact solution. The results are valid for the complete range of oscillation
amplitude, including the limiting cases of amplitude approaching zero and infinity.
© 2006 Elsevier Ltd. All rights reserved.

Consider a one-dimensional, nonlinear oscillator governed by

d’u u’ du
a2 + e 0, u(0) =4, T (0) =0, (1)
which is an example of conservative nonlinear oscillatory systems having a rational form for the restoring
force. For small u, the equation is that of a Duffing-type nonlinear oscillator, while for large u, the equation
approximates that of a linear harmonic oscillator; hence, Eq. (1) is called the Duffing-harmonic oscillator [1].
The system will oscillate between symmetric bounds [—A4, 4], and the frequency and corresponding periodic
solution of the nonlinear oscillator are dependent on the amplitude 4. Note that for Eq. (1), the usual
perturbation procedures, i.e. expansion with reference to a centre and in a small parameter, do not apply [1-3].
By rewriting Eq. (1) and applying the lowest order harmonic balance (HB) method [4], Mickens [1] obtained
the first approximate angular frequency:

wm(d) = /347 /(4 +34%). ®)

Let ¢ =n/|2F(1/+/2,7/2)| ~ 0.8472 where F(1/+/2,7/2) is the complete elliptic integral of the first kind.
Then ¢4 is the exact angular frequency for equation d”u/ds 4+ u® = 0 and the conjectured exact angular
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frequency of Mickens [1] for Eq. (1) is

ou(d) = pA / \ 1+ 24> (3)

By applying the lowest order HB method directly to Eq. (1), Lim and Wu [5] obtained two analytical
approximate angular frequencies. The first one is

or—w(d) = 1+%<¥ 1). 4)

A \/1+A2_

The second one is more accurate but a little complicated, hence it is omitted here. Using a single-term
approximate solution u(z) = 4 cos(wt?) to Eq. (1) and the Ritz procedure [6], Tiwari et al. [7] obtained the same
approximation as that in Eq. (4). The frequency—amplitude relations (2)—(4) are approximate relations. In
particular, relations (2) and (4) have the largest error for A close to 0, while formula (3) is accurate for 4 close
to 0 only.

The HB method [4] is very difficult to construct higher-order analytical approximations because it requires
analytical solutions of sets of complicated nonlinear algebraic equations. To improve the HB method, Lim
and Wu [5] presented an approach by combining the HB method and linearization of nonlinear oscillation
equation with respect to displacement increment. For higher-order approximation, however, this method
results in a complex nonlinear algebraic equation in terms of unknown frequency and its analytical solution is
again difficult. To overcome the problem, analytical approximations to the solution of the Duffing-harmonic
oscillator based on a new approach are presented in this Communication. This new method is obtained by
combining Newton’s method with the harmonic balance method. In such a way, one obtains linear algebraic
equations instead of nonlinear algebraic equations at each iteration. The complexity of the HB method has
been greatly simplified.

A new independent variable t = wt is introduced. Then, Eq. (1) can be rewritten as

Q' (1+u)+u> =0, u0)=4, u(0)=0, (5)

where (') denotes differentiation with respect to r and Q = w?. The new independent variable is chosen in such
a way that the solution of Eq. (5) is a periodic function of 7 of period 2n. The corresponding frequency of the
nonlinear oscillator is given by m = v/Q.

Following the lowest order HB approximation, we set

uy(t) = Acosrt, (6)

which satisfies the initial conditions in Eq. (5). Substituting Eq. (6) into Eq. (5) and setting the coefficient of
resulting cos t to zero yield the first analytical approximation to the frequency in terms of 4:

2
o1(4) = /() = % ™

Therefore, the first approximate periodic solution is
u(f)y = Acost, 1= w(A)Lt. )

Note that results in Eqgs. (7) and (8) have been reported by Mickens [1].

Using u(t) and Q;(A4) as initial approximations to the solution of Eq. (5), we apply the combination of
Newton’s method and the HB method to solve Eq. (5). The first step is the Newton procedure. The periodic
solution and the square of frequency of Eq. (5) can be expressed as

u=u +Auy, Q=0 +AQ. 9)
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Substituting Eq. (9) into Eq. (5) and linearizing with respect to the correction terms Au; and A, lead to
Qi (1 +up)] +uj +AQ (1 +ui)uf + Qi (1 + u7) Au + 2Quuuf Auy + 3ujAuy = 0,
Aui(0) =0, Auj(0)=0, (10)

where Auy is a periodic function of 7 of period 2%, and both Au; and AQ; are undetermined.
The resulting linear equation in Au; and AQ; in Eq. (10) will be solved by the HB method. The second
approximate solution to Eq. (10) can be developed by setting Au;(t) as

Au;(t) = x1(cost — cos 37), (11

which satisfies the initial condition in Eq. (10) at the outset. Substituting Eqgs. (6), (7) and (11) into Eq. (10),
expanding the resulting expression in a trigonometric series and setting the coefficients of cost and cos 37 to
zeros, respectively, yield

(1247 + 244%x; — (164 4 244° + 94°)AQ; = 0,

(964% 4 484%)x| — (44> +34%)AQ, + 44° = 0. (12)
Solving Eq. (12) for x; and AQ; yield

A(4+34%) 4A%(1 +24%)

x| = — . AQ =— . 13
' T 96+ 11742 + 3047 : 128 + 25247 + 1574% + 304° (13)

Therefore, the second approximations to frequency and periodic solution of the nonlinear oscillator are

2(A) = V/22(A4),  ux(t) = ui(v) + Auy(t) = X(A)cost + Y(A)cos 3,

T = (A, (14)
where
A*(23+1047) 2A4(46 + 5747 +154%)
Q(A) = 3 7 X = 3 7
32+394% + 104 96 + 1174% + 304
A(4+434%)

- , 15
96 + 1174 + 304* (15

Based on the second approximations, the periodic solution and the frequency of Eq. (5) can be further
expressed as

u=1u + A, Q=0Q +AQ,. (16)
Substituting Eq. (16) into Eq. (5) and linearizing with respect to the correction terms Au, and AQ, yield
D (1 + 1)y + w3 + A (1 +u3)uy + Qo (1 + 13) Aty + 2Qousus Aup + 3u3Aup = 0,
Auy(0) =0, Auy(0) =0, (17)

where Au, is a periodic function of 7 of period 2x, and both Au; and AQ, are undetermined unknowns.
The HB method will again be applied to solve Eq. (17) for Au, and AQ,. Here Au,(z) is taken as

Auy(t) = y,(cost — cos 3t) + y,(cos 3t — cos 57), (18)

which satisfies the initial conditions in Eq. (17). Substituting Egs. (14), (15) and (18) into Eq. (17), expanding
the resulting expression in a trigonometric series and setting the coefficients of cos 7, cos 3 7 and cos 5 7 to zeros,
respectively, yield three relations for y,, y, and AQ, as follows:

—(A4X +3X° + 11X%Y 4+ 38XY>)AQ,
+ (—4Q) + 6X? + 20, X% — 6XY + 540, XY 4+ 6Y? — 38Q,Y?)y,
+ (BX? = 11QX? + 6XY — 62, XY —3Y> +43Q,Y?)y,
+ (—4X +3X°3 = 30X +3X°Y — 11Q,X°Y +6XY? —38Q,XY?) =0, (19a)
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— (X} +36Y +22X%Y +27Y3)AQ,
+ (3692 — 33X + 19, X% + 12XY — 44Q, XY —9Y? + 81Q, Y?)y,
+(=36Q; 4+ 3X% + 52, X% — 6XY + 702, XY +9Y? — 81Q,Y?)y,
+ (X — QX? —36Q,Y +6X°Y — 220, X°Y +3Y3 —27Q,7) =0, (19b)

— (11X%Y + 19XY)AQ,
+(=3X2+ 11X + 162,XY +3Y? — 19Q,Y?)y,
+(100Q; — 3X? 4+ 43Q, X% + 6XY — 38Q, XY — 6Y? +86Q,Y?)y,
+GX*Y — 112X°Y +3XY? — 199, XY?) = 0. (19¢)
The linear equations. (19a—c) in unknowns y,, y, and AQ, can be solved, and these solutions can be

expressed as functions of 4. Consequently, one may obtain the third approximations to the frequency and the
corresponding periodic solution of the nonlinear oscillator as

w3(4) = \/23(4),

uz(1) = (X(A4) + y1(A4)) cos T+ (Y(A) — y1(A) + y2(4))cos 31 — yy(A)cos 51, 1= w3(A)1, (20)
where

Q3(4) = C(4)/D(A),

C(A4) = A%(6629 381323200921 600 + 67 776 657 351 647 428 608 4>
+ 324181 140 708 366 434 304A4* + 963 763 044 959 455 887 360.4°
4+ 1995414900881 199 4382084° + 3055182354907 8758231204
+ 3584852660 636245925296 4'% + 3296040031 717 526 802 6334
+ 2407402837392 07342089046 + 1407400421 3029612573564
4 660232 177 524469 1199604%° 4 247999 449 491 216 103 600.4*
+ 74057 760 578 406 852 0004>* + 17 349 552015 153 480 0004
+ 3119930639 690 400 0004 + 415 788 841 656 000 000.4>°
+ 38695631040 000 0004** + 2 245903 200 000 000.4**+61 236 000 000 0004°°),

D(A) = (3243947 + 104*) (288 586 791 747 846 144 + 2827 110 614223028 224.4°
+ 12901 760 886 549 168 128 4* + 36422203 401 630 900 224 4°
47122903 534 348 970 66244° + 102396 952 803 640 001 008 4'°
4 112041973 038923497908 4'% + 95309456481 6444163114
4 63813346 845672803 86846 + 33822874 705790 8642684
+ 14193355896 848 1412804 + 4689 648 931 579491 6004
4 1205418822799 968 0004 4- 236059 546 632 120 0004
+ 34028 121 546 000 0004 4 3404 341 548 000 000.4*°

+211205 8800000004 + 6 123 600 000 0004**)

It should be clear how the procedure works for constructing further higher-order approximate solutions.
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Table 1
Comparison of approximate frequencies with exact frequency
A N oy (w))/w, w2/, w3/ we wp-w /e Dy /we
0.01 0.00847 1.02221 1.00068 1.00007 1.02220 0.99999
0.05 0.04232 1.02226 1.00069 1.00007 1.02215 1.00007
0.1 0.08439 1.02241 1.00071 1.00006 1.02199 1.00034
0.5 0.38737 1.02580 1.00130 1.00000 1.01772 1.00693
1 0.63678 1.02807 1.00236 1.00002 1.0107 1.01512
5 0.96698 1.00763 1.00290 1.00117 1.00035 1.00649
10 0.99092 1.00251 1.00121 1.00068 1.00004 1.00221
50 0.99961 1.00013 1.00007 1.00005 1.00000 1.00011
100 0.99990 1.00003 1.00002 1.00001 1.00000 1.00003
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Fig. 1. Comparison of approximate periodic solutions with exact solution for 4 = 0.01.
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Fig. 2. Comparison of approximate periodic solutions with exact solution for 4 = 1.
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Fig. 3. Comparison of approximate periodic solutions with exact solution for 4 = 10.

For the nonlinear oscillator, the exact angular frequency is

~1
Acostdt

n/2
z / . 1)
2\ Jo \/Azcoszt—l—ln[l—Azcoszt/(l+A2)}

we(A) =

Table 1 shows the ratios of the approximate angular frequencies w(wyy), w2, w3, W _w, @y in Egs. (2),
(14), (20), (4) and (3), respectively, to the exact angular frequency w, in Eq. (21). Furthermore, we have

Jim )= Jim oute)= fim o) = fim ox(a

— lim o w(d) = lim @p(d) =1,
A—o00 A—00

lim 22 — 102220, 1im 22 = 1.00068,

A0 W, A—0 ),

lim 2 =1.00007, lim 2% — 102220, lim $M = 1. 22)
A—=0 W, A—=0 @, A—=0 w,

From Table 1 and Eq. (22), it can be observed that Eqs. (14) and (20) yield excellent approximate
frequencies for both small and large values of amplitude 4. For amplitudes, 4 = 0.01,1 and 10, the
(numerical) exact periodic solution u.(#) obtained by numerically integrating Eq. (1) and the approximate
periodic solutions u;(#),uy(t) and uz(f) computed by Egs. (8), (14) and (20), respectively, are plotted in
Figs. 1-3. These figures show that the proposed solutions in Egs. (14) and (20) provide excellent
approximations to exact periodic solutions for both small and large amplitude.

In summary, a new method has been presented for analytically solving the Duffing-harmonic oscillator. The
iteration yields rapid convergence with respect to the exact solution. The results are valid for the complete
range of oscillation amplitude, including the limiting cases of amplitude approaching zero and infinity.
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