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Abstract

The nonlinear dynamics of a cantilever system excited by a periodic force and taking into account the combined effects

of impacts and nonlinear term due to the beam deflection is studied. Precise approximations of the beam deflection and

consequently the overall stiffness are introduced to formulate the equation of motion for the cantilever system. Two impact

models are investigated in this communication, respectively. One is a one-sided impact model, and the other is a both-sided

impact model. Based on carefully numerical simulations, bifurcations and the possible chaotic motions for these two

models are represented to show the combined effects of nonlinearities on the dynamics of these two models.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent decades, much attention has been given to the nonlinear dynamics of impact oscillators. In the
impact oscillators, the systems with clearances between springs and mass were always considered by many
investigators. And various modeling of dynamical systems have been developed with various types of
clearances. Notable contributions were made by Peterka and Vacik [1], Wiercigroch [2], Peterka [3], Danca
and Codreanu [4], Wiercigroch and Sin [5] and Shaw and Holmes [6]. From these and several other studies, it
is clear that the main nonlinearities in such dynamical systems are caused by the discontinuities related to the
clearances. Moreover, variants thereof are capable of displaying an extremely rich and variegated dynamical
behaviour. Thus, the impact systems are fast becoming important paradigms in dynamics.

If, however, the mass is a part of a larger system, the nonlinearities in the system may contain the
nonlinearities due to clearances and other ones. In this case, significant errors can be induced when
investigating the dynamical behaviour, both quantitatively and qualitatively, by neglecting even small
nonlinearities. This is particularly true in the system contains those nonlinearities such as clearances or
boundary conditions, known to be conducive of rich dynamical responses. It is well known that a common
beam can produce nonlinearity due to its own deflection. Hence, by considering the clearances between the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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mass and springs, if the mass is attached to a beam at the tip end, complex nonlinearities exist in such a system
during its vibrating. To the authors’ best knowledge, very few researches have been done on the combined
effects of clearance-nonlinearity and other nonlinearities in such a large beam system. Maybe the first
important work in this area was done by Emans et al. [7]. In their study, a common cantilever beam attached
with a mass at the tip was considered. The commonly encountered physical system is with two different
nonlinearities, the first coming from intermittent contact with another body, the second from the reaction of a
cantilever beam system due to its deflection.

The aims of this communication are twofold. Firstly, we will extend the work by Emans et al. [7]. In Ref. [7],
the impact model is a one-sided spring with a clearance; a comparison between the piecewise nonlinear and
piecewise linear system responses was made to show the effect due to beam deflection. However, only a specific
set of system parameters were chosen for calculations in their study. Thus, the effects of each system
parameters on the dynamics of the one-sided system are not revealed yet. In this paper, bifurcation diagrams
of several key system parameters will be constructed and typical motions of the system shown. Secondly we
investigate numerically, for the first time, a cantilever system with both-sided springs in which the cumulative
effect of two nonlinearities are considered. It will be shown that rich dynamics occurs in these two impact
models. The corresponding comparison is made between these two cases and the differences found are briefly
discussed and some possible explanations put forward.
2. Background theory

Consider a simple cantilever beam system as shown in Fig. 1. The system comprises of two leaf springs and a
mass M. The length of the beam is L and bending stiffness EI. Hence, the boundary conditions can prevent
rotation of the mass. Moreover, the mass is excited by a force F ¼ F 0 cosðotÞ.

This may be a common beam arrangement, used as a typical structural element in buildings, with the mass
representing a floor. However, the beam will react on the mass when the mass is vibrating. The reaction can be
considered as a storing force. Thus, to fully study the dynamics and behaviour of such an arrangement it is
needed to develop accurate formulae for the beam stiffness. Recently, the study [7] has given precise
approximations of the beam deflection and the overall stiffness.

According to Ref. [7], the reaction expression for a single beam can be constituted as follows:

R ¼ 12
EI

L3
xþ

432

35

EI

L5
x3 (1)

in which x is the deflection of the beam at s ¼ L.
Hence, for a simple one degree-of-freedom system shown in Fig. 1, the dynamics of this system can be

described by the following differential equation:

M €xþ c _xþ 12
EI

L3
xþ

432

35

EI

L5
x ¼ F 0 cosðotÞ, (2)

where c is the internal damping coefficient, F0 and o the forcing amplitude and frequency of an external force.
One can see that Eq. (2) is similar to the Duffing system, which is well known to give rich nonlinear

dynamical behaviour such as coexistence of attractors and chaotic vibrations. However, as demonstrated in
Ref. [7], chaos was found in the system described in Eq. (2) with physically unrealistic parameters, and no
Fig. 1. A cantilever beam system with no impact.
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chaos was detected with physically realistic parameters. Thus, only periodic responses were found readily for
the physically realistic parameters.

3. The forced cantilever beam system with one-sided impact

In this section, a one-sided impact system shown in Fig. 2 will be investigated in detail. Of course, this
system has been preliminarily studied by Emans et al. [7]. However, as mentioned above, only a specific set of
system parameters were chosen for calculations in their study. The effects of each key system parameters on
the dynamics of the one-sided system are not revealed yet.

The nonlinear equation of motion for the beam system, with nonlinear approximation for beam reaction is
as follows:

M €xþ c _xþ 12
EI

L3
xþ

432

35

EI

L5
xþ KHðxÞðx� e0Þ ¼ F 0 cosðotÞ, (3)

where K is the stiffness of the spring; H(x) is the Heaviside step function, which has the following form:

HðxÞ ¼
0; xoe0;

1; xXe0:

(
(4)

For purposes of numerical simulations, Eq. (3) is reduced to its first-order form,

_y ¼ z;

z ¼ b cosðOtÞ � 2xz� 36
35

y3 � kHðyÞðy� ê0Þ:
(5)

Obviously, Eq. (5) is a nondimensional equation, and some dimensionless quantities are defined as

y ¼
x

L
; t� o0t; x ¼

c

2o0M
; b ¼

F0

o2
0ML

; O ¼
o
o0
; k ¼

KL3

12EI
; ê0 ¼

e0

L
; o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
12EI

ML3

r
. (6)

Solutions of Eq. (5) were obtained by using a fourth order Runge-Kutta integration algorithm, with a step size
of 0.01; the initial conditions employed were yð0Þ ¼ 0:001; _yð0Þ ¼ 0. The accuracy of this integration algorithm
is very good provided that the integration step size is not too large. In fact, in this study, even the step size is
chosen to be a sufficiently small one (e.g. 0.001), the corresponding numerical results have shown to be very
close to those obtained with a step size of 0.01. It is noted that, a very similar dynamical system so-called ‘‘pipe
conveying fluid’’ also has cumulative nonlinearities due to geometry and impacts (see Ref. [8]). In the study of
Ref. [8], the first-order equations of the pipe model were solved by the fourth order Runge-Kutta algorithm
with an integration step size of 0.005. Numerical results for the nonlinear pipe with impacts have shown good
agreement with those observed in experiments. Moreover, the pipe system developed in Ref. [8] was essentially
modeled as a beam model. Hence, the fourth order Runge-Kutta algorithm with a reasonable step size can
capture the main dynamical behaviour of the beam system with cumulative nonlinearities.

Based on the integration algorithm mentioned above, numerical calculations have produced the bifurcation
diagram of Fig. 3, as the forcing amplitude (b) is varied in the range 0:1pbp0:5, and the values of other
Fig. 2. A cantilever beam system with one-sided impact.
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Fig. 3. Bifurcation diagram: the displacement as a function of the forcing amplitude, and x ¼ 0.02, O ¼ 0.2, k ¼ 25, ê0 ¼ 0:1.

Fig. 4. Bifurcation diagram: the displacement as a function of the clearance, and x ¼ 0.02, O ¼ 0.2, k ¼ 25, b ¼ 0.2.
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parameters are all fixed. Similarly, Figs. 4–7 represent the bifurcation diagrams as several other key system
parameters are chosen to be varied. In these figures the y plotted in the ordinate is the amplitude of the
displacement of the mass. In the calculations, the transient solutions were discarded. Hence, whenever the
velocity of the mass, _y, was zero, the displacement of the mass was recorded—thus producing both positive
and negative values, as shown in Figs. 3–7.

From Fig. 3, we can see that the amplitude of the motion is increasing with the increasing forcing amplitude.
When forcing amplitude is approximately less than 0.13, the mass tends to undergo periodic motions.
However, for bX0:13, chaotic motions may occur in a large range of b; and the chaotic vibrations of the mass
are narrow-band ones, as can be seen in Fig. 3. As the mass is not restrained in the negative direction, big
amplitudes occurs with a large b; and the negative amplitude of the mass is much larger than the positive one.
Moreover, there are relatively sub regions of periodic motions embedded with the chaotic region; e.g. for
0:19pbp0:2 there is what appears to be a period-3 region. Similarly, in the parameter spaces of several other
key parameters (i.e., e0, k, and O), the system is also capable of displaying rich dynamical behaviour. In the
parameter space of e0, chaotic and periodic motions alternately occur; and discontinuities (jumps) arise at
some values of e0, the nature of which is not understood (see Fig. 4). Further, discontinuities can also be found
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Fig. 5. Bifurcation diagram: the displacement as a function of the stiffness of the spring, and x ¼ 0.02, O ¼ 0.2, ê0 ¼ 0:1, b ¼ 0.2.

Fig. 6. Bifurcation diagram: the displacement as a function of the forcing amplitude, and O ¼ 0.2, k ¼ 25, ê0 ¼ 0:1, b ¼ 0.2.
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in Fig. 5, as the spring stiffness is varied. In Fig. 6, the varied parameter is x. When x is small (0pxp0:08), the
bifurcation diagram shows the vibrations of the mass are in the chaotic regime; however, when x is much
larger (x40.08), the system always behaves periodic motions. In the parameter space of O, chaotic and
periodic motions alternately occur when O is varied in the range of 0:3pOp0:48 as opposed to only periodic
ones can be detected when O is varied in the range of 0.74O40.48.

It is instructive to look at phase-plane portraits associated with various values of e0 (or other system
parameters), corresponding to different dynamical behaviour as discussed in the foregoing. The results are
shown in Fig. 8. In Figs. 8 (b) and (e), the system behaves chaotic motions. The remaining parts of Fig. 8, from
which the initial transients have been omitted for clarity, show various periodic motions. Thus, one can see
that the cantilever system can display rich dynamical behaviour. It should be remarked that, the dynamics is
related to the combined nonlinearities of the system. The nonlinearities in this one-sided impact system
comprise of two parts, as mentioned in the foregoing.



ARTICLE IN PRESS

Fig. 8. Phase portraits for x ¼ 0.02, O ¼ 0.2, k ¼ 25, b ¼ 0.2, and different values of ê0: (a) ê0 ¼ 0:052, (b) ê0 ¼ 0:06, (c) ê0 ¼ 0:068,
(d) ê0 ¼ 0:11, (e) ê0 ¼ 0:125, and (f) ê0 ¼ 0:145.

Fig. 7. Bifurcation diagram: the displacement as a function of the forcing frequency, and x ¼ 0.02, k ¼ 25, ê0 ¼ 0:1, b ¼ 0.2.
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4. The forced cantilever beam system with both-sided impacts

In this section a modified cantilever system shown in Fig. 9 is further investigated. It can be seen that this
cantilever system has both-sided impacts. The stiffness of two springs is denoted as K1 and K2, respectively.
The clearances between the mass and the springs are e1 and e2. In what follows, e1 and e2 (or K1 and K2) may
be different from each other in the calculations.

Similarly, by considering the effects of both-sided impacts, the nonlinear equation of the cantilever system
may be written as:

M €xþ c _xþ 12
EI

L3
xþ

432

35

EI

L5
xþ GðxÞ ¼ F0 cosðotÞ (7)

in which G(x) denotes a piecewise function

GðxÞ ¼

K1ðx� e1Þ x4e1;

0; �e2pxpe1;

K2ðxþ e2Þ; xo� e2:

8><
>: (8)

Eq. (7) can be further transformed into its first-order form

_y ¼ z;

z ¼ b cosðOtÞ � 2xz� 36
35

y3 � gðyÞ
, (9)

where

y ¼ x
L
; t ¼ o0t; x ¼ c

2o0M
; b ¼ F0

o2
0
ML
; O ¼ o

o0
; k1 ¼

K1L3

12EI
;

k2 ¼
K2L3

12EI
ê1 ¼

e1
L
; ê2 ¼

e2
L
; o0 ¼

ffiffiffiffiffiffiffiffi
12EI
ML3

q
;

(10)

and

gðyÞ ¼

k1ðy� ê1Þ; x4ê1;

0; �ê2pxpê1;

k2ðyþ ê2Þ; xo� ê2:

8><
>: (11)

Similarly as before, solutions of Eq. (9) were obtained by using a fourth-order Runge-kutta method, with
the same step size and initial conditions employed in the foregoing. Figs. (10–14) show the bifurcation
diagrams for the displacement of the mass, as several key system parameters are varied, respectively. In
Fig. 10, the variable parameter is the dimensionless forcing amplitude b. The bifurcation diagram shows that
the chaotic motion is a wide-band one. If, however, the both-sided impacts are symmetric (i.e. e1 ¼ e2 and
K1 ¼ K2), the displacement (y) plotted in the ordinate is generally symmetric, as can be seen in Figs. 10, 13 and
Fig. 9. A cantilever beam system with both-sided impacts.
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Fig. 10. Bifurcation diagram: the displacement as a function of the forcing amplitude, and x ¼ 0.02, O ¼ 0.4, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1,
ê2 ¼ 0:1.

Fig. 11. Bifurcation diagram: the displacement as a function of ê1, and x ¼ 0.02, O ¼ 0.4, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1, b ¼ 0.2.
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14. This may be different from that of the one-sided impact system. It should be also noted that, for a system
defined by O ¼ 0:4, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1, ê2 ¼ 0:1, b ¼ 0:2, only period-5 motion can be detected as x is
varied in the range 0pxp0:05.

Indeed, if the stiffness of the two springs are reasonable large, the both-sided impacts evidently ‘‘kill’’ the big
amplitudes appeared in the one-sided impact system, as can be clearly seen in Figs. (10–14). However, the
amplitude may become big if one (or two) of the stiffness is extremely small (e.g. k2 ¼ 1) with the same other
parameter values chosen as before.

Fig. 15 represents phase-plane portraits for several typical motions for different values of O. Various
periodic and chaotic motions can be clearly seen. From a physical point of view, the dynamics of the
mechanism is related to the interaction of two nonlinearities, as discussed in the foregoing.

5. Conclusion

In this short communication, the nonlinear dynamics of a common cantilever beam system, with impacts
and excited by a periodic force, was explored numerically. However, more broadly, this is a multidimensional
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Fig. 13. Bifurcation diagram: the displacement as a function of x, and O ¼ 0.4, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1, ê2 ¼ 0:1, b ¼ 0.2.

Fig. 14. Bifurcation diagram: the displacement as a function of O, and x ¼ 0.02, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1, ê2 ¼ 0:1, b ¼ 0.2.

Fig. 12. Bifurcation diagram: the displacement as a function of k2, and x ¼ 0.02, O ¼ 0.4, k1 ¼ 50, ê2 ¼ 0:1, ê2 ¼ 0:1, b ¼ 0.2.
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Fig. 15. Phase portraits for x ¼ 0.02, k1 ¼ 50, k2 ¼ 50, ê2 ¼ 0:1, ê2 ¼ 0:1, b ¼ 0.2, and different values of O: (a) O ¼ 0.31, (b) O ¼ 0.35,

(c) O ¼ 0.41, (d) O ¼ 0.5, (e) O ¼ 0.53, (f) O ¼ 0.58, (g) O ¼ 0.61, and (h) O ¼ 0.7.
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investigation of the effects of (i) the nonlinearity of the type associated with the beam deflection, (ii) the impact
models with springs and clearances.

The behaviour was analysed for two impact models. For the one-sided impact model, various periodic
motions were found as well as existence of chaotic motions. Bifurcation diagrams and phase-plane portraits
were constructed to show the rich dynamical behaviour of the one-sided system. Then another both-sided
impact model was further investigated. The corresponding comparison is made between these two models and
the differences found are briefly discussed. It is also found that the magnitudes of the vibrating displacement
and velocity are equal, both for the one-sided and both-sided impact models. Hence, these two impact models
represent low velocity impacts.
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However, for the beam arrangement developed in this paper, experiment would be done to clarify its
dynamics. To advance in this direction, an experimental study has been initiated, which should help grasp the
truth closer.
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