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Abstract

This paper presents a mathematical model based on integral equations for numerical investigations of stability analyses

of damped beams subjected to subtangential follower forces. A mathematical formulation based on Euler–Bernoulli beam

theory is presented for beams with variable cross sections on a viscoelastic foundation and subjected to lateral excitation,

conservative and non-conservative axial loads. Using the boundary element method and radial basis functions, the

equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. Generalized

formulations for the deflection, the slope, the moment and the shear force are presented. The free vibration of loaded

beams is formulated in a compact matrix form and all necessary matrices are explicitly given. The load–frequency

dependence is extensively investigated for various parameters of non-conservative loads, of internal and viscous dampings

and for various positions of the concentrated foundation. For an undamped beam, a dynamic stability analysis is

illustrated numerically based on the coalescence criterion. The flutter load and instability regions with respect to various

parameters are identified. The effects of internal and viscous dampings on the critical flutter load are examined separately

and relative effects are evaluated. The dynamic responses, before, near and after the flutter are investigated. A simple and

quite general methodological approach is presented. Comprehensive numerical tests for flutter analysis are reported and

discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Flutter instability can occur in a number of engineering structures, such as bridges, pipes, hydrofoils,
automotive disks, drum break, rocket and jet engine systems. Although, the origin of the flutter problem lies
historically in the aeronautical engineering field, many of its fundamental principles can generally be applied
to civil engineering structures. The structural model based on beam theory has often been used to idealize
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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many thin structures especially those with long spans. Therefore, vibration and stability problems of beams
have long attracted attention in modeling and applied mechanics communities. Using analytical, semi-
analytical and numerical methods, the dynamic stability of beams has been investigated in several studies.

For a non-conservative system, a comprehensive discussion of this subject based on analytical
procedures can be found in the books [1–3]. Several reviews of problems involving follower forces have
been published. A retrospective on the important developments in dynamic stability theory was presented by
Bolotin [4]. A comprehensive review with emphasis on canonical problems, i.e.: Beck’s, Reut’s, Leipholz’s
and Hauger’s columns and experimental work was recently published by Langthjem and Sugiyama [5].
For these problems, it is well known that the usual Euler method and minimum potential energy methods
(static methods) are inadequate to predict their instability and that a dynamic method must be employed.
The instability analysis of beams under non-conservative forces characterized by flutter which occurs
when two of the natural frequencies coincide to become complex conjugate with a positive real part can be
done only dynamically. The presence of non-conservative loads makes the system of equations mathe-
matically non-self-adjoint and the corresponding eigenvalue problem is depicted by a non-symmetric matrix.
Physically, the instability of the system manifests itself in oscillations with unbounded increasing amplitude
when the two lowest eigenvalues become complex conjugates. In recent years, many authors have studied the
dynamic stability of elastic structures subjected to subtangential forces, which are a combination of axial and
tangential follower forces, and various analytical and numerical procedures have been established for their
solutions.

Amongst the numerical methods available for thin structure problems, the finite element method (FEM) is
undoubtedly the most versatile. The only problem with this method is that its formulation is quite laborious
and it takes a large amount of computer storage. A powerful alternative method based on integral equations is
the boundary element method (BEM). The main reason for the rapid development of the BEM is the
possibility of reduced dimensionality of the problem, which leads to a reduced set of equations and a smaller
amount of data required for the computation. Using the fundamental solution corresponding to the exact
solution of a part of the problem, the inappropriate terms are moved to the right-hand side of the governing
equation and considered as a fictitious source density. For dynamic instability of beams under elastic
foundations and subtangential follower forces, domain integrals are necessary in the formulation. Thus, the
main advantage of the dimensionality reduction is eliminated. However, the use of dual reciprocity method
(DRM), introduced by Nardini and Brebbia [6], permits the combination of dimensionality reduction
advantage with a simple fundamental solution and to formulate the problem on boundary unknowns only. A
comprehensive literature review of the DRM and multiple reciprocity method (MRM) as applied to
elastodynamics can be found in the review paper of Beskos [7]. Details and applications to various engineering
problems are clearly presented in the book of Partridge et al. [8]. Combining the MRM and singular value
decomposition method, the rod vibration problem has been analyzed by Chang et al. [9]. Using DRM and the
differential quadrature method, the longitudinal vibration of plates and membranes were investigated by
Tanaka and Chen [10]. For bending problems of inhomogeneous Euler–Bernoulli beams, an investigation was
carried out by Rong et al. [11]. Based on Timoshenko’s beam theory and a quadrature method, the dynamic
behavior of beams has been analyzed by Schanz and Antes [12]. An extension to beams with arbitrary cross
section has been developed by Sapountzakis [13] and to the nonlinear dynamic analysis of beams with variable
cross section by Katsikadelis and Tsiatas [14].

There are many other methods used for the flutter phenomenon. The Galerkin and Ritz methods have been
used by Levinson [15] for non-conservative problems of elastic structures. The effect of an intermediate
support on the dynamic behavior of cantilever beams subjected to follower forces using a discretization
method was discussed by Rosa and Franciosi [16]. A variety of subtangential force parameters, various
positions, various amplitudes of concentrated or uniform elastic foundations and various boundary conditions
were examined. The jump phenomenon was earlier reported by Zorii and Chermokha [17] and in a series of
papers by Kounadis [18–20]. Using computerized symbolic algebra in conjunction with the two-term Galerkin
method, the same problems have been traited by Elishakoff and Hollkamp [21]. Similarly, the flutter and
internal damping effects on the dynamic stability of rods with intermediate spring supports and with
relocatable lumped mass under follower loads have been largely investigated by Lee [22–26]. The influence of
the subtangential coefficient of follower load and the elastically restrained boundary conditions on the elastic
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instability of beams has been discussed by Lee and Hsu [27]. Enhancing flutter and buckling capacity of beams
by using piezoelectric layer is presented by Wang and Quek [28]. Based on the FEM, the stability and
instability of cantilever elastic beams subjected to a follower force have been investigated by Gasparini et al.
[29], Ryu and Sugiyama [30] and Zuo and Schreyer [31]. The divergence and flutter instabilities are generally
analyzed by analytical methods or by FEMs.

To the best knowledge of the authors, there is no available compact formulation and results based on the
integral equation formulation for buckling, flutter and vibration analyses of thin structures. A formulation
based on integral equations and investigations of buckling, vibration and flutter behavior of beams (Beck’s
problem) have been presented in Refs. [32,33]. A wealth of information has been given in Ref. [33]. This paper
intends to extend the previous formulation to damped beams on elastic foundations and subject to various
types of follower loads. A simple and general methodological approach is presented. Emphasis is on the effects
of the subtangential follower force parameters, the foundation amplitude and position and the damping on the
flutter load and limit.

In this paper, a mathematical model based on the integral equations for divergence and flutter instability
analyses of damped beams is presented. The Euler–Bernoulli beam theory is used and the governing equation
is formulated for beams on a viscoelastic foundation and subject to subtangential follower loads. The radial
basis functions and uniform internal discretization are used and all required matrices are explicitly formulated.
A generalized formulation for the deflection, the slope, the moment and the shear force are presented and the
solution can be obtained at interior or boundary points. The free vibration of loaded beams is formulated in a
compact matrix form. The required matrices are explicitly given for numerical investigations. The
load–frequency dependence is extensively analyzed for various parameters. The flutter load variations with
respect to the position and amplitude of the foundation, the internal and viscous dampings and the flutter zone
are investigated. The dynamic response formulation based on modal analysis is established. Numerical results
are presented for a clamped–free (C–F) beam submitted to subtangential load and unit impulse at various load
levels.
2. Basic beam equations

Let us consider a slender beam of length L with a variable cross section. Using the Euler–Bernoulli beam
theory and neglecting the axial displacement, the equation of motion is formulated using the transverse
displacement only. The governing partial differential equation of motion of damped beams on a viscoelastic
foundation and subjected to axial compression and lateral excitation (Fig. 1) is formulated by

q2

qz2
EIðzÞ

q2

qz2
V ðz; tÞ þ Z

qV ðz; tÞ

qt

� �� �
þ rðzÞSðzÞ

q
qt

xV ðz; tÞ þ
qV ðz; tÞ

qt

� �

þ l
q2V ðz; tÞ

qz2
þ kðzÞ V ðz; tÞ þ u

qV ðz; tÞ

qt

� �
¼ pðz; tÞ, ð1Þ

where V is the transverse displacement, E; I ;S and r are Young’s modulus, inertia, the area and the mass
density, respectively. kðzÞ is the elastic foundation, l is the subtangential load, pðz; tÞ is the lateral excitation
z r p ( z,t )

z : Field point s : Source point (z)κ

λ

(Moving) (Marked)

Fig. 1. (C–F) beam subjected to subtangential axial force l, elastic foundation k and lateral excitation pðz; tÞ.
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and z is the axial coordinate. Z; x and u are, respectively, the internal rigidity damping, the internal mass
damping and the foundation viscosity factors. For homogeneous beams with a variable cross section, the
parameters E; I ;S and r can be assumed in the following form:

EIðzÞ ¼ Eð0ÞIð0ÞK1ðzÞ and rðzÞSðzÞ ¼ rð0ÞSð0ÞK2ðzÞ, (2)

where K1 and K2 are functions of the axial coordinate z. Using non-dimensional parameters and Eq. (2),
Eq. (1) can be written as

q2

qx2
K1ðxÞ

q2

qx2
ðW ðx; tÞ þ Z� _W ðx; tÞÞ

� �
þ K2ðxÞð €W ðx; tÞ þ x� _W ðx; tÞÞ

þ l�
q2W
qx2
ðx; tÞ þ k�ðxÞðW ðx; tÞ þ u� _W ðx; tÞÞ ¼ p�ðx; tÞ, ð3Þ

where

w ¼
rSð0ÞL4

EIð0Þ
; l� ¼ l

L2

EIð0Þ
; k� ¼ k

L4

EIð0Þ
; Z� ¼ Z

1

w
; x� ¼ xw; u� ¼

u
w
,

p� ¼ p
L3

EIð0Þ
; W ðx; tÞ ¼

V ðz; tÞ

R
; t ¼

t

w
; R ¼

ffiffiffiffi
I

S

r
and x ¼

z

L
, ð4Þ

in which R is the radius of gyration of the beam, 0pxp1 and the over dot ð�Þ indicates the time derivative.
The aim of this paper is the development of the integral equation formulations for numerical solutions of

Eq. (3) and the investigation of the dynamic stability analyses of beams with various parameters of external
and internal dampings, elastic foundations and subtangential loads.
3. Integral equation formulation

The fundamental solution of Eq. (3) is difficult to explicitly determine due to the variable coefficients
K1ðxÞ;K2ðxÞ and to the other parameters. As domain integrals are then inevitable, a simple fundamental
solution will be used and the resulting domain integrals will be treated by the DRM. Let us denote W � as the
fundamental solution of the following problem:

q2

qx2
K1ðxÞ

q2W �ðx; sÞ

qx2

� �
¼ dðx; sÞ, (5)

where d is the Dirac function and ‘s’ is the source point. This fundamental solution will be used and the partial
differential equation (3) will be transformed into an integral equation. Following the BEM procedure
[6–13,33], the resulting integral equation will be reduced to an algebro-differential equation.

As is well known in the bending problem of beams, the following variables have physical meanings and may
be also known at boundaries:

yðxÞ ¼
qW

qx
; MðxÞ ¼ �K1ðxÞ

q2W

qx2
and QðxÞ ¼

qM

qx
, (6)

where yðxÞ is the slope, MðxÞ is the bending moment and QðxÞ is the shear force related to the derivatives of the
deflection W . These parameters have then to be introduced in the formulation. Multiplying Eq. (3) by W � and
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integrating from 0 to 1, one obtains:Z 1

0

q2

qx2
K1ðxÞ

q2

qx2
ðW ðx; tÞ þ Z� _W ðx; tÞÞ

� �
W �ðs;xÞdx

¼ �l�
Z 1

0

q2W
qx2
ðx; tÞW �ðs;xÞdx�

Z 1

0

K2ðxÞð €W ðx; tÞ þ x� _W ðx; tÞÞW �ðs;xÞdx

�

Z 1

0

k�ðxÞðW ðx; tÞ þ u� _W ðx; tÞÞW �ðs;xÞdxþ

Z 1

0

p�ðx; tÞW �ðs;xÞdx. ð7Þ

In order to ease the notation, the time variable will be dropped. Integrating by parts four times, the first
term of Eq. (7) becomes:

R 1
0

q2

qx2
K1ðxÞ

q2

qx2
ðW ðxÞ þ Z� _W ðxÞÞ

� �
W �ðs;xÞdx ¼W ðsÞ þ AðsÞ þ Z�ð _W ðsÞ þ _AðsÞÞ;

AðsÞ ¼ �W �ðs; xÞQðxÞ þ
qW �

qx
ðs;xÞMðxÞ þ K1

q2W �

qx2
ðs; xÞyðxÞ �

q
qx

K1
q2W �

qx2

� �
ðs;xÞW ðxÞ

� �1
0

;

_AðsÞ ¼ �W �ðs; xÞ _QðxÞ þ
qW �

qx
ðs;xÞ _MðxÞ þ K1

q2W �

qx2
ðs; xÞ _yðxÞ �

q
qx

K1
q2W �

qx2

� �
ðs; xÞ _W ðxÞ

� �1
0

:

8>>>>>>>>><
>>>>>>>>>:

(8)

On the right-hand side of Eq. (7), three domain integrals have to be evaluated. Making use of radial basis
functions, thus avoiding the additional task of domain integration, these domain integrals are transformed
into boundary values. To this end, let us assume that for these integrals, the function W ðx; tÞ is assumed to be

W ðx; tÞ ¼
Xnþ2
j¼1

ajðtÞf jðxÞ, (9)

where f j are radial basis functions, ‘n’ is the number of interior points, aj are undetermined coefficients [6,8].
Given f j defines two other functions gj and hj which satisfy the following equations:

d4gj

dx4
ðxÞ ¼ f jðxÞ and

d4hj

dx4
ðxÞ ¼ K2ðxÞf jðxÞ. (10)

More details about W �; f j ; gj and hj, used in this analysis, are given in Appendix A. The mathematical
formulation presented here is kept in a general form in order to investigate the dynamic stability analysis of
beams with variable cross sections. Making use of these transformations, it is now possible to evaluate the
integral formulation (7) using boundary values only. Based on the decomposition (9) and Eq. (10), the three
domain integrals on the r.h.s. of Eq. (7) are transformed into boundary values as follows:

�
R 1
0

K2ðxÞð €W ðxÞ þ x� _W ðxÞÞW �ðs; xÞdx ¼ �
Pnþ2
j¼1

½ð€ajBjðsÞ þ x� _ajBjðsÞ�;

BjðsÞ ¼ hjðsÞ þ W �ðs;xÞ
d3hj

dx3
ðxÞ �

qW �

qx
ðs;xÞ

d2hj

dx2
ðxÞ þ

q2W �

qx2
ðs;xÞ

dhj

dx
ðxÞ �

q3W �

qx3
ðs;xÞhjðxÞ

" #1
0

;

8>>>>><
>>>>>:

(11a)

�l�
R 1
0

q2W
qx2
ðxÞ

� �
W �ðs; xÞdx ¼ �l�

Pnþ2
j¼1

ajCjðsÞ;

CjðsÞ ¼
d2gj

dx2
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d5gj

dx5
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qW �

qx
ðs;xÞ
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dx4
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q2W �

qx2
ðs;xÞ

d3gj

dx3
ðxÞ

"

�
q3W �

qx3
ðs;xÞ

d2gj

dx2
ðxÞ

#1
0

:

8>>>>>>>>>>><
>>>>>>>>>>>:

(11b)
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For a uniform elastic foundation:

�
R 1
0 k
�ðxÞðW ðxÞ þ u� _W ðxÞÞW �ðs;xÞdx ¼ �k�

Pnþ2
j¼1

ðaj þ u� _ajÞDjðsÞ;

DjðsÞ ¼ gjðsÞ þ W �ðs;xÞ
d3gj

dx3
ðxÞ �

qW �

qx
ðs;xÞ

d2gj

dx2
ðxÞ

"

þ
q2W �

qx2
ðs;xÞ

dgj

dx
ðxÞ �

q3W �

qx3
ðs;xÞgjðxÞ

�1
0

:

8>>>>>>>>>><
>>>>>>>>>>:

(11c)

For a concentrated elastic foundation k� at the point xc:

�
R 1
0 k
�ðxÞ W ðxÞ þ u� _W ðxÞ

� �
W �ðs;xÞdx ¼ �k�

Pnþ2
j¼1

ðaj þ u� _ajÞDjðsÞ;

DjðsÞ ¼ 0 for jac and DcðsÞ ¼W ðxcÞW
�ðs;xcÞ

8><
>: (11d)

Let us recall that the damping coefficient u� is associated to the viscous foundation k� and if the
foundation is concentrated the viscous damping is concentrated too. The transverse excitation load is
given by

Pðs; tÞ ¼

Z 1

0

p�ðx; tÞW �ðs; xÞdx. (11e)

Based on the later transformations, the integral equation formulation (7) is reduced to the following
algebro-differential equation at interior points:

W ðsÞ þ AðsÞ þ Z�ð _W ðsÞ þ _AðsÞÞ ¼ �
Xnþ2
j¼1

ð€ajBjðsÞ þ x� _ajBjðsÞÞ

� l�
Xnþ2
j¼1

ajCjðsÞ � k�
Xnþ2
j¼1

ðajDjðsÞ þ u� _ajDjðsÞÞ þ PðsÞ, ð12Þ

or

W ðsÞ þ AðsÞ þ Z�ð _W ðsÞ þ _AðsÞÞ ¼ �
Xnþ2
j¼1

€ajBjðsÞ �
Xnþ2
j¼1

ajðl
�CjðsÞ þ k�DjðsÞÞ

�
Xnþ2
j¼1

_ajðx
�BjðsÞ þ k�u�DjðsÞÞ þ PðsÞ. ð13Þ

In order to present a well-posed problem in its general formulation, more equations than Eq. (13) related to
y;M and Q are required. They are obtained by derivatives of Eq. (13) with respect to the variable s. For a
compact equation representation, the following notations are introduced:

ÊðsÞ ¼
qE

qs
ðsÞ; ^̂

EðsÞ ¼ K1ðsÞ
qÊ

qs
ðsÞ and

^̂
ÊðsÞ ¼

q ^̂E
qs
ðsÞ, (14)

where E may be: A;B;C or E ¼ D.
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Finally, one obtains for a uniform elastic foundation the following algebro-differential system:

½W ðsÞ þ AðsÞ� þ Z�½ _W ðsÞ þ _AðsÞ� ¼ �
Pnþ2
j¼1

f€ajBjðsÞ þ ajðl
�CjðsÞ þ k�DjðsÞÞg

�
Pnþ2
j¼1

_ajfx
�BjðsÞ þ k�u�DjðsÞg þ PðsÞ;

½yðsÞ þ ÂðsÞ� þ Z�½_yðsÞ þ _̂
AðsÞ� ¼ �

Pnþ2
j¼1

f€aj B̂jðsÞ þ ajðl
�ĈjðsÞ þ k�D̂jðsÞÞg

�
Pnþ2
j¼1

_ajfx
�B̂jðsÞ þ k�u�D̂jðsÞg þ P̂ðsÞ;

½�MðsÞ þ
^̂
AðsÞ� þ Z�½� _MðsÞ þ

_̂
ÂðsÞ� ¼ �

Pnþ2
j¼1

f€aj
^̂
BjðsÞ þ ajðl

� ^̂CjðsÞ þ k� ^̂DjðsÞÞg

�
Pnþ2
j¼1

_ajfx
� ^̂BjðsÞ þ k�u� ^̂DjðsÞg þ

^̂
PðsÞ;

½�QðsÞ þ
^̂
ÂðsÞ� þ Z�½� _QðsÞ þ

^̂
ÂðsÞ� ¼ �

Pnþ2
j¼1

f€aj

^̂
B̂jðsÞ þ ajðl

�
^̂
ĈjðsÞ þ k�

^̂
D̂jðsÞÞg

�
Pnþ2
j¼1

_ajfx
�
^̂
B̂jðsÞ þ k�u�

^̂
D̂jðsÞg þ

^̂
P̂ðsÞ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(15)

These equations give analytical solution representations with respect to the interior variable ‘s’ for the
transverse displacement, slope, moment and shear force. For a numerical solution, a discretization of Eq. (15)
and the consideration of boundary conditions are needed.
4. Matrix formulations

After discretization of Eq. (15), one can write:

W i þ Ai þ Z�ð _W i þ _AiÞ ¼ �
Xnþ2
j¼1

f€ajBij þ _ajðx
�Bij þ k�u�DijÞ þ ajðl

�Cij þ k�DijÞg þ Pi, (16a)

yi þ Âi þ Z�ð_yi þ
_̂
AiÞ ¼ �

Xnþ2
j¼1

f€aj B̂ij þ _ajðx
�B̂ij þ k�u�D̂ijÞ þ ajðl

�Ĉij þ k�D̂ijÞg þ P̂i, (16b)

�Mi þ
^̂
Ai þ Z�ð� _Mi þ

_̂
ÂiÞ ¼ �

Xnþ2
j¼1

f€aj
^̂
Bij þ _ajðx

� ^̂Bij þ k�u� ^̂DijÞ þ ajðl
� ^̂Cij þ k� ^̂DijÞg þ

^̂
Pi, (16c)

�Qi þ
^̂
Âi þ Z�ð� _Qi þ

_̂
^̂
AiÞ ¼ �

Xnþ2
j¼1

f€aj

^̂
B̂ij þ _ajðx

�
^̂
B̂ij þ k�u�

^̂
D̂ijÞ þ ajðl

�
^̂
Ĉij þ k�

^̂
D̂ijÞg þ

^̂
P̂i (16d)

in which i ¼ 1 and nþ 2 correspond to the beam ends and i ¼ 2 to nþ 1 correspond to interior points which
may correspond to a uniform or a non-uniform discretization (Fig. 2).

Let us recall that we have ðnþ 4Þ unknowns, (n) interior W i and four unknowns related to the assumed
boundary conditions. Eq. (16a) leads to ðnþ 2Þ equations and two extra equations are then needed. Eqs. (16b)



ARTICLE IN PRESS

tn

1/(n+1)

1 2 3 n+1 n+2

y.θ

λ
θ

Fig. 2. Uniform discretization of a clamped–free beam and load parameters (W 1 ¼ 0; y1 ¼ 0; Mnþ2 ¼ 0 and Qnþ2 ¼ �k
�W nþ2þ

ð1� yÞlynþ2).
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or (16c) may be used to complete the system for a (C–F) boundary condition. A combination of
Eqs. (16a)–(16d) can also be used to solve the system for more general boundary conditions. Based on the
coordinate functions given in Ref. [8], for the static case, the unknown function vector fag and its time
derivatives can be written in the following form:

a ¼ GW; _a ¼ G _W and €a ¼ G €W, (17)

where G is the radial basis function matrix and it is explicitly given in Appendix B. For a (C–F) beam
subjected to a subtangential follower force, as presented in Fig. 2, the boundary conditions are expressed as:
W 1 ¼ 0, y1 ¼ 0, Mnþ2 ¼ 0 and Qnþ2 ¼ �k

�ðW nþ2 þ u� _W nþ2Þ þ ð1� yÞl�ynþ2. The parameter ‘y’ is used to
denote the combination such that ‘y ¼ 0’ describes the axial load and ‘ya0’ the follower force. Only ‘y ¼ 0’
provides a conservative loading. The term l�ð1� yÞynþ2 is moved to the right-hand side. The unknowns at
boundary and interior points are expressed by the following vector notations:

W ¼ fW 2;W 3; . . . ;W nþ1;W nþ2; ynþ2g and T ¼ fM1;Q1g, (18a)

_W ¼ f _W 2; _W 3; . . . ; _W nþ1; _W nþ2; _ynþ2g and _T ¼ f _M1; _Q1g. (18b)

As W 1, y1 and Mnþ2 are null, they will be eliminated and Eqs. (16a) and (16b) will be used for unknowns.
Making use of the considered boundary conditions, the function AðsÞ in Eq. (8) is rewritten as

AðsÞ ¼ k�W �ðs; 1Þ �
q3W �

qx3
ðs; 1Þ

� �
W nþ2 � l�ð1� yÞW �ðs; 1Þ �

q2W �

qx2
ðs; 1Þ

� �
ynþ2

�
qW �

qx
ðs; 0ÞM1 þW �ðs; 0ÞQ1 þ ðk

�u�W �ðs; 1ÞÞ _W nþ2. ð19aÞ

In this study, a simple fundamental solution is used, i.e.: W �ðx; sÞ ¼ jx� sj3=12 (Appendix A). The explicit
formulation of AðsÞ is then given by

AðsÞ ¼ k�
ð1� sÞ3

12
�

1

2

� �
W nþ2 � l�ð1� yÞ

ð1� sÞ3

12
�
ð1� sÞ

2

� �
ynþ2 �

s2

4
M1 þ

s3

12
Q1

þ k�u�
ð1� sÞ3

12
_W nþ2. ð19bÞ

For the sake of clarity, the required equations are explicitly expressed at all unknowns. For the considered
boundary conditions ‘nþ 2’ equations are obtained by using Eq. (16a) for i ¼ 1 to nþ 2 and two additional
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ones are obtained from Eq. (16b) for i ¼ 1 and nþ 2 as follows:

ðaÞ W 2 þ k�
ð1� s2Þ

3

12
�

1

2

� �
W nþ2 þ

ð1� s2Þ

2
ynþ2

� �
þ �

s22
4

M1 þ
s32
12

Q1

� �

þZ� _W 2 þ k�
ð1� s2Þ

3

12
�

1

2

� �
_W nþ2 þ

ð1� s2Þ

2
_ynþ2

� �
þ Z� �

s22
4
_M1 þ

s32
12

_Q1

� �
¼ �

Pnþ2
j¼1

B2j
€W j

" #

�k�Z�u�
ð1� s2Þ

3

12
€W nþ2

� �
� l�

Pnþ2
j¼1

C2jW j

" #
þ l�ð1� yÞ

ð1� s2Þ
3

12
ynþ2

� �
� k�

Pnþ2
j¼1

D2jW j

" #

�
Pnþ2
j¼1

fðx�B2j þ k�u�D2jÞ _W jg

" #
þ Z�l�ð1� yÞ

ð1� s2Þ
3

12
_ynþ2

� �
� k�u�

ð1� s2Þ
3

12
_W nþ2

� �
þ P2 i ¼ 2

..

. ..
. ..

. ..
.

ðbÞ W i þ k�
ð1� siÞ

3

12
�

1

2

� �
W nþ2 þ

ð1� siÞ

2
ynþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IW

þ �
s2i
4

M1 þ
s3i
12

Q1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AT

þ Z� _W i þ k�
ð1� siÞ

3

12
�

1

2

� �
_W nþ2 þ

ð1� siÞ

2
_ynþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z�I _W

þZ� �
s2i
4
_M1 þ

s3i
12

_Q1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z�A _T

¼ �
Xnþ2
j¼1

Bij
€W j

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

B €W

�k�Z�u�
ð1� siÞ

3

12
€W nþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�Z�u�H €W

�l�
Xnþ2
j¼1

CijW j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

l�BW

þl�ð1� yÞ
ð1� siÞ

3

12
ynþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l�ð1�yÞJW

�k�
Xnþ2
j¼1

DijW j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�DW

�
Xnþ2
j¼1

ðx�Bij þ k�u�DijÞ _W j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðx�Bþk�u�DÞ €W

þZ�l�ð1� yÞ
ð1� siÞ

3

12
_ynþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z�l�ð1�yÞJ _W

�k�u�
ð1� siÞ

3

12
_W

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�v�H _W

þPi|ffl{zffl}
P

i ¼ i

..

. ..
. ..

. ..
.

ðcÞ � � � � � � � � � � � � i ¼ nþ 2

ðdÞ
k�

12
�

1

2

� �
W nþ2 þ

1

2
ynþ2

� �
þ Z�

k�

12
�

1

2

� �
_W nþ2 þ

1

2
_ynþ2

� �
¼ �

Pnþ2
j¼1

B1j
€W j

" #

�k�Z�u�
1

12
€W nþ2

� �
� l�

Pnþ2
j¼1

C1jW j

" #
þ l�ð1� yÞ

1

12
ynþ2

� �
� k�

Pnþ2
j¼1

D1jW j

" #

�
Pnþ2
j¼1

fðx�B1;j þ k�u�D1jÞ _W jg

" #
þ Z�l�ð1� yÞ

1

12
_ynþ2

� �
� k�u�

1

12
_W

� �
þ P1 i ¼ 1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(20)
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ðeÞ
�k�

4
W nþ2 �

1

2
ynþ2

� �
� Z�

k�

4
_W nþ2 þ

1

2
_ynþ2

� �

¼ �
Pnþ2
j¼1

B̂1j
€W j

" #
� l�

Pnþ2
j¼1

Ĉ1jW j

" #
� l�ð1� yÞ

1

4
ynþ2

� �

�k�
Pnþ2
j¼1

D̂1jW j

" #
�

Pnþ2
j¼1

fðx�B̂1j þ k�u�D̂1jÞ _W jg

" #

þk�Z�u�
1

4
€W nþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�Z�u�H0 €W

�Z�l�ð1� yÞ
1

4
_ynþ2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z�l�ð1�yÞJ0 _W

þk�u�
1

4
_W nþ2

� �
þ P̂1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�u�H0 _W

i ¼ 1

ðfÞ
1

2
ynþ2

� �
|fflfflfflfflffl{zfflfflfflfflffl}

OW

þ �
1

2
M1 þ

1

4
Q1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AT

þZ�
1

2
_ynþ2

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Z�O _W

þ_Z �
1

2
_M1 þ

1

4
_Q1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z�A0 _T

¼ �
Xnþ2
j¼1

B̂nþ2;j
€W j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B0 €W

�l�
Xnþ2
j¼1

Ĉnþ2;jW j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l�C0W

�k�
Xnþ2
j¼1

D̂nþ2;jW j

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�D0W

�
Xnþ2
j¼1

fðx�b̂nþ2;j þ k�u�D̂nþ2;jÞ _W jg

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðx�B0þk�u�D0Þ _W

þP̂nþ2|fflfflffl{zfflfflffl}
P0

i ¼ nþ 2

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

In which si ¼ ði � 1Þ=ðnþ 1Þ. For a compact form, the following matrix formulation is used:

IAZ�IZ�A

OA0Z�OZ�A0

" # W

T

_W

_T

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ

B

B0

" #
þ k�Z�u�

H

H0

" # !
€Wþ l�

C

C0

" #
þ ð1� yÞ

J

J0

" # !
W

þ k�
D

D0

" #
Wþ x�

B

B0

" #
þ k�u�

H

H0

" #
þ l�Z�ð1� yÞ

J

J0

" #
þ k�u�

D

D0

" # !
_W ¼

P

P0

( )
. ð21Þ

Details about related matrices of Eqs. (21) are given in Appendix B. Eq. (21) presents a differential system
with respect to time on the deflection at unknown interior points W and unknowns at boundaries represented
by T. This system is rewritten as:

A0ðTþ Z� _TÞ þ ðB0 þ k�Z�u�H0Þ €Wþ ðl�ðC0 � ð1� yÞJ0Þ þ k�D0 �OÞW

þðx�B0 þ k�u�H0 þ l�Z�ð1� yÞJ0 þ k�u�D0 � Z�OÞ _W ¼ P0;

AðTþ Z� _TÞ þ ðBþ k�Z�u�HÞ €Wþ ðl�ðC� ð1� yÞJÞ þ k�D� IÞW

þðx�Bþ k�u�Hþ l�Z�ð1� yÞJþ k�u�D� Z�IÞ _W ¼ P:

8>>>><
>>>>:

(22a,b)

Eq. (22) permits one to compute the unknowns at boundaries as a function of the interior points by the
following equation:

Z� _Tþ T ¼ � A0
�1
½ðx�B0 þ k�u�H0 þ l�Z�ð1� yÞJ0 þ k�u�D0 � Z�OÞ _W

þ ðB0 þ k�Z�u�H0Þ €Wþ ðl�ðC0 � ð1� yÞJ0Þ þ k�D0 �OÞW� P0�. ð23aÞ
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The stationary limit condition ð _T ¼ 0Þ gives

T ¼ � A0�1½ðx�B0 þ k�u�H0 þ l�Z�ð1� yÞJ0 þ k�u�D0 � Z�OÞ _W

þ ðB0 þ k�Z�u�H0Þ €Wþ ðl�ðC0 � ð1� yÞJ0Þ þ k�D0 �OÞW� P0�. ð23bÞ

Using Eq. (23b) and after some mathematical manipulations, Eq. (22) can be transformed into the
deflection problem as follows:

M €Wþ Cd _Wþ KWþ f ¼ 0, (24)

where

M ¼ ðB� AA0B0Þ þ k�Z�u�ðH� AA0�1H0Þ,

Cd ¼ Z�ðAA0�1O� IÞ þ x�ðB� AA0B0Þ þ k�u�ðH� AA0�1H0Þ

þ Z�ð1� yÞJ� AA0�1J0 þ k�u�ðD� AA0�1D0Þ,

K ¼ AA0�1O� Iþ k�ðD� AA0�1D0Þ þ l�ðC� AA0�1C0 � Jþ AA0�1J0Þ,

f ¼ P� AA0�1P0.

All the related matrices can be easily computed and explicit expressions are given in Appendix B. It is clearly
shown that the matrix Cd is damping parameters dependent and the matrix K is load and foundation stiffness
dependent. These parameters will be chosen and the corresponding dynamic behavior of the beam will be
investigated based on Eq. (24).

5. Eigenvalue procedure and decomposition method

The solution of the considered problem will be obtained by numerically solving Eq. (24). By using standard
algorithms such as Runge–Kutta or Newmark, the time response may be investigated at interior and
boundary points. The deflection time evolution may be then computed with respect to various parameters. The
formulation (24) is quite general and it may be used both for dynamic stability and for control analysis. In this
paper, we limit ourselves to the eigenvalue procedure and to the decomposition method for dynamic stability
analysis.

5.1. Free vibration of loaded beams

Let us assume that the displacement field can be written in the following form:

W ðx; tÞ ¼W ðxÞeOt;

O ¼ sþ io:

(
(25)

Neglecting the excitation vector ðf ¼ 0Þ and inserting Eq. (25) into Eq. (24), the following standard
eigenvalue problem is obtained:

ðO2Mþ OCdþ KÞW ¼ 0. (26a)

This equation is recast as a classical eigenvalue problem by

CZ ¼ OZ;

C ¼
K 0

0 M

� ��1
0 K

�K �C

� �
; Z ¼

W

OW

	 

:

8><
>: (26b)
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Remember that the matrix K is load dependent. The load–frequency analysis is then investigated by
numerically solving the eigenvalue problem (26b) for each considered load increment.

5.2. Dynamic response

The dynamic response is obtained by numerically solving the following differential problem:

_Z ¼ CZþ F;

Z ¼
W

_W

	 

; F ¼

K 0

0 M

� ��1
0

�f

	 

:

8><
>: (27)

The complete solution is obtained by the following well-known convolution integral involving the transition
matrix expðCtÞ:

ZðtÞ ¼ expðCtÞZð0Þ þ expðCtÞ
Z t

0

expð�CsÞFðsÞ ds. (28)

In general, the matrix expðCtÞ is difficult to calculate. The modal analysis will be used in order to explicitly
compute ZðtÞ. First, the right and the left eigenvectors of the matrix C will be computed by

CUi ¼ OiUi;

CtVi ¼ OiVi;

(
(29)

where C0 is the transpose of matrix C, Ui is the right eigenvector and Vi is the adjoint eigenvector associated to
the eigenfrequency Oi.

Let us assume that all eigenvalues are distinct, and then the eigenvectors Ui and Vi corresponding to
different eigenvalues are biorthogonal. They can then be normalized and satisfy the following expressions:

VT
i Uj ¼ Ojdij ; i; j ¼ 1 to 2ðnþ 2Þ. (30)

Based on this transformation, the computation of the transition matrix is relatively easy. The system
response is then given by

ZðtÞ ¼ U½diagðexpðXitÞÞ�V
TZ0

þU½diagðexpðXitÞÞ�
R t

0½diagðexpð�XitÞÞt�V
TFðsÞ ds;

Z0 ¼
Wð0Þ

_Wð0Þ

( )
; ZðtÞ ¼

WðtÞ

_WðtÞ

( )
:

8>>>>><
>>>>>:

(31)

Then, one can compute both the deflection WðtÞ and the velocity _WðtÞ according to the initial conditions
Wð0Þ, _Wð0Þ and to the external excitation FðtÞ at all internal points. For a specified point ‘i’, one gets:

W iðtÞ ¼
X2nþ2

m¼1

Uim expðOmtÞ
X2nþ2

j¼1

VT
mj
_W jð0Þ þ

Z t

0

expð�OmtÞ:
X2nþ2

j¼1

VT
mjF jðtÞdt

 !
þ
X2nþ2

j¼2nþ1

VT
mjW jð0Þ

( )
. (32)

For a simple explicit formulation, let us assume that FðtÞ is a unit impulse to the free end of the beam and
Z0 ¼ 0; i.e.: FðtÞ ¼ dðtÞf0; . . . ; 0; 1gtnþ1 where dðtÞ is the Dirac delta function. In this case the deflection and
velocity at all points are explicitly given by the simplified expressions:

W iðtÞ ¼
P2nþ2

m¼1

Uim expðOmtÞ
P2nþ2

j¼1

VT
mj F j ; i ¼ 1; nþ 2;

_W iðtÞ ¼
P2nþ2

m¼1

Uiþðnþ2Þ;mOm expðOmtÞ
P2nþ2

j¼1

VT
mjF j ; i ¼ 1; nþ 2:

8>>>><
>>>>:

(33)

These explicit formulations allow one to investigate the dynamic response of damped beams subjected to
various subtangential load parameters, stiffness and viscous parameters. For specified load and foundation
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parameters, matrices in Eq. (24) have first to be computed following the developments presented in Appendix
B. For numerical solutions, a computing program in MATLAB has been utilized. The MATLAB environment
is exploited for a standard use of the presented formulation. The mathematical formulations presented are
quite general and allow one to investigate the load–frequency dependence for beams on various types of elastic
foundations, various subtangential parameter forces and various internal or viscous dampings. The
frequencies and eigenmodes can be either real or complex. Therefore, at divergence instability the lowest
frequency vanishes, as for conservative systems two frequencies can approach each other, coalesce and then
become complex conjugates. Without damping, this corresponds to flutter instability and the load when the
two frequencies coincide is defined as the flutter load. The load–frequency dependences and the flutter load
corresponding to the coalescence of two natural frequencies are investigated. The mode, moment and shear
force corresponding to the flutter load can be directly computed. The control of the flutter may also be
performed based on internal or viscous damping. In the presence of damping, the flutter load is defined as the
real part of the frequency becoming positive. Using Eqs. (29) and (33), the dynamic response is investigated at
various load levels.
6. Numerical results and discussion

6.1. Flutter analysis

The flutter phenomena are investigated for a (C–F) beam loaded by a subtangential follower force (see
Fig. 2). Without damping, the coalescence criterion is adopted. A uniform discretization is used with any
number of internal points. The numerically obtained flutter load with 60 internal points is l� ¼ 20:0625
(l� ¼ 20:05 [29,31]) in case of y ¼ 1 (Beck’s problem). At this load, the first and the second eigenfrequencies
coincide ðo�21 ¼ o�22 ¼ 121:46Þ and become complex conjugates after the flutter load. The flutter load increases
with respect to the subtangential angle ‘y’ and becomes l� ¼ 30:66 for y ¼ 1:5 (l� ¼ 30:63 in Ref. [31]). Fig. 3
shows the load–frequency curves for a subtangential parameter y ¼ 1:5 and the results are in perfect
agreement with those presented in Ref. [31]. These tests permit validation of the results obtained by the
presented methodological approach. Figs. 4 and 5 represent the load–frequency curves for various amplitudes
and positions of the concentrated or uniform elastic foundations and the subtangential parameter ‘y ¼ 1:5’.
One can observe that action to the amplitude of the foundation causes a great change in the flutter value and
particularly for X c ¼ 1. In order to highlight the transition from divergence to flutter and vice versa, more
numerical results need to be investigated.
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In Fig. 6, the evolution of the first, the second critical divergence and the critical flutter load according to the
subtangential parameter ‘y’ and for different locations and values of the concentrated elastic foundation are
presented. In Fig. 6a ðk� ¼ 0Þ, one observes the jump phenomenon from l� � 9:5 to 16.04. This result is in
good agreement with that obtained in Ref. [31] (l� � 9:5–16.5 graphically given in Ref. [31]). This jump is
largely reduced for k� ¼ 10 as shown in Fig. 6b.

Fig. 7 shows the critical load with respect to the concentrated elastic foundation position for various
subtangential angles. Higher dependence between the flutter load, the position of the concentrated foundation
and the subtangential parameter ‘y’ is demonstrated. For this test, additional information is supplied in order
to explain its particular behavior. It is clearly shown that for y ¼ 0:3 and k� ¼ 30, the flutter position zone is
largely reduced and there is no flutter for X co0:8 or X c40:95. For yX0:51, the flutter may happen at every
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position X c. For ‘y ¼ 1’, the flutter load varies slowly from Beck’s solution for 0oX co0:5 and the variation
increases greatly for X cX0:8. In the present analysis for X c ¼ 1 and k� ¼ 30, the flutter limit corresponds to
ylim ¼ 0:51. For yoylim, the flutter load is strongly position dependent and there is no flutter (divergence) for
some positions. Fig. 7 also shows a general increasing trend of the critical flutter load when the position of the
concentrated elastic foundation is located closer to the free end. However, if the location of the spring is near
the clamped end, the variation of those values is very small. This means that if the designer decides to conceive
a system with a beam subjected to a spring close to the free extremity, the assembly line associates must have a
great preciseness to localize the spring.

The flutter and divergence zones with respect to k� and X c are presented in Fig. 8. It can be noted that for
‘y ¼ 0:5’ and for each X c there is a first limit value k�lim it;1 under which there is no flutter and the beam always
diverges and a second limit value k�lim it;2 under which there is no divergence and the beam always flutters. At
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the beam end and for y ¼ 0:5 (Fig. 8), those limit are k�lim it;1 ¼ 1 and k�lim it;2 ¼ 31. The flutter load is at its
minimum for k� � 219 at X c ¼ 0:79 ðl�flutter ¼ 3:1Þ. This means that the beam will flutter for a very small value
of load at this position. The change of the stability mechanism and the jump of the critical load with respect to
various values of subtangential angle parameters and spring constant k� are illustrated in Fig. 9. For a
cantilever beam on a concentrated elastic foundation at the free end ðX c ¼ 1Þ, when y ¼ 0:1 and k� increases
from 0, the critical load jumps first downwards and then upwards. At the same time, the type of instability
mechanism first changes from divergence to flutter and then changes back to divergence. When y ¼ 0:3 and k�

increases from 0, the critical load jumps upwards twice. When y ¼ 1, the critical load jumps downwards and
the type of instability mechanism changes from flutter to divergence. This curve is consistent with the one
given by Lee and Hsu [27]. However, in this paper, one can act on the position or even easier multiply the
number of concentrated elastic foundations. These curves show clearly that the position of elastic foundation
and the subtangential parameter have great effects on the dynamic stability phenomena.

For different values of a uniform k�, the load–frequency curves are represented in Fig. 10 for damped
cantilevers with viscous damping and show clearly that the critical load is k�-independent. The same results
and conclusion are reported in Ref. [24] using Galerkin’s method.

The damping effect on the transition from flutter to divergence is also examined for various subtangential
parameters ‘y’ and for different values of the concentrated elastic foundations k�. It is found that the flutter
value decreases by a half in the presence of damping compared with the value without damping in the case of
k� ¼ 0. For the damping factor Z� varying between 0 and 0.005, the load–frequency curves are represented in
Figs. 11a and b for y ¼ 1 and k� ¼ 0 ðlflutter � 11:2Þ and in Figs. 12a and b for y ¼ 1 and k� ¼ 30 at
X c ¼ 1 ðlflutter � 31:33Þ. The instability is of the flutter form. The smallest critical flutter load corresponds to
the apex of the dome-shaped curves and there is no jump phenomenon. This can be also confirmed by
examining the real part of the eigenvalue in Figs. 11b and 12b. Without damping, the real part of O� is
represented by the horizontal line on the upper position of the curve with the corresponding value of l�. With
the presence of a slight amount of damping, the curves presented in Fig. 11b and 12b are found to commence
in the negative o� region, intersect the l� axis and become positive at a flutter value which is much smaller
than the undamped flutter load. With increased damping, the curves are found to diverge away from the l�

axis and to approach an upper horizontal line (corresponding to the case without damping) asymptotically.



ARTICLE IN PRESS

0

5

10

15

20 (9)(8)(7)(6)(5)(4)(3)(2)(1)

103

0 5 10 15 20

λ*

Ω* . conj(Ω*)

Fig. 10. Load–frequency curves of a cantilever rod subjected to a follower force on a uniform elastic foundation with k� varying between

1000 and 20 000 and viscous damping Z�n ¼ 0:1: (1) k� ¼ 1000; (2) k� ¼ 2500; (3) k� ¼ 5000; (4) k� ¼ 7500; (5) k� ¼ 10 000; (6) k� ¼ 12 500;

(7) k� ¼ 15 000; (8) k� ¼ 17 500; (9) k� ¼ 20 000.

0
0 10 20 30 40 50 60 70 80 90 100

5

10

15

20

25

30

35

40 y=1.5

y=1

y=0.5

y=0.3

y=0.1

y=0C
rit

ic
al

 c
ha

rg
e

κ*

Fig. 9. Critical load versus the amplitude of elastic foundation concentrated at X c ¼ 1 for a (C–F) beam with various values of the

tangential angle coefficient. yy : divergence; ______: flutter.

Z. Elfelsoufi, L. Azrar / Journal of Sound and Vibration 296 (2006) 690–713706
However, as is well known, the intersection point of these curves with the l� axis remains almost unaffected by
the increase of the damping. It is clearly shown that the theoretical flutter load for undamped beam is reduced
by a half for a damped beam even if the damping is very small. This means that damping cannot be neglected
in flutter analysis. Furthermore, the flutter load is affected by small variations in the damping parameter. The
damping effect in the instability of a beam with respect to parameters ‘y’ may at the same time produce a zone
of instability by divergence and a zone of instability by flutter as presented in Figs. 13a and b (small divergence
zone) and in Figs. 14a and b (large divergence zone). As the critical load is further increased, the real part of
the eigenvalue shows a sharp turn towards the negative region of the diagram, making the loop structure
observed in Figs. 13 and 14. The eigenvalue becomes positive again when the flutter occurs for l� very much
larger than the critical divergence load. With the presence of a slight amount of damping, the real part of the
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eigenvalue remains positive for l� larger than the critical divergence load. However, the loop structure is
relatively unaffected by the presence of damping. The remaining line patterns in Figs. 13 and 14 are caused by
the presence of damping and are similar to the line patterns in Figs. 11 and 12 except for the presence of the
loop structure. The critical divergence load is relatively unaffected by the presence of damping.

6.2. Dynamic response analysis

Consideration is now given to a (C–F) beam submitted to a subtangential follower axial force and to a unit
transverse impulse at the free end. The dynamic response is given by the simplified formulation (33). In
Fig. 15, dynamic responses and corresponding phase diagrams are represented for undamped and damped
beams for various subtangential and damping parameters. One emphasizes particularly on situations such as:
before flutter, at flutter and after flutter. The obtained results show a periodic motion for l� ¼ 0,
ðO2

1 ¼ 12:3623Þ. As expected, for lateral conservative loads ðy ¼ 0Þ, the dynamic response remains periodic
(Fig. 15a) and the period of oscillations increases with l� and becomes infinite at buckling load [33]. The case
of an undamped beam submitted to a non-conservative lateral load ðy ¼ 1Þ is represented in Fig. 15 and shows
clearly that before the flutter, the dynamic response is periodic and the amplitude of oscillations remains
constant (Fig. 15a). While after flutter this amplitude increases rapidly with time (Fig. 15c). For a lateral load
close to the flutter load, the appearance of a ‘beating’ phenomenon is observed (Fig. 15b). The phase diagrams
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are used to highlight these behaviors. For more general excitation forces, the dynamic response analysis can be
obtained by formulation (31).

7. Conclusion

Integral equation formulation of the dynamic stability of a damped beam subjected to subtangential forces
and on a viscoelastic foundation is presented. Based on a fundamental solution and radial basis functions, the
governing partial differential equation is transformed into an algebro-differential system for the deflection, the
slope, the moment and the shear force. Using a uniform discretization, a compact matrix formulation is
presented for interior and boundary unknowns. The required matrices are explicitly given and the dynamic
problem is formulated for unknowns at interior and boundary points. The flutter and divergence behaviors of
beams are largely investigated based on an eigenvalue procedure. The amplitude and position of the
viscoelastic foundation and subtangential parameter can be easily chosen in order to act on the flutter load.
The present formulation is quite general and permits one to investigate the flutter loads, zones and the jump
phenomenon in the follower force for the transition from flutter to divergence when the subtangential
parameters (angle, load), the amplitude or position of a concentrated elastic foundation are slightly adjusted.
The load–frequency diagrams due to variation of the above parameters are extensively presented in order to
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demonstrate the effectiveness of the presented methodological approach. Various types of damping are
introduced in the formulation and their effects on the load–frequency dependence and dynamic response can
be easily evaluated. Preliminary examination shows that for some cases, the modes of instability in the form of
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flutter or divergence without damping, are found to be unaffected by the presence of slight damping although
there may be a sharp decrease in the first critical load for instability by flutter. Based on the numerically
computed eigenmodes, a compact formulation of the dynamic response and velocity are established. The
dynamic response and phase diagrams of damped and undamped beams are presented at various
subtangential load levels.
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Appendix A. Radial basis functions and fundamental solution used

In this study, we limit ourselves to isotropic elastic beams with a homogeneous and constant section. In this
case, the rigidity and mass functions K1ðxÞ and K2ðxÞ are constant ðK1ðxÞ ¼ K2ðxÞ ¼ 1Þ.

The fundamental solution W � used in this analysis corresponding to ðq4W �=qx4Þðx; sÞ ¼ dðx; sÞ is
W �ðx; sÞ ¼ jx� sj3=12.

Several types of radial basis functions f jðxÞ are tested and the general form used is

f jðxÞ ¼ 1þ arj þ br2j þ gr3j where rj ¼ jx� xjj.

The other functions gj and hj are calculated using the following expressions:

d4gj

dx4
ðxÞ ¼ f jðxÞ and

d4hj

dx4
ðxÞ ¼ k2ðxÞf jðxÞ,

gjðxÞ ¼ hjðxÞ ¼
r4j

24
þ a

r5j

120
þ b

r6j

360
þ g

r7j

840
,

where a, b and g are chosen constants [4,6].
Appendix B. Matrices used

For the system of Eqs. (16) and (21), the used vectors and matrices have to be specified for the considered
boundary condition. In this analysis, the beam is assumed to be clamped–free as presented in Fig. 2. This
corresponds to

W 1 ¼ 0; y1 ¼ 0; MNþ2 ¼ 0 and Qnþ2 ¼ �k
�ðwnþ2 þ u� _wnþ2Þ þ ð1� yÞl�ynþ2.

The matrices used in the analyses are as follows ðsi ¼ ði � 1Þ=ðnþ 1ÞÞ:
G1: matrix ððnþ 2Þ � ðnþ 2ÞÞ of radials functions,

G1ij ¼ f jðsiÞ; i ¼ 1; nþ 2; j ¼ 1; nþ 2;

the other terms are null:

	

G: matrix ððnþ 2Þ � ðnþ 2ÞÞ,

Gij ¼ G1�1iðjþ1Þ i ¼ 1; nþ 2; j ¼ 1; nþ 1:

Because for C2F boundary conditions W 1 ¼ 0; the other terms are null:

(
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O: matrix ð2� ðnþ 2ÞÞ,

O1;nþ1 ¼ �
k�

4
;

O1;nþ2 ¼ �0:5;

O2;nþ2 ¼ 0:5;

the other terms are null:

8>>>>><
>>>>>:

A: matrix ððnþ 2Þ � 2Þ,

Ai1 ¼ �
s2iþ1
4
; i ¼ 1; nþ 1;

Ai2 ¼
s3iþ1
12
; i ¼ 1; nþ 1;

Anþ2;1 ¼ Anþ2;2 ¼ 0:

8>>>>><
>>>>>:

A0: matrix ð2� 2Þ,

A011 ¼ A012 ¼ 0;

A021 ¼ �
1
2
; A021 ¼

1
4
:

(

I: matrix ððnþ 2Þ � ðnþ 2ÞÞ,

I i;i ¼ 1; i ¼ 1; n;

I i;nþ1 ¼ k�
ð1� siþ1Þ

3

12
�

1

2
; i ¼ 1; n;

Inþ1;nþ1 ¼ 0:5;

Inþ2;nþ1 ¼
k�

12
�

1

2
;

I i;nþ2 ¼
ð1� siþ1Þ

2
; i ¼ 1; nþ 1;

Inþ2;nþ2 ¼ 0:5;

the other terms are null:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

B: B ¼ B1G, B1 matrix ððnþ 2Þ � ðnþ 2ÞÞ,

B1ij ¼ Bjðsiþ1Þ; i ¼ 1; nþ 1; j ¼ 1; nþ 2;

B1nþ2;j ¼ Bjð0Þ; j ¼ 1; nþ 2:

(

B0: B0 ¼ B10G, B10 matrix ð2� ðnþ 2ÞÞ,

B101j ¼ B̂jð0Þ; j ¼ 1; nþ 2;

B102j ¼ B̂jð1Þ; j ¼ 1; nþ 2:

8<
:

H: matrix ððnþ 2Þ � ðnþ 2ÞÞ,

Hi;nþ1 ¼
ð1� siþ1Þ

3

12
; i ¼ 1; nþ 1

Hnþ2;nþ1 ¼
1
12
;

the other terms are null:

8>>><
>>>:

H0: matrix ð2� ðnþ 2ÞÞ,

H 01;nþ1 ¼ �
1
4
;

the other terms are null:

(



ARTICLE IN PRESS
Z. Elfelsoufi, L. Azrar / Journal of Sound and Vibration 296 (2006) 690–713712
C: C ¼ C1G, C1 matrix ððnþ 2Þ � ðnþ 2ÞÞ,

C1ij ¼ Cjðsiþ1Þ; i ¼ 1; nþ 1; j ¼ 1; nþ 2;

C1nþ2;j ¼ Cjð0Þ; j ¼ 1; nþ 2:

(

C0: C0 ¼ C10G, C10 matrix ð2� ðnþ 2ÞÞ,

C101j ¼ Ĉjð0Þ; j ¼ 1; nþ 2;

C102j ¼ Ĉjð1Þ; j ¼ 1; nþ 2:

8<
:

J: matrix ððnþ 2Þ � ðnþ 2ÞÞ,

Ji;nþ2 ¼
ð1� siþ1Þ

3

12
; i ¼ 1; nþ 1;

Jnþ2;nþ2 ¼
1
12
;

the other terms are null:

8>>><
>>>:

J0: matrix ð2� ðnþ 2ÞÞ,

J 01;nþ2 ¼ �
1
4
;

the other terms are null:

(

For a concentrated elastic foundation at xc:
D: matrix ððnþ 2Þ � ðnþ 2ÞÞ,

Di;xc
¼W �ðxc; siþ1Þ ¼

jxc � siþ1j
3

12
; i ¼ 1; nþ 1;

Dnþ2;xc
¼W �ðxc; 0Þ ¼

x3
c

12
;

the other terms are null:

8>>>><
>>>>:

D0: matrix ð2� ðnþ 2ÞÞ,

D01;xc
¼ Ŵ

�
ðxc; 0Þ ¼ �

x2
c

4
;

D02;xc
¼ Ŵ

�
ðxc; 1Þ ¼ �

jxc � 1j2

4
;

the other terms are null:

8>>>><
>>>>:

P: vector ð1� ðnþ 2ÞÞ,

Pi ¼ Pðsiþ1Þ; i ¼ 1; nþ 1;

Pnþ2 ¼ Pð0Þ:

(

P0: vector ð1� 2Þ,

P01 ¼ P̂ð0Þ;

P02 ¼ P̂ð1Þ:

(
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