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aCEIT and Tecnun (University of Navarra), Department of Applied Mechanics, P1 Manuel Lardizabal 15, 20018 San Sebastian, Spain
bKTH, Department of Aeronautical and Vehicle Engineering, MWL, SE-10044 Stockholm, Sweden

Received 16 February 2005; received in revised form 31 January 2006; accepted 7 March 2006

Available online 2 June 2006
Abstract

A new and different approach to the inclusion of the amplitude-dependent effect, known as the Fletcher–Gent effect or

Payne effect, in a linear viscoelastic rubber material model is presented to predict the dynamic stiffness of filled rubber

isolators using a finite element (FE) code. The technique is based on providing a linear viscoelastic model with the

adequate material data set, once the dynamic strain amplitude, to which the rubber mount is subjected, is estimated. A

generalized Zener model is adopted to describe the frequency-dependent behaviour of the material through the use of

hereditary integrals. The dynamic strain amplitude dependence is not modelled through any friction model or plasticity

theory, as usually is in literature. It is introduced by considering the frequency-dependent properties of the compound at an

adequate strain value, which enforces the estimation of an equivalent strain value. As a first approximation, a quasi-static

value is used as the reference value at which material properties should be provided to the linear viscoelastic model. The

technique works directly in frequency domain, the dynamic stiffness of the bushing being directly obtained. The

methodology is applied to evaluate the dynamic stiffness of a real bushing in working conditions with very satisfactory

results. Despite the assumptions made, especially regarding the estimation of the equivalent strain amplitude value, errors

of the predictions fall within the limits usually accepted by rubber manufacturers.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Rubber is, without doubt, the cheapest and the most widely accepted solution when the connection between
two parts of a structure, a vehicle or a machine requires a combination of stiffness and vibration isolation.
When a source has to be connected to a receiving structure, mounting it upon vibration isolators attains a
simple vibration transmission reduction. Elastomeric mounts have long been used to isolate structures from
unwanted vibrations, as they can be designed so that desired stiffness characteristics are achieved in all
directions for proper vibration isolation.

Despite rubber being so common, knowledge of the material properties among design engineers is often
poor. Insufficient knowledge of transmission and damping properties of rubber joints, as well as modelling
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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techniques for rubber isolators, has often forced industry to carry out costly experimental work for optimising
the shape, location and volume of the units. A number of design engineers tend to simplify the problem by
modelling the isolator through a single linear spring. Values used in the design stage are estimated from quasi-
static elastic characteristics and, damping, if considered, is most of the times represented by a unique dashpot
of arbitrary parameter. Nonlinear effects of rubber are either not known or ignored.

When rubber is subjected to large quasi-static preloads prior to small-amplitude harmonic excitation, even
in the case of unfilled natural rubber, it shows a pronounced progressive stress–strain curve, meaning that
elastic behaviour is not linear any more. Furthermore, due to fillers added to rubber mixture to fulfil both
vibration isolation and structural specifications, material properties develop nonlinear characteristics. Elastic
behaviour might not be considered through a constant Young’s modulus, as it becomes strain dependent. On
the other hand, dynamic properties of the material are strongly dependent on temperature, frequency and
strain amplitude. Thorough reviews of strain amplitude, frequency and temperature effects on mechanical
rubber characteristics, based on experimental measurements, are conducted, for example, by Jurado et al. [1],
Medalia [2], Dean et al. [3] and Wang [4]. The work by Wang goes even further, presenting theories and
observations about why the inclusion of filler alters the linear dynamic stress–strain response of unfilled rubber
compounds. Because of its nonlinear characteristics, modelling either the behaviour of a mixture or that of a
bushing to predict, at a design stage, its response to excitation becomes a complex issue.

The development of computers and analysis programs has given engineers a new tool in design and
construction of elastomeric components, as well as in the prediction of their dynamic behaviour. Computer
simulation by finite element (FE) method is becoming increasingly important due to its capability to solve
complex problems that are not readily tractable by classical analytical methods. Furthermore, the FE method
provides a procedure for analysis of structures of different types of material and arbitrary geometric form.
Nevertheless, its accuracy depends on the accuracy to which the elastic and dynamic nature of the design
material can be defined.

Historically, the focus of researchers has been to model mathematically one of the dependencies of rubber,
while ignoring the other ones. Nonlinear elasticity has received special attention over the years, since early in
the 20th century [5–8] till today [9–12], with the proposal of many different strain energy functions that would
represent the characteristic and be implemented in commercial FE codes.

As for the dynamic behaviour, time domain viscoelastic models can provide an accurate description of the
frequency-dependent behaviour of rubber materials. Quite simple models arise from linear viscoelasticity as
early as in the 1960s or 1970s, which have become very popular to represent the behaviour of rubber material
in frequency (Refs. [13–16], for example, and discussions by Sjöberg [17] and Gil-Negrete [18]). These
viscoelastic models involve combinations of springs and dashpots and a large number of parameters as a
sophisticated generalized model must be addressed to accurately represent frequency-dependent effects in a
frequency range. For a full three-dimensional case, constitutive equations are formulated through hereditary
or convolution integrals. The most interesting such models have been proposed by Lubliner [19], Johnson et
al. [20,21], Yang et al. [22] and Simo [23], whose model is also focused on the inclusion of Mullins’ effect [24].
Linear multiaxial viscoelasticity is already available in the majority of FE codes.

More recently fractional calculus has been included in the modelling of viscoelasticity, as an alternative
approach to obtain good description of frequency-dependent behaviour while reducing the required number
of parameters. Although the mathematical history of fractional derivatives goes back to the 17th century [25],
its use in the field of viscoelasticity started with Bagley and Torvik [26] in the 1980s. Since then different
authors have included fractional derivatives in their models for different applications connected to rubber
mounts [18,27–33].

The fractional derivative viscoelastic model is suitable to be used in a structural dynamic analysis and may
be implemented into a general-purpose FE code. Time domain formulations are given by Padovan [34] and
Enelund et al. [35]. Adolfsson [36] extends Enelund’s model to include nonlinear elastic effects. The main
drawback of fractional order viscoelasticity is that, nowadays, multiaxial fractional derivative viscoelasticity is
not usually included in commercial FE codes, the user being responsible for its implementation through user
routines.

Viscoelastic models (both the classical ones and the ones that involve fractional derivatives) are sufficient for
representing the behaviour of poorly filled or soft rubbers. Nevertheless, the amplitude dependence, not
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described by models of linear viscoelasticity, might be of significance if the material is more heavily filled
looking for other properties, such as hardness or abrasion resistance and even higher damping.

One approach to include this effect, also known as the Fletcher–Gent effect [37] or Payne effect [38], in the
model of rubber components involves working with nonlinear viscous damping forces [39–42]. Kraus [43]
proposes a one-dimensional model of the amplitude dependence, where it is considered to be due to the
continuous breaking and reforming of Van der Waals forces between carbon-black aggregates. His model is
later used and revised by Ulmer [44].

Nevertheless, the Fletcher–Gent effect is usually denoted as plastic effect [45]. It can be attributed to
irreversible slip processes between the filler particles and their plastic deformations [46]. This has motivated to
characterize the amplitude-dependent effect through friction elements, which is the idea behind Gregory’s [47]
or Austrell’s [48] models, where several friction chains involving Coulomb friction elements must be connected
in parallel to obtain good results. Berg [49] presents a more efficient friction model, showing smoother
characteristics than Coulomb friction models with less parameter. Berg’s model has successfully been adopted
by Sjöberg and Kari [33,50] when simulating vibration isolators. Although interesting due to the reduced
number of coefficients that need to be tuned, Berg’s model poses a problem when it comes to be adopted for a
multiaxial rubber model as it is formulated for a uniaxial case, relating forces and displacements.
Implementation in general purpose FE codes does not seem immediate.

Kaliske et al. [46], Austrell et al. [48] and Rabkin et al. [51] have presented friction models suitable for
FE codes. Kaliske et al. propose a generalized Prandtl element, formulated analogously to the
generalized viscoelastic element, while in Rabkin’s work the friction part is defined as a parallel com-
position of an infinite number of the St. Venant dry friction damper with continuously distributed yield stress.
Lion [52] also proposes the use of Prandtl elements, transforming their time-domain response to the frequency
domain and calculating the amplitude-dependent storage and loss moduli in closed form. It is interesting
to remark the work by Austrell et al, as they implement a generalized Coulomb friction model making use of
the Von Mises elastoplasticity already available in FE codes, thus simplifying the implementation of the
friction part.

When the aim of the model is the prediction of the dynamic stiffness of filled rubber components the usage
of coupled viscoelastic–friction models presents two problems. First of all, the parameters of the model, both
for the viscoelastic and friction parts, have to be calibrated from tests conducted on material samples. It has to
be determined which tests to conduct and under what conditions and how to fit the coefficients of the model.
Secondly, the nonlinear friction models usually force the calculation to be conducted in time domain and
results be converted to frequency domain, investing time and computer resources.

In this study a different approach to the inclusion of friction effects in a linear viscoelastic rubber material
model is presented to predict the dynamic stiffness of filled rubber isolators using a commercial FE code. The
technique is based on providing a linear viscoelastic model with the adequate material data set, once the
dynamic strain amplitude, to which the rubber mount is subjected, is estimated. This enforces the calculation
of an equivalent strain value.

The procedure, running in frequency domain, presents an approximate, but fast, easy to implement and
innovative method to consider the dynamic nonlinearities of rubber mixtures when predicting the dynamic
stiffness of bushings using FE codes.

2. Material testing

Dynamic properties of four different natural rubber compounds (filled with two types of carbon black: SRF
N-772 and NEGROMEX N-330, the amount of each depending on the desired hardness) have been evaluated
through a forced non-resonant simple shear test, following suggestions in ASTM D5992-96 [53]. The sample
used is shown in Fig. 1. Measurements are conducted for a frequency range 0–500Hz and a peak amplitude
range 0.01–0.2mm. Note that the sample proposed for the dynamic measurements is half of the specimen for
quasi-static measurements suggested in ISO 1827 [54], which is not suitable for the forced non-resonant
dynamic simple shear test in the frequency range of the study. This new configuration overcomes the dynamic
problems of the standardized quasi-static sample due to the inertia effect of the two metal parts that connect
the four rubber blocks. Its main advantage, compared to other configurations, is that the test set-up is exactly
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RUBBER

thickness = 4.5 ± 0.1(mm)

length = 25 ± 0.1(mm)

width = 20 ± 0.1(mm)

METAL

Fig. 1. Simple shear sample proposed for measuring the dynamic properties of rubber material.
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the same as for the quasi-static simple shear test. Thus, the same testing machine and clamping devices could
be used for both measurements. Furthermore, the election of this mode of deformation (simple shear) seems
also very adequate as elastic nonlinearities are reduced. Nevertheless, applied maximum strain level should be
sufficiently small to ensure a pure simple shear deformation. If higher strain levels were of interest, the
dimensions of the sample should be enlarged to avoid the presence of bending.

Experimental tests have been carried out at Seat Centro Técnico in a SCHENCK, hydropuls High-
Frequency Testing Machine VHF 7, with a limit in frequency range of 1000Hz. Four samples of each
compound have been tested to ensure the repetitivity of the results. Furthermore, some initial cycles have been
applied to the samples before starting measurements to avoid the stiffening due to Mullins’ effect [24].

When a sinusoidal deformation is applied to a rubber, the overall response of the material can be expressed
in terms of a complex modulus [18]:

G� ¼ G1 þ jG2 ¼ G1ð1þ j tan dÞ. (1)

In Eq. (1) G1 is the in phase, storage modulus, and G2 is the out of phase, loss modulus. The loss angle, related
to the damping or hysteretic energy losses of the material, is given by tan d ¼ G2/G1. Both the modulus jG�j
and the loss angle d of natural rubber compounds are very dependent on various parameters, mainly
frequency, dynamic strain amplitude, temperature and preload. Influence of frequency and strain amplitude
are presented here. In the figures described below, specimens compounded of four different rubber mixtures
are compared. All of them are natural rubber and they are classified by their hardness in Shore A degrees scale
[55]: Shore A 40, Shore A 50, Shore A 60 and Shore A 70. A higher degree means a higher content of carbon-
black filler.

Fig. 2 shows that jG�j increases with hardness and slightly with frequency in the region of interest.
Nevertheless, it is important to point out that a ‘‘jump’’ has been observed to exist between the quasi-static
and the dynamic (even at low frequencies) value of jG�j (see Table 1). For unfilled rubbers the ‘‘jump’’ might
not be important (less than 25%), but as the amount of filler increases it becomes more noticeable. The reason
for it is not yet understood, although it has also been observed by other researchers [56].

Natural rubber displays a larger dynamic modulus at small amplitudes than at larger dynamic strain
amplitudes (Fig. 3). The effect is more pronounced as the amount of fillers is increased in the compound, so
that unfilled rubbers could be considered not dependent on amplitude at all. The main reason of this effect is
believed to be the breakdown of interactions within the filler and between the filler and the rubber matrix [38].
At small amplitudes, the dynamic modulus is large due to the intact filler structure. As the amplitude increases
the structure breaks, resulting in dynamic modulus decrease.

The breaking of filler structure, however, described as frictional behaviour, causes an increment in the
damping (Fig. 4). The increase of the loss factor is not maintained in all range of amplitudes: the curve of loss
angle versus amplitude smoothens at large amplitudes. It seems to be related with remaining polymer chains
and hydrodynamic effects [38].
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Table 1

Comparison between the quasi-static and dynamic |G*| (Pa) at room temperature and 0.05mm amplitude

Shore A |G*|(Pa)�f ¼ 1Hz G stat (Pa)a |G*|/G stat

40 5.58E+05 4.49E+05 1.24

50 9.54E+05 6.24E+05 1.53

70 3.90E+06 1.65E+06 2.36

aQuasi-static values have been obtained by standardised quasi-static tests and considering linear relationship between stress and strain,

which is not completely true due to the nonlinearity of material.
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3. Description and implementation of the procedure proposed

Fig. 5 shows a generalized Maxwell material model that provides a very good fitting to experimental
frequency-dependent data of the material. If a shear strain g is applied to the uniaxial model presented, the
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Fig. 5. Schematic representation of the generalized Maxwell model.
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total stress will be the sum of stresses in each Maxwell element alone, plus the stress in the solitary spring of
stiffness GN:

tðtÞ ¼ t1 þ
XN

i¼1

te
i ¼ t1 þ

XN

i¼1

tv
i !

te
i ¼ Giðg� gv

i Þ;

tv
i ¼ Ci _gv

i :

(
(2)

In Eq. (2) te
i refers to the stress over the spring in chain ‘‘i’’ and tv

i to the stress over the dashpot in the same
chain. As for yv

i , it represents the strain over the dashpot ‘‘i’’ and it is solved through the following differential
equation, equalling the stresses in the spring and dashpot of chain ‘‘i’’:

te
i ¼ tv

i ! Giðg� gv
i Þ ¼ Ci _gv

i ) _gv
i ¼

Gi

Ci

ðg� gv
i Þ. (3)

The behaviour of the viscoelastic models can also be represented in terms of hereditary integrals, a theory first
formulated by Boltzmann in 1876 [57]. The theory, based on the Boltzmann superposition principle, uses a
convolution integral relation between stress and strain and leads to equations that are more suitable for
implementation in FE codes (see Section 3.1). If a shear strain g is applied to a viscoelastic material, the
developed shear stress at time t is characterized by the following convolution integral:

tðtÞ ¼
Z t

�1

Gðt� tÞ
dgðtÞ
dt

dt. (4)
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For applied strains being zero till t ¼ 0, Eq. (4) may also be written in the form:

tðtÞ ¼ gð0ÞGðtÞ þ
Z t

0þ
Gðt� tÞ

dgðtÞ
dt

dt. (5)

Expression (5) may be brought into another (Eq. (6)) through integration by parts and variable
transformation:

tðtÞ ¼ G0gðtÞ þ
Z t

0þ
gðtÞ

dGðt� tÞ
dðt� tÞ

dt ¼ t0ðtÞ þ
Z t

0þ
gðt� sÞ

dGðsÞ

ds
ds. (6)

In all the above equations G(t) represents the time-dependent analogous to the elastic shear modulus G for
viscoelastic materials. The shear relaxation modulus is shown in Fig. 6. G0 and GN are known as the
instantaneous and long-term shear relaxation moduli, respectively. The time-dependent shear relaxation
modulus can be determined from relaxation tests carried out at material samples.

Frequency domain viscoelasticity can be described applying the Fourier transformation to the expressions
that define the time domain viscoelasticity. The shear stress resultant to the application of a time varying shear
strain is given by the shear stress relaxation function defined in Eq. (4). However, Fig. 6 shows that the
relaxation shear modulus decreases to a finite value. In order to calculate de Fourier transform, it is more
convenient to introduce a dimensionless relaxation modulus, such as that of Eq. (7).

gðtÞ ¼
GðtÞ

G1
� 1. (7)

Introducing Eq. (7) in Eqs. (4) and (5), they develop the following form (after adequate variable
transformation):

tðtÞ ¼ G1gðtÞ � G1

Z t

0

gðsÞ
dgðt� sÞ

ds
ds. (8)

Assume now that the applied strain is harmonic and that it has been oscillating for a long time: gðtÞ ¼ g0e
jot

(where j ¼
ffiffiffiffiffiffiffi
�1
p

and o represents the radial frequency). Recalling Eq. (8):

tðoÞ ¼ G1 g0e
jot þ jo

Z 1
�1

gðsÞg0e
jote�jos ds

� �
, (9)

tðoÞ ¼ G1g0e
jot 1þ jo

Z 1
�1

gðsÞe�josds

� �
¼ g0e

jotG1½ð1� o ImðgÞÞ þ jo ReðgÞ�. (10)

Since:
R1
�1

gðsÞe�jos ds ¼ ĝðoÞ ¼ ReðĝÞ þ j ImðĝÞ is the Fourier transform of g(t). ReðĝÞ and ImðĝÞ are the real
and imaginary parts of ĝðoÞ, respectively.

Therefore, the material response to harmonic excitation is divided into a stress in phase with the applied
strain and a stress 901 out of phase with the strain. The factor G1½ð1� o ImðĝÞÞ þ jo ReðĝÞ� may be
considered as the complex, frequency-dependent shear modulus of the steadily vibrating material (Fig. (7)).

The material model commented above is completely linear, in the sense that nonlinearities associated to
Payne effect (amplitude dependence) are not taken into account. The linearity of the characterization enters
G0

G(t)

t

Instantaneous shear relaxation modulus

Long term shear
relaxation modulus

G∞

Fig. 6. Shear relaxation modulus.
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from the assumption that the shear relaxation modulus G(t) (and G�ðoÞ in frequency domain) is the same at all
strain levels. Nevertheless, as already commented in Section 2 and shown in Fig. 3, the assumption is not true
except for very poorly filled or unfilled compounds. Therefore, the use of a generalized Maxwell model poses a
problem in the case of filled rubbers, since the dynamic characteristics may only be defined for a specific strain
value.

When a silent-block is deformed different strain values are developed in different points of the bushing. If it
was made of a soft rubber, this fact would not be important from the modelling point of view, as the dynamic
properties of the material are not strain dependent (see Fig. 3) and the model could be calibrated from
dynamic measurements at whatever dynamic strain amplitude. The situation changes dramatically if a filled
compound is used to manufacture the bushing. At which dynamic strain amplitude should material properties
be measured to tune the model?

The solution adopted here proposes the use of different material models for different zones of the isolator,
depending on their strain level. Essentially, the isolator is considered to be divided into zones of different
material characteristics according to the deformation they are subjected to. A generalized Maxwell model
defines the behaviour of rubber at each zone, although the values of the parameters change from one zone to
another since dynamic characteristics measured at different strain values are used to fit them. When working
in a FE code the methodology proposes defining different material characteristics for the different elements of
the model, according to a strain level calculated at each element.

Sections 3.1–3.3 are devoted to a further development of the methodology and its implementation in a
commercial FE code. Section 4 accurately describes the practical application of the procedure to determine the
dynamic stiffness of isolators in the FE code selected.

3.1. Implementation of multiaxial viscoelasticity in time domain

The uniaxial behaviour for finite-strain viscoelasticity is described by Eq. (6) that could also be expressed in
the following way:

tðtÞ ¼ t0ðtÞ þ
Z t

0þ
gðt� sÞ

dGðsÞ

ds
ds ¼ t0ðtÞ þ

Z t

0þ

_GðsÞ

G0
t0ðt� sÞ ds. (11)

To generalize the viscoelastic equation that governs the system to multiaxial stress states, it is better to work
with the deviatoric and hydrostatic (or volumetric) parts of the stress and strain tensors:

r ¼ Sþ pI, (12)

rðtÞ ¼ S0ðtÞ þ

Z t

0þ

_GðsÞ

G0
S0ðt� sÞ dsþ I p0ðtÞ þ

Z t

0þ

_KðsÞ

K0
pðt� sÞ ds

� �
. (13)
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Eq. (13) may be split into two parts (deviatoric and volumetric):

SðtÞ ¼ S0ðtÞ þ

Z t

0þ

_GðsÞ

G0
S0ðt� sÞ ds,

pðtÞ ¼ p0ðtÞ þ

Z t

0þ

_KðsÞ

K0
pðt� sÞ ds, ð14Þ

where G0 and K0 are the instantaneous shear and bulk moduli and G(t) and K(t) are the time-dependent shear
and relaxation bulk moduli. S0(t) is the deviatoric stress state that would exist for the current state of strain if
the material was behaving purely elastically (instantaneous deviatoric stress tensor). In an analogous way, p0(t)
represents the pressure (hydrostatic or volumetric) stress that would exist at the current state of strain if the
material was behaving purely elastically. For isotropic material:

S0ðtÞ ¼ 2G0edevðtÞ ¼ 2G0ðeðtÞ � evðtÞ1Þ;

p0ðtÞ ¼ 3K0evðtÞ;
(15)

where ev ¼
1
3
trðeÞ.

The stress response is obtained in full once G(t) and K(t) are supplied (G0 ¼ G(0),K0 ¼ K(0)). They must be
experimentally determined and introduced in a way depending on the implementation in the FE code selected.

3.2. Implementation of multiaxial viscoelasticity in frequency domain

Eq. (10) provides the response of a viscoelastic system to a harmonic or steady-state excitation. G� ¼

G1 ð1� o ImðĝÞÞ þ jo ReðĝÞ½ � represents the complex shear modulus of the material. As for g(t), it is a
dimensionless relaxation function (Eq. (7)), whose Fourier transformation is involved in the definition of the
complex shear modulus.

The complex shear modulus of a rubber-like material is usually written in a more general form:
G� ¼ G1 þ jG2, an expression that fully represents the dynamic or steady-state behaviour of the material.
Relating both expressions:

G1 ¼ G1ð1� o ImðĝÞÞ; G2 ¼ G1ðo ReðĝÞÞ. (16)

The generalization of these concepts to arbitrary three-dimensional deformations (multiaxial stress–strain
states) is provided by assuming (like in the previous section) that the frequency-dependent behaviour has two
independent components: one associated with shear (deviatoric) straining and the other associated with
volumetric straining. Similarly to the deviatoric part, defined by the shear complex modulus already described,

volumetric behaviour is defined via the complex modulus: K� ¼ K1 ð1� o Imðk̂ÞÞ þ jo Reðk̂Þ
j k

, KN being the

long-term bulk modulus and k(t) a dimensionless relaxation bulk modulus: kðtÞ ¼ ðKðtÞ=K1Þ � 1.
The linear viscoelastic behaviour of the material in frequency domain is perfectly defined, therefore, by the

dimensionless shear and bulk relaxation modulus and the long-term shear and bulk modulus, which have to be
experimentally determined. Once they are measured:

oReðĝÞ ¼
ImðG�measÞ

G1
; oImðĝÞ ¼ 1�

ReðG�measÞ

G1
,

oReðk̂Þ ¼
ImðK�measÞ

K1
; oImðk̂Þ ¼ 1�

ReðK�measÞ

K1
. ð17Þ

The terms regarding the bulk modulus are ignored whenever incompressibility is assumed for the material.
Elastomers are incompressible in a good approximation, their bulk modulus being about a thousand times
larger than the shear modulus, meaning that rubber hardly changes its volume when deformed. Therefore, in
what follows, rubber will be considered incompressible and the terms regarding the bulk modulus will not be
taken into account.
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3.3. Considering the amplitude dependence in the model

Generalized Maxwell viscoelastic model of rubber material is based on a linear theory and, therefore,
nonlinear or dynamic strain-dependent properties cannot be directly considered in the FE code.

As for dynamic strain amplitude, an approximate methodology has been developed. A quasi-static test is
performed first at the same amplitude as the dynamic one. Next, an equivalent strain is obtained for each
element of the model, out of the principal strains calculated in the first step, and the values are averaged,
searching for an equivalent strain value for the model. Dynamic properties (shear and bulk modulus) are
determined from experimental measurements on material specimens at this equivalent strain and used for the
dynamic calculations. An alternative to this procedure consists in giving to each element the dynamic
properties at its equivalent strain value, instead of using an average value for the whole element set.

The expression of the equivalent deformation for each element described hereafter, is obtained applying the
same theory that leads to the equivalent Von Mises stress. The need of an equivalent strain (or deformation)
arises from the fact that the dynamic behaviour of rubber material is characterized with only one dynamic
simple shear test, as described in Section 2. Nevertheless, rubber components are usually subjected to
multiaxial stress states, making it difficult to know which properties should be used in each case if an
equivalent value is not estimated. Relating the multiaxial stress/strain situation to a uniaxial strain state, which
is done through the use of principal stress and strains and is based on energy balances, solves this problem.

Eq. (18) provides the expression for the distortion energy in terms of principal strains. It corresponds to the
strain energy stored in an incompressible linear elastic material. When it is equalled to its particularization to a
simple shear case, an expression for the simple shear strain equivalent to the multiaxial state of deformation is
achieved (Eq. (19)). See Appendix A for further detail on the procedure.

Ud ¼
1

3

E

ð1þ nÞ
ðe2p1 þ e2p2 þ e2p3Þ � ðep1ep2 þ ep1ep3 þ ep2ep3Þ

h i
, (18)

gequiv ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2p1 þ e2p2 þ e2p3Þ � ðep1ep2 þ ep1ep3 þ ep2ep3Þ

3

s
. (19)

The reader should be aware that quasi-static strain values are used to estimate the equivalent strain value for
each element. This limits the frequency range of application of the present methodology, as it should be close
to the static case. This is true if the vibration isolator is working under its own first eigenfrequency.

Nevertheless, in many cases regarding the design of vibration isolators this is no limitation. When mounts
are being designed to isolate a system for unwanted vibrations of different amplitude values, bushings are
usually working far from their natural frequencies. This might also be the situation for low frequency
structure-borne noise transmission in modern passenger trains (occurring below 250Hz) or cars (below
500Hz).

4. Practical procedure

The practical procedure for the methodology described in the previous section is summarized in Fig. 8. As
usually in a FE code, the geometry of the bushing is defined first and the mesh is created.

Definition of the dynamic behaviour of the material is based on linear viscoelasticity, the properties of
rubber being dependent only on time or frequency and not on dynamic strain amplitude. If the dependence on
this parameter is not critical (the case of soft rubbers, for example, as shown in Figs. 3 and 4), the model
presents no difficulty: measured properties on dynamic simple shear samples are directly introduced in the FE
code and the dynamic step is conducted, directly obtaining the prediction of the dynamic stiffness of the
bushing. Note that rubber is being considered to be incompressible and, thus, volumetric changes need not be
determined.

The complexity of the calculation increases if the dynamic stiffness of bushings made of filled rubbers has to
be calculated. This is due to the fact of rubber material properties depending strongly on strain amplitude.
When the mount is subjected to external load or displacement each element develops its correspondent
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Fig. 8. Practical procedure to predict the dynamic stiffness of a bushing applying the simplified methodology.
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dynamic amplitude. The approximate procedure is based on applying the dynamic strain amplitude quasi-
statically (instead of dynamically) and calculating the equivalent strain amplitude at each element of the
model. Afterwards, the elements are grouped by a ‘‘similar equivalent strain amplitude’’ criterion. Next, each
group is given the rubber dynamic property according to its equivalent strain.

There are two different possibilities for the ‘‘grouping’’ procedure: (1) calculate an averaged equivalent
strain amplitude for the whole model and introduce the material properties measured at this averaged strain
value; (2) divide the model in different zones or sets of elements and give to each set its corresponding dynamic
properties according to the calculated equivalent strain amplitude value.

The simplified procedure introduced here proposes a novel and easy-to-apply method to directly obtain the
dynamic stiffness of rubber bushings. Since it is a linear model, it works directly in frequency domain, thus
providing the stiffness and loss angle in a range of frequencies without post-processing.

5. Application to a real case

5.1. Description of the case

The suggested technique is validated by predicting the dynamic stiffness of a silent-block (see Figs. 9 and 10)
and comparing it to experimental results. The silent-block is relatively small: 24mm high, with an inner radius
of 7.5mm and an outer radius of 13.55mm. The hardness of the bushing is Shore A 70 (see Section 2 for the
dynamic properties of the compound). Natural rubber selected is considered to be incompressible.

The outer steel cylinder is fixed and a sinusoidal displacement of 0.025mm amplitude is imposed in the inner
one in axial and radial directions. Experimental measurements of the dynamic stiffness have been conducted at
Seat Centro Técnico on two samples and repeated twice (on different dates) to ensure the repeatability of the
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Fig. 10. Generated FE meshes for axial and radial loads: (a) mesh for axial loads (144 CAX8H elements); (b) mesh for radial loads (1728

C3D8H elements).

Fig. 9. Picture of the silent-block selected to validate the methodology.
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results. At the same time, the bushing has been modelled in the FE code ABAQUS to numerically calculate the
dynamic stiffness of the isolator.

5.2. Results and discussion

Essentially, the simplified methodology to take friction effects into account suggested here corresponds to a
pure viscoelastic model whose parameters need to be correctly tuned from experimental data on material
specimens conducted at a specific dynamic strain amplitude value. According to Sections 3.1 and 3.2,
implementation of viscoelasticity supposes that the dynamic properties of the compound (the complex shear
modulus) are only dependent on time or frequency, but not on dynamic strain amplitude, as linearity is
considered. Fig. 11 summarizes the problem that is faced: different predictions are obtained (neither of whom
is valid) with the parameters of the model tuned from dynamic properties of the mixture measured at different
dynamic strain amplitude values. In this figure A x, xx means that the parameters of the model are tuned from
dynamic tests conducted in material samples at an amplitude value of x, xxmm (A 0.01 corresponds to a test
amplitude value of 0.01 and A 0.05 to an amplitude value of 0.05). In fact, and according to Fig. 11, it seems
that an intermediate amplitude value would be of interest if an accurate prediction of the dynamic
characteristics is desired.

This situation, common to all cases where filled rubbers are present, enforces the idea of using an equivalent
strain value at which material properties should be considered. This is the underlying assumption on the
simplified methodology discussed in Sections 3 and 4. Therefore, dynamic stiffness predictions will be made
applying the procedure described above.
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As a first approximation, values of the calculated equivalent strain of each element are averaged to get a
unique equivalent strain value for the whole model. Being the axial deformation of the mount mainly due to
simple shear, the average equivalent strain could be compared to the shear strain calculated from dividing the
imposed displacement (0.025mm) by the thickness of the mount (6.05mm), confirming that similar results are
obtained. The equivalent strain value is multiplied by the thickness of the simple shear sample (Fig. 1) to get
the amplitude value at which measurements on material specimens should be conducted.

Axial : Equivalent strain value ¼ 0:004 �!
�4:5 mm

A ¼ 0:0179 mm;

amplitude=thickness ¼ 0:025=6:05 ¼ 0:0041,

Radial : Equivalent strain value ¼ 0:0103 �!
�4:5 mm

A ¼ 0:0464 mm:

Dynamic stiffness predictions done this way, though good enough for axial direction, are not completely
satisfactory for the radial one, as errors in modulus are higher than 10%, as shown in Table 2 (error limits
usually acceptable for rubber manufacturers are 10% in modulus and72.51 in loss angle). The use of a unique
equivalent strain value, though easy to implement, may lead to severe errors due to the dispersion of the
equivalent strain value: elements with equivalent strain values, far different from the averaged one can be
found depending on the deformation mode. This is especially true in radial direction, where elements subjected
to high compression can be found together with other elements that have hardly been strained.

Figs. 12 and 13 show contour maps of the calculated equivalent strain values in both cases: axial and radial
excitations. For the axial case values range from 1.5e-3 to 5.3e-3, rendering an average value of 4.0e-3. Fig. 12
shows that the majority of the elements present an equivalent strain value among 3.0e-3 and 5.0e-3, dispersion
of values thus being small. The situation is completely different for radial loads, where equivalent strain values
range from 1.6e-3 to 2.6e-2. There are large regions of the mount that are strained very differently from the
considered average value (1.03e-2).



ARTICLE IN PRESS

Table 2

Relative errors in the predicted magnitude of the dynamic stiffness when using an averaged equivalent strain value

Hz Axial (%) Radial (%)

25 7.50 13.57

50 8.73 12.31

75 6.89 12.24

100 5.91 11.63

125 6.39 11.33

150 5.62 11.02

175 4.61 11.36

200 4.37 10.74

225 3.64 10.99

250 3.41 11.09

275 2.48 10.10

300 1.90 9.48

325 1.04 9.63

350 0.20 9.40

375 0.48 8.96

400 1.26 8.47

425 2.22 8.60

450 3.37 8.39

475 3.97 7.75

500 0.68 7.86

Fig. 12. Map of contours of the calculated equivalent strain value. Axial direction displacement.
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The technique to improve predictions in such cases consists in dividing the mesh in different zones or sets of
elements with similar equivalent strain value and assigning to each group different material properties
correspondent to different strain amplitude values (Fig. 14 presents the way elements have been grouped,
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Fig. 13. Map of contours of the calculated equivalent strain value. Radial direction displacement: (a) upper-front view; (b) back view.

Fig. 14. Schematic representation of the groups of elements created following the similar equivalent strain criterion. Axial direction

displacement.

N. Gil-Negrete et al. / Journal of Sound and Vibration 296 (2006) 757–776 771
according to their equivalent strain value, for axial direction loads). In the limit, different material properties
should be assigned to each element in the model. Nevertheless, this procedure is not easy to apply in practice,
as assignment of properties must be done manually with the only help of a subroutine in Matlab. Errors
between predictions and experimental values decrease with increasing number of groups considered and it is
up to the user to find the equilibrium between time invested in applying the procedure and benefits obtained in
the calculations.

In the case studied here, predictions of the dynamic stiffness improve considerably in radial direction when,
instead of using a unique equivalent strain value, eight sets of elements are considered (Table 3). As far as axial
direction is concerned, no significant benefits are obtained, which is mainly due to the fact that the selected
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Table 3

Relative errors in the predicted magnitude of the dynamic stiffness when assigning different material properties to sets of elements grouped

according to a similar equivalent strain value

Hz Axial (%) Radial (%)

25 6.91 5.34

50 7.84 4.65

75 5.91 4.13

100 4.94 3.76

125 5.37 3.68

150 4.60 3.44

175 3.56 3.74

200 3.36 3.15

225 2.62 3.41

250 2.44 3.42

275 1.48 2.69

300 0.95 2.21

325 0.05 2.21

350 0.75 2.09

375 1.44 1.71

400 2.22 1.17

425 3.15 1.22

450 4.27 0.91

475 4.86 0.63

500 1.64 0.39
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displacement is comparable to a simple shear test in which both methods (averaging and grouping) behave
similarly. No significant dispersion exists in the equivalent strain value of the different elements.

Figs. 15 and 16 show the modulus (N/mm) and loss angle (degrees) of the dynamic stiffness of the reference
isolator in axial and radial directions respectively. Numerical results are very good, as errors in all cases and all
frequency range are below 10% in modulus and difference in loss angle is under 2.51.

6. Concluding remarks

According to the results obtained for an industrial case, it can be concluded that the simplified procedure
described provides an innovative and accurate enough tool to predict the dynamic stiffness of carbon-black
filled rubber isolators.
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Note that if bushings made of soft or unfilled rubbers are the objective of the study, dependence on dynamic
strain amplitude is usually negligible. In such cases, the use of viscoelastic models, where rubber material
properties are only dependent on frequency, becomes the best choice. Obtained benefits are not so important
as to justify the application of sophisticated models. Nevertheless, the situation is completely different when it
comes to predict the dynamic stiffness of bushings compounded with carbon black filled natural rubber.
Dynamic strain amplitude dependence can no more be ignored, as viscoelastic models will lead to overestimate
or underestimate the dynamic stiffness.

The procedure that has been thoroughly described in the above sections is usable in whatever of the
situations is faced: consideration of Fletcher–Gent effect is skipped in the case of unfilled compounds, whereas
a methodology is presented to take it into account when necessary.

Its application is easy and straightforward if an average equivalent strain amplitude value is calculated for
the whole set of elements of the model, although dynamic stiffness predictions might be improved if different
sets of elements (with similar equivalent strain values) are created. In the latter case, the application might take
longer as the different groups require the definition of different material properties. Errors between predictions
and experimental values decrease with increasing number of groups considered and it is up to the user to find
the equilibrium between time invested in applying the procedure and benefits obtained in the calculations.

The methodology works directly in frequency domain, since the model is essentially linear and non-
linearities are taken into account only when selecting material data to fit the parameters of the model. This
way calculating time and post-processing work are saved and dynamic stiffness predictions are obtained in a
fast and easy way.

Very satisfactory results have been obtained from the application of the procedure to a real case study, a
carbon-black filled rubber silent-block, which makes the methodology very promising as a designing tool.
Despite the assumptions made, especially the estimation of the equivalent amplitude value at which material
properties have to be provided to the FE code (from quasi-static results), errors in the predicted dynamic
stiffness are well below 10% for the modulus and 2.51 for the loss angle (which are the limits usually accepted
by rubber manufacturers).

The main limitation to the application of the methodology comes from the assumption of using quasi-static
strain values to estimate the equivalent strain value for each element. This limits the frequency range in which
it can be applied, as it should be close to the static case. This is true if the vibration isolator is working under
its own first eigenfrequency. Nevertheless, in many cases regarding the design of vibration isolators this is no
limitation. When mounts are being designed to isolate a system for unwanted vibrations of different amplitude
values, bushings are usually working far from their natural frequencies.

Moreover, low-frequency structure-borne noise, occurring below 250Hz, has become an important and
even dominant part of the total interior noise in modern passenger trains. As for the automotive industry, the
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low frequency part of the noise (below 500Hz) is mostly structure-borne and a large number of mechanical
components of the vehicle are involved, in most cases assembled to the chassis using resilient joints.

Appendix A

The deformation of a material element (block) subjected to its principal stresses may be decomposed in the
volumetric and deviatoric parts, as shown in Fig. A1. The volumetric part represents a pure dilatation, a
change in volume without change in shape, the value of p being p ¼ 1

3
ðsp1 þ sp2 þ sp3Þ, whereas the deviatoric

part represents a distortion at constant volume.
In terms of principal strains:

sp1 ¼
E

ð1þ nÞð1� 2nÞ
½ð1� nÞep1 þ nðep2 þ ep3Þ�,

sp2 ¼
E

ð1þ nÞð1� 2nÞ
½ð1� nÞep2 þ nðep1 þ ep3Þ�,

sp3 ¼
E

ð1þ nÞð1� 2nÞ
½ð1� nÞep3 þ nðep1 þ ep2Þ�. ðA:1Þ

According to the decomposition in Fig. 17, an energy balance can be performed in the following way:
Deformation energy ¼ energy to increase volume+distortion energy

UT ¼ UV þUd ) Ud ¼ UT �UV ,

UT ¼
E ð1� nÞðe2p1 þ e2p2 þ e2p3Þ þ 2nðep1ep2 þ ep1ep3 þ ep2ep3Þ

j k
2ð1þ nÞð1� 2nÞ

,

UV ¼
3
2

pen
p ¼ 1

3ðsp1 þ sp2 þ sp3Þ;

en ¼ 1
3
ðep1 þ ep2 þ ep3Þ:

8<
: ðA:2Þ

Combination of Eqs. (A.1) and (A.2) will lead to the energy needed to increase volume without change in
shape (Eq. (A.3)):

UV ¼
1

6

E

ð1� 2nÞ
ðep1 þ ep2 þ ep3Þ

2. (A.3)

Distortion energy will be the difference between the total energy in Eq. (A.2) and the volumetric energy in
Eq. (A.3). If calculations are performed:

Ud ¼
1

3

E

ð1þ nÞ
ðe2p1 þ e2p2 þ e2p3Þ � ðep1ep2 þ ep1ep3 þ ep2ep3Þ

h i
. (A.4)
Fig. A1. Decomposition of the deformation in its deviatoric and volumetric parts.
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In Eq. (A.4) the distortion energy is calculated in terms of principal strains exclusively. When it comes to a
simple shear test:

ep1 ¼
g
2
; ep2 ¼ �

g
2
; ep3 ¼ 0.

In such a situation, the distortion energy, according to Eq. (A.4), becomes:

Ud ðshearÞ ¼
1

3

E

ð1þ nÞ
g2

4
þ

g2

4
þ

g2

4

� �
¼

E

ð1þ nÞ
g
2

� �2
. (A.5)

And therefore:

1

3

E

ð1þ nÞ
ðe2p1 þ e2p2 þ e2p3Þ � ðep1ep2 þ ep1ep3 þ ep2ep3Þ

h i
¼

E

ð1þ nÞ
g
2

� �2
, (A.6)

gequiv ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2p1 þ e2p2 þ e2p3Þ � ðep1ep2 þ ep1ep3 þ ep2ep3Þ

3

s
. (A.7)

Expression (A.7) could be considered as the simple shear strain equivalent to the multiaxial state of
deformation.
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