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Abstract

This paper presents a new method to improve the standard superelement reduction methods by taking into account a

priori information concerning the potential structural modifications, thus allowing the same transformation to be used

throughout the optimization process. The aim is to create a single enriched model reduction transformation that preserves

the precision of the reduced substructure model throughout the optimization process. The approach consists firstly in

extending the standard condensation basis by a set of optimized static residual and secondly, in eliminating the associate

coordinates from the reduced system. The proposed method can be used with any condensation procedure, including both

direct reductions and component mode synthesis approaches with any kind of substructure natural modes; free–free,

clamped or hybrid modes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The ever increasing demand for faster engineering analysis in the design process has resulted in a substantial
amount of research and development on faster and more accurate approximate reanalysis method. Over the
past 20 years, the modeling of complex industrial structures lead to finite element models of very large sizes
(for example an aerospace structure can be composed by more than 106 dofs). Nevertheless, many details of
such large models are not critical when it comes to capturing the input/output relationship. It is thus
important to reduce the size of the system for mainly several reasons: the cost of computation when one wants
to extract the eigensolutions or to predict the behavior of the full structure, the optimization or updating
procedures which require fast iterative techniques and finally nonlinear mechanics.

The difficulty of any model reduction procedure lies on how to complete the representation basis in order to
reduce truncation effects. Two main classes of methodologies can be found in the literature. The first class
seeks to generate a set of Ritz vectors capable of representing with precision the structural behavior under a
wide variety of structural modifications. For example, Balmès [1,2], Guillaume et al. [3] studied the possibility
of using a constant Ritz basis to create parametric families of reduced models. Bouazzouni et al. [4,5]
developed the other side an optimal method to construct additional vectors by using the dynamic behavior of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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the structure before modification combined with the a priori knowledge of the design variables. Both of these
approaches have already been used effectively in an industrial context. The second class of reduction methods
are based on a high-order polynomial expansions of model responses about a nominal point in parameter
space. This approach proves to be particularly interesting for small number of design variables and can be
used for topological optimization.

Moreover, the substructuring or also known as component mode synthesis (CMS) method currently plays a
considerable role in the analysis of the complex structures. This method consists in subdividing a structure in
components called substructure or superelement, which are analyzed and condensed separately, while
preserving the junction dofs between substructures. The substructures, or components, are represented by
their modes (in the sense of Ritz vectors), the latter include the vibration normal modes, the rigid body modes,
the static modes, the interface modes, etc. The advantages of such a method are to be able to analyze problems
of quasi-unlimited size with the current data-processing resources. The structural modification of a
substructure makes it possible to reanalyze the full structure with a low cost of computation and it makes it
possible to prepare each model of substructures independently of the others. This advantage is significant for
the study of the complex substructures whose designs are entrusted to various equipment suppliers or in the
context of parallel processing. Indeed different computers can carry out the preparation of each reduced
model at the same time. Several CMS methods have been developed for 40 years. All of them make use of the
vibration normal modes of the substructures. Depending on the boundary conditions applied to the
substructure interfaces when these normal modes are obtained, the CMS methods can be classified into four
groups: fixed interface methods [6,7] free interface methods [8–13], hybrid interface methods [8], loaded
interface methods [14]. The variants in each group differ from each other mainly in the choice of the
supplementary Ritz vectors and the associated generalized coordinates, and in the coupling procedure.

However, these methods are not always well adapted to the industrial problem. This is especially true when
parametric studies are to be performed with respect to design variables contained within individual
superelements. The designer has the choice of either reusing the nominal model reduction transformation or
performing a new superelement analysis for each modified component. The first option generally leads to
inaccurate results while the latter is often impracticable due to cost considerations.

We propose in this paper a new method to improve the standard superelement reduction methods by taking
into account a priori knowledge of the potentially modifiable design variables with the objective of
constructing a unique reduction transformation matrix which will preserve the predictiveness of the
superelement for a wide range of structural modifications. The approach consists firstly, in extending the
standard condensation basis by a set of optimized static residuals and secondly, in eliminating the associate
coordinates from the reduced system. The global parameterized model is thus constituted of an assembly of
individually reduced and parameterized component models. The potential of the proposed methodology is
demonstrated on the basis of an academic simulated numerical test case and a numerical test case taken from
the aero-engine industry.

2. Background

2.1. Standard CMS

The objective of CMS is to calculate the dynamic behavior of a structure, starting from the knowledge of the
dynamic behavior of its substructures when they are described by numerical models of reduced size. The
general principle of substructuring consists in approximating the dynamic behavior of a substructure by a
linear combination of q vectors that form a Ritz basis denoted by the matrix T. The size of the model is
reduced from N physical dofs to q ‘‘privileged’’ or generalized dofs. The CMS matrix T discussed in this
section may or may not be identical to the condensation matrix of a direct reduction method. Differences
between the substructuring methods are based upon: (1) the choice of reduction basis T and generalized dof
vector cI (in the remainder, cI denotes the vector of generalized dofs defined across the interface common to
the NS substructures); (2) the technique of assembly of the substructures.

The basic philosophy behind the creation of a superelement from the global stiffness and mass matrices of a
structural component is briefly described below in the context of a linear conservative elastodynamic
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substructure. The homogeneous equation of motion for such a substructure is given by

K� lMð Þy ¼ ff g, (1)

where M, K represent the discrete mass and stiffness matrices of the system and y, g are a given pair of
eigensolutions and ff g ¼ fe þ f j

� �
where fe is the vector of external forces and fj are the interface reactions.

The generic substructure model reduction is performed via a transformation matrix T:

y ¼ Tq, (2)

where q is a vector of generalized coordinates representing the contribution of each column of T. Note that
some of these coordinates may correspond to physical degrees of freedom.

Substituting Eq. (2) into Eq. (1) and premultiplying by the transpose of T yields

K̂� lM̂
� �

q ¼ TT ff g, (3)

where K̂ ¼ TTKT and M̂ ¼ TTMT are the reduced stiffness and mass matrices.
The dofs of the displacement vector ys of the substructure are partitioned into subsets of junction dofs yj and

interior dofs yi:

ys

� �
¼

yj

yi

( )
. (4)

The partitioned stiffness and mass matrices of the substructure inherit the following forms:

Ks ¼
Kjj Kji

Kij Kii

" #
and Ms ¼

Mjj Mji

Mij Mii

" #
. (5)

The transformation T is a Ritz basis classically constituted by a combination of static responses (constraints
modes, attachment modes) and normal modes (fixed interfaces modes [6,7], free interfaces modes [8–13],
loaded interfaces modes [14]).

2.2. Example of a CMS method: Craig– Bampton method

In dynamic analysis of complex structures with a large number of dof’s the Craig–Bampton method is a
well-known method to drastically reduce the overall number of dof’s. This method combines motion of
interface (constraint modes) with modes of the substructure assuming the interface is held fixed (normal
modes). The Craig–Bampton transformation (CBT) for a substructure is defined as

ys

� �
¼

yj

yi

" #
¼

Ijj 0

Gij F

" #
yj

c

� �
, (6)

where Gij is the static transformation matrix (Guyan matrix) and F ¼ j1 . . . jnc

� �
is the normal modes matrix

with fixed interface.
The reduced problem is obtained by substituting Eq. (6) into Eq. (1) and premultiplying by the transpose of

the transformation matrix. The reduced stiffness and mass matrices are expressed as

K̂ ¼
Kj 0

0 Lc

" #
; M̂ ¼

Mj Mjc

MT
jc Icc

" #
. (7)

Related to the displacement vector
yj

c

	 

:

Kj and Mj denote the residual matrices of the structure statically condensed to the interface dof’s yj by

Kj ¼ Kjj þ KjiGij ,

Mj ¼Mjj þMjiGij þGT
ijMji þGT

ijMiiGij .
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The (nj, nc) matrix

Mjc ¼ GT
ijMjiFþMjiF

represents the participation matrix which couples the modal and the interface dof’s.
Eq. (6) represents the classical CBT frequently used for substructure coupling analysis. Its accuracy is

governed by the number nc of the normal modes.
3. CMS Method combined with design procedure

The question we are concerned with here is: what happens if a design variable (e.g. a plate thickness or beam
property) of a superelement is modified?

In order to save the cost of calculating a new transformation matrix, we might consider using the same
transformation (evaluated on the basis of a nominal model) on the modified global matrices of the
substructure.

If we consider structural modifications, the modified global matrices become M ¼M0 þ DM and K ¼

K0 þ DK:
Hence, the reduced superelement matrices of modified structure are expressed as DK̂ ¼ TT

0KT0 and DM̂ ¼
TT
0MT0; where T0 is an initial standard CMS transformation matrix.
In the case of global modifications and only in this case, the standard CMS transformation is robust and do

not need to be improved. When we talk about global a modification that means the whole substructure is
modified by using the same level of perturbation. In this case there is only a frequency shift between the
nominal model and the perturbed model, so the nominal transformation can represent correctly the perturbed
model.

But when we introduce local modifications, experience shows that the precision of this solution degenerates
rapidly with the amplitude of the perturbation. We propose an alternative solution that allows the
transformation matrix to be completed with a new basis of vectors which are optimally chosen with respect to
the design variables to be modified.

For example, the reduced stiffness matrix DK̂ in the case of the Craig-Bampton method is expressed as

DK̂ ¼ TT
0 K0 þ DKð ÞT0 ¼ TT

0K0T0 þ TT
0DK0T0. (8)

In this sum, the firts term corresponds to Eq. (6) and is obtained by

TT
0K0T0 ¼

Ijj 0

Gij F

" #T
Kjj Kji

KT
ji Kii

" #
Ijj 0

Gij F

" #
¼

Kj 0

0 Kq

" #
(9)

and the second term corresponds to the modified stiffness matrix which leads to

TT
0DK0T0 ¼

Ijj 0

Gij F

" #T DKjj DKji

DKT
ji DKii

2
4

3
5 Ijj 0

Gij F

" #

¼

DKjj þ DKjiGij þGT
ij DKij þ DKiiGij

� �
sym

FT DKij þ DKiiGij

� �
FTDKiiF

2
4

3
5. ð10Þ

Hence, the reduced stiffness matrix takes the following form

DK̂ ¼
Kj þ DKjj þ DKjiGij þGT

ij DKij þ DKiiGij

� �
sym

FT DKij þ DKiiGij

� �
Lq þ FTDKiiF

" #
. (11)

Also, the reduced mass matrix is written

DM̂ ¼ TT
0 M0 þ DMð ÞT0 ¼ TT

0M0T0 þ TT
0DM0T0 (12)
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which takes the following final form:

DM̂ ¼
Mj þ DMjj þ DMjiGij þGT

ij DMij þ DMiiGij

� �
sym

FT Mij þ DMij

� �
þ FT Mii þ DMiið ÞGijIq þ FTDMiiF

" #
. (13)

3.1. Optimal static residual vectors

The strategy for improving the robustness of the reduction transformation with respect to structural
modifications will be briefly reviewed in this section. The novelty of this approach lies in its use of a priori
knowledge of the nature and localization of the potential design modifications while retaining the amplitude of
the modification as a variable. The objective is to construct an optimal set of Ritz vectors, using the nominal
model, to complete the standard reduction transformation.

3.1.1. Candidate design modifications

We define a parametric correction of the impedance Z of the substructure model as follows:

DZ ¼ DK� o2DM. (14)

By introducing notion of zones or groups of finite elements, it can be written as follows

DZ ¼
Xnp

i¼1

Kzone
i Dpi

� �
� o2Mzone

i Dpi

� �� �
; (15)

where Dpi is the variation of the np design parameter pi.
In general, the correction matrix is a nonlinear function of the design parameters pi and, for example, the

stiffness modification of a zone can be expressed as

DKzone
i Dpi

� �
¼

Dpi

pi

X
a

a pi

� �a
Kzone

ia . (16)

The homogeneous equation of motion of the modified substructure is given by :

ZðoÞ þ DZðoÞ½ �yðoÞ ¼ 0. (17)

3.1.2. Force basis associated to a structural modification

By introducing the notion of force fDðoÞ associated with structural modifications DZðoÞ, Eq. (17) can be
rewritten:

Z oð Þy oð Þ ¼ fD oð Þ, (18)

where:

fDðoÞ ¼ �ZðoÞyðoÞ. (19)

The vector fD oð Þ represents the forces acting on the nominal structure due to the structural modifications.
Given that the response vector y is unknown, the force vector cannot be determined exactly either. The
essential idea of the methodology is expressed in the following steps:
1.
 Eq. (19) is used to generate a basis of force vectors that, if it does not contain the exact force vector with
respect to a specific design modification, will at least represent a space containing these vectors. This is
accomplished by injecting known nominal model response vectors into Eq. (19).
2.
 The resulting force basis is then used to generate static response vectors, once again on the basis of the
nominal model.
3.
 The first two steps are repeated for each candidate design parameter.

In practice, many different types of model response vectors may be injected into Eq. (19), including global
substructure modes or sensitivity vectors, slave system modes, static vectors, etc. These forces are obviously
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frequency dependent and are generally evaluated at the frequency corresponding to the response vector in
question. Let B denote the basis of response vectors used for this purpose, hence

yðoÞ ¼ BcðoÞ. (20)

For a modification of the design parameter pi, Eq. (19) becomes

Fi
D ¼ �DZ

iðo1Þb1 . . .� DZiðomÞbm

� �
. (21)

The final force basis, representative of the set of global set of candidate structural modifications, is then
obtained by concatenation of the series of bases generated for each zone

FD ¼ F1
D F2

D . . .F
np
D


 �
. (22)

3.1.3. Enriched transformation matrix

Once we have built our force basis, we can compute a series of response vectors, which will be
used to complete the standard model reduction transformation matrix. These responses are obviously
frequency dependent and in some cases it is worthwhile to calculate them explicitly. However, in order to
avoid re-decomposing the global stiffness matrix of the substructure, the static solution is often evaluated
instead

SD ¼ K�1FD. (23)

Practically speaking, the basis SD is rarely of full rank and must be reconditioned before use. The form this
reconditioning takes depends on both the contents of both SD and T0 as will be discussed in the next section.
Letting DT be the reconditioned matrix, the improved transformation matrix T is given by:

T ¼ T0 DT½ �, (24)

where T0 is an initial classical transformation matrix.
The transformation matrix T contains nj+nc+nr columns where nj is the number of junctions dofs, nc is

the number of normal modes retained and nr is the number of static residual vectors retained. It is much more
predictive to enrich by this way than add more of normal modes at same size. The enriched base contains
necessary information to predict the modified model behavior and especially in case of important
modifications that introduce the designer in the optimization procedure of preliminary design.

Fig. 1 illustrates a comparison between an optimization procedure using a standard CMS method or a
robust CMS method against structural modifications. The use of the CMS standard method necessists an
exact recalculation of the Ritz basis T0; this can leads to prohibitory of calculations costs for complex models.
Whereas, the robust CMS method yields only inexpensive reactualization of the static residual vectors due to
the parametric modification contained in the sub-basis DT. This approach can be advantageously adapted to
several domains of structural dynamics based on iterative method or: model updating, stochastic structural
dynamics, nonlinear problems, reliability-based design optimisation, etc.

In the case of the Craig–Bampton reduction, the complementary basis DT is calculated with respect to the
slave system. Hence, the displacements on the junction dof are zero. So the nominal enriched Craig–Bampton
superelement has the form:

~Kenriched ¼
K̂standard sym

0 0 QTKQ

" #
; ~Menriched ¼

M̂standard sym

0 QTMF QTMF

" #
(25)

and the current enriched superelement model has the following one :

D ~Kenriched ¼
DK̂standard sym

QT DKij þ DKiiGij

� �
QTDKF QT Kþ DKð ÞQ

" #
;

D ~Menriched ¼
DM̂standard sym

QT Mij þ DMij

� �
Ijj þQT Mii þ DMiið ÞGij QTDMF QT Mþ DMð ÞQ

" #
. (26)
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Remarks
�
 The static responses SD are often linearly dependent and it is important to perform an adequate
reconditioning of this matrix before use. The form of this pre-processing depends on the contents
of T0. For example, if part or all of T0 is the modal matrix of the substructure, then it is advantageous to
replace SD by the corresponding static residual matrix formed by removing the static contribution of the
retained modes.

�
 When possible, it is important not to combine the contributions of several zones to construct a single (sub)

basis. This has the effect of coupling otherwise independent parameters.

3.1.4. Reduction of the static residual coordinates

As we can see in Eq. (26) the enriched superelement is larger than the standard superelement. The size
depends on the number of static residual vectors we retain in the transformation basis. In order to avoid
getting a too much large superelement, we can eliminate the generalized coordinates associated with the static
residual vectors without loosing in accuracy.

The eigenequation of motion for the coupled perturbed system is expressed as:

DKcms DKcms;r

DKT
cms;r DKrr

" #
� o2

DMcms DMcms;r

DMT
cms;r DMrr

" # !
qcms

r

	 

¼ ff g, (27)

where qcms correspond to the standard coordinates of any CMS method.
To eliminate the generalized coordinates r, we assume in Eq. (27) that the effect of the residual mass

matrices DMcms;r and DMrr can be neglected.
This hypothesis may not be valid if there is only a mass modification but in general, the stiffness dominates

in low-frequency range and anyway, the enriched reduced system is to be used in updating or optimization
procedure. Physically, in these procedures there is generally one or many parameters which modify the
stiffness and the eigenmodes for which the firsth modes of a structure are concerned for the procedure.
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So if we neglect the effect of residual mass matrices DMcms;r and DMrr, the reduced modified problem
becomes

DKcms DKcms;r

DKT
cms;r DKrr

" #
� o2

DMcms 0

0 0

� � !
qcms

r

	 

¼ 0. (28)

Let us eliminate the generalized coordinates r using the second row in Eq. (28)

rf g ¼ Gcms;r qcb

� �
, (29)

where Gcms;r ¼ �DK�1rr DKT
cms;r:

By substituting Eq. (29) Into Eq. (27) and premultiplying by
Icb

Gcms;r

" #T
we obtain the following new

eigenequation of motion for the coupled perturbed as defined by the form:

DKcms þ DKcms;rGcms;r þGT
cms;rDK

T
cms;r þGT

cms;rDKrrGcms;r

h i�
�x2 DMcms þ DMcms;rGcms;r þGT

cms;rDM
T
cms;r þGT

cms;rDMrrGcms;r

h i�
qcms

� �
¼ ~f
� �

. ð30Þ

The resulting condensed model is the same size of a standard Craig–Bampton model but it is more robust
and can be used in updating or optimization procedure. Moreover the computation to obtain an enriched
condensed model is much less costly than an exact computation from the whole structure.
4. Numerical results

4.1. Academic example

Consider a simple structure consisting of a plate system shown in Fig. 2. The proposed methodology will be
illustrated on a simple example of plates comprising two Craig–Bampton superelements and a residual
structure containing, by definition, the set of junction dof for all superelements as well as physical dof
corresponding to unreduced structural elements.
Fig. 2. Finite element model of the academic example.
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Fig. 3. Definition of the modified zones of the components.

Table 1

Composition of the CBT, CBE and CBEE reduction

CBT reduction CBE reduction CBEE reduction

Substructure Substructure Substructure

1 2 1 2 1 20

Number of coordinates associated with Constraint modes 126 126 126 126 126 126

Normal modes 30 30 30 30 30 30

Optimal vectors 0 0 104 85 0 0

Reduced model size 156 156 260 241 156 156
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The numerical model contains a total of about 2800 dof and is under free–free boundary conditions.
Substructure 1, a square, contains 756 dof with 126 interface dof while substructure 2 contains 1470 dof with
126 interface degrees of freedom. The residual structure contains 462 dofs. The both superelements have been
created using the Craig–Bampton technique.

In order to illustrate the proposed methodology, we have perturbed the nominal substructure models as
follows:
�
 Each substructure contains three local zones (Fig. 3) where the Young’s moduli and the thickness are
modified by 0.25, 1 or 4.

We will compare the accuracy between three types of calculation:
1.
 Re-using the standard CBT of each of the nominal substructure models on the corresponding perturbed
models. This method is denoted by CB method.
2.
 Enrichment of the CBT by a set of optimally selected Ritz vectors. This method is denoted by CBE method.

3.
 Enrichment of the standard CBT and elimination of the generalized coordinates associated with the set of

optimally selected Ritz vectors. This method is denoted by CBEE method.
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In order to demonstrate the improved convergence properties of the optimal basis vectors, the dimensions
of the first and third transformation matrices are chosen to be identical. The dimension of the reduction bases

for the methods is reported in Table 1.

4.1.1. Comparison criteria

The relative precision of the different analyses will be compared on the basis of three classic criteria: the
relative frequency error (ef ), the mean square error (MSE) [15] and modal assurance criteria (MAC).

MSE ¼

Pm
i¼1 Exact� Predð Þ

2

ms2Exact
, (31)

where m is the number of experiments conducted, Exact and Pred are the exact and predicted values of the
output feature, and sExact is the standard deviation of the Exact values of the output feature.

eMAC ¼
yTexactyR

� �2
yTexactyexact
� �

yTRyR

� �� 100, (32)

where yexact an eigenvector of the assembled perturbed system calculated using an exact update of the modified
superelements and yR an eigenvector of the assembly system calculated using either the CBT or CBEE
transformation on the perturbed mode.

4.2. Results

The 2 first frequencies of the 36 ¼ 729 configurations (6 zones with 3 levels of modification) have been
computed using the methods defined before (exact, CBT, CBE and CBEE). To compare the results obtained
by substructuring to the exact results, mean square error and the maximum and the mean of the relative
frequency error are shown in the Figs. 4, 5 and Table. 2. The dashed line in Fig. 4 is the limit of acceptance of
0.09028 defined before (MSE_maxE0.09). Only both CBE and CBEE methods lead to a MSE below this
limit, that mean the frequency family of the 2 firsts modes computed from the CBE and CBEE methods are
2 firsts modes frequency error
1

0.1

0.01

0.001

M
S

E
 E

rr
or

CBT
1 st

CBT
2 nd

C B E
1 st

C B E
2 nd 2 nd

C B E E C B E E
1 st

Methods

MSE_Max=0.0903

Fig. 4. MSE error of CMS methods CBT, CBE and CBEE (- - -, MSE_Max; , MSE error).
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Table 2

MSE error and frequency error for the two firsts modes

CBT 1st CBT 2nd CBE 1st CBE 2nd CBEE 1st CBEE 2nd

MSE-Max 0.0903 0.0903 0.0903 0.0903 0.0903 0.0903

MSE 0.7251 0.7234 0.0035 0.0065 0.0035 0.0069

ef Max en % 26.47 13.84 1.52 1.06 1.52 1.0718

ef Min en % 0 0 0 0 0 0

ef Mean en % 6.91 3.37 0.5 0.34 0.5 0.3526

2 firsts modes frequency error

re
la

ti
ve

fr
eq

u
en

cy
 e

rr
o

r 
in

 %

30

20

10

0
CBT 1 st CBT 2nd CBE 1st CBE 2nd CBEE 1st CBEE 2nd

Methods

Fig. 5. Frequency error of the CBT, CBE, CBEE methods ( ef Max%; , ef Mean%; ef Min % ¼ 0).

Table 3

Structural modifications level

Substructure 1 Substructure 2

E Zone 1 T Zone 2 E Zone 3 E Zone 4 T Zone 5 E Zone 6

Modification factor 4 0.25 4 4 0.25 4
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very close, but it is not the case for the CBT method. Fig. 5 confirms this tendency, indeed the CBE and the
CBEE methods lead to a maximum frequency relative error of 1.5% compared to the 26% of the CBT
method.

For example, we can study the results of one out of the 729 modification configurations. The configuration
chosen is defined in Table 3 and a frequency range of interest [0-1000Hz] is defined for the study.

It is well known that the local modifications are poorly handled without recalculation of the CBT. Fig. 6
and Table 4 report the relative frequency error and MAC criteria for the first perturbation. As expected, the
CBT performs poorly, while the proposed methodology (CBEE) yields a significantly more accurate
prediction.

4.3. Industrial application

4.3.1. Description of test case

The proposed methodology will be illustrated on a subassembly of an aero-engine model (Fig. 7) comprising
four Craig–Bampton superelements and a residual structure containing, by definition, the set of junction dof
for all superelements as well as physical dof corresponding to unreduced structural elements.

The numerical model contains a total of about 40 000 dof and is under free–free boundary conditions.
Substructure 1, a casing, contains 9000 dof with 300 interface dof while substructures 2 and 3 are both stators
containing respectively 4200 dof with 600 interface degrees of freedom and 4400 dof with 600 interface dof.
Substructure 4 contains 6000 dof with 60 interface dof and is also a casing. An analysis range is defined which
contains 6 rigid body modes and 12 flexible modes in the initial configuration. Superelements for all four
components have been created using the CBT.
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In order to illustrate the proposed methodology, we have perturbed the nominal substructure models as
follows:
�
 Concerning the first substructure, we define two zones where the Young’s moduli are modified by a factor 2.

�
 Concerning the second and the third substructures which are two tubes we choose to introduce local

modifications. We define two zones for each substructure where the Young’s moduli are modified
respectively by a factor 2 and 0.5.

�
 And for the last substructure, we define a zone where the thickness is the modification parameter. The

nominal values of the shell element thickness are divided by 2.

These structural perturbations lead to maximum frequency shifts on the order of 20%.
We will compare the precision between two types of calculation:
1.
 Reusing the standard CBT of each nominal substructure models on the corresponding perturbed models.

2.
 Enrichment of the standard CBT and elimination of the generalized coordinates associated with the set of

optimally selected Ritz vectors. This method is denoted by CBEE method.

In order to demonstrate the improved convergence properties of the optimal basis vectors, the dimensions
of the two transformation matrices are chosen to be identical, that is to say, the number of slave eigenmodes
included in F are increased for the standard CBT. The dimension of the reduction bases for both methods is
reported in Tables 5 and 6.

4.3.2. Results

Table 6 and 7 reports the relative frequency error and MAC criteria for the two analyses. We note a general
improvement in the precision of all eigenfrequencies and eigenvectors. The remaining modes are local to
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Table 4

MAC associated to the modification no 1

CBT Exact modes

1 2 3 4 5 6 7 8 9 10 11 12

1 .99

2 .99

3 .89

4 .89

5 .92

6 .79

7 .98

8 .14 .79

9 .96

10 .86

11 .15 .80

12

CBEE Exact modes

1 2 3 4 5 6 7 8 9 10 11 12

1 .99

2 1.0

3 .99

4 .99

5 .99

6 .99

7 .99

8 .98

9 .99

10 .99

11 .99

12 .99
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individual substructures. Fig. 8 shows the exact (nominal and perturbed) and approximate transfer functions
for two different collocated observation–excitation points. In both cases, the modal damping coefficient was
defined to be 2%. Note that axis labels have been purposely omitted. The dotted and dashed lines represent
the exact transfer function of the perturbed and nominal models, respectively, while the dot-dashed and
continuous lines represent the standard and enriched Craig–Bampton results, respectively. We can observe
that the standard Craig–Bampton transformation largely underestimates the magnitude of the frequency shifts
of the perturbed structure while the proposed methodology yields a significantly more accurate prediction.

5. Conclusions

In this paper, we have enriched an existing methodology for the approximate reanalysis of linear
elastodynamic behavior to superelement technology. This approach allows design parameters of a
superelement to be modified, for example in the context of an optimization algorithm, without having to
perform a complete superelement analysis at each point in parameter space.

The method is based on the enrichment of the standard superelement reduction transformation on a basis of
representation which is optimized with respect to the design parameters to be modified. The proposed
methodology can be integrated in a variety of component mode synthesis techniques and we have illustrated
its use in the context of the Craig–Bampton superelement. This approach is a little bit more costly than a
standard CMS method in term of computation but definitely more economic than an exact reanalysis.
Moreover, this approach is particularly effective when dealing with very large models having a large number
of subassemblies. The improved model reduction transformation can be prepared in advance for each
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Table 5

Composition of the standard CBT reduction

Substructure

1 2 3 4

Constraint modes 300 600 600 60

Normal modes 20 40 40 30

Optimal vectors 0 0 0 0

Reduced model size 320 640 640 90

Fig. 7. Aero-engine model.

Table 6

Composition of the CBEE reduction

Substructure

1 2 3 4

Constraint modes 300 600 600 60

Normal modes 20 40 40 30

Optimal vectors 5 20 20 10

Elimination of the optimal vectors �5 �20 �20 �10

Reduced model size 320 640 640 90

G. Masson et al. / Journal of Sound and Vibration 296 (2006) 845–860858
substructure and then used directly during the optimization procedure, thus avoiding the exact recalculation
of the modified superelements.

An academic example and an industrial test case derived from the aero-engine industry was used to illustrate
the efficiency of the optimized basis in representing the modified behavior of a perturbed structure.

Current work is in progress to take into account local nonlinearities. The purpose is to apply the robust
reduction method to a system with local nonlinearity to asses its potential for nonlinear dynamics.
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Fig. 8. Prediction of the frequency Response Function—CMS methods : CBT, CBE, CBEE.

Table 7

Comparison of relative prediction errors

Mode number CBT CBEE

ef eMAC ef eMAC

1 0.64 1.0 0.60 1.0

2 0.63 1.0 0.60 1.0

3 4.30 1.0 0.06 1.0

4 0.03 1.0 0.03 1.0

5 1.40 1.0 1.08 1.0

6 1.76 1.0 1.04 1.0

7 1.05 1.0 0.43 1.0

8 3.28 0.7 1.37 1.0

9 3.57 0.5 0.64 1.0

10 5.07 0.3 1.32 1.0

11 12.82 0.2 2.88 1.0

12 3.82 0.7 2.11 1.0
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