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Abstract

In this work a new approach is presented for detecting the presence of damage-induced nonlinearities in structures from
measurements of structural dynamics. Two different information-theoretic (IT) measures, the time-delayed mutual
information and the time-delayed transfer entropy are used to provide a probabilistic measure of the coupling between
structural components. These measures may be used to capture both linear and nonlinear relationships among time-series
data. The formula for both quantities is derived for a linear, five degree-of-freedom system subject to Gaussian excitation.
An algorithm is then described for computing the IT metrics from time-series data and results are shown to agree with
theory. We then show that as the coupling between the structure’s components changes from linear to nonlinear the
“information flow” can be used to indicate the degree of nonlinearity. Deviations from a linear model are quantified
statistically by generating surrogate data sets that, by construction, possess only linear (second-order) correlations. We
then apply the proposed algorithms to both the original data and the surrogates. Differences in the results are shown to be
proportional to the degree of nonlinearity. This result is shown to be independent of global changes in stiffness and is
therefore unaffected by certain models of environmental variability. Furthermore, the method provides an absolute
measure of nonlinearity and therefore does not require a baseline data set for making comparisons. This approach is
discussed in the context of structural health monitoring where damage is often associated with structural nonlinearity.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration-based structural health monitoring (SHM) focuses on drawing inferences about the health of a
structure from the structure’s dynamic response to ambient or applied excitation. The practitioner collects
data from an undamaged structure, forms a baseline set of metrics or “features’, and then tracks the evolution
of those metrics. Feature values that are statistically different from the baseline values are presumed to be
indicative of damage. Two primary obstacles are the need for baseline data and the difficulty in separating
changes in feature values due to environmental variability from those due to damage. Many, if not most
situations call for the practitioner to monitor an existing structure without the benefit of a baseline set of
structural response data. It is therefore desirable to develop an approach that can detect absolute damage with
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a minimal number of assumptions. Changes in feature value due to ambient conditions (e.g. temperature)
further complicate the process. For example, temperature fluctuations can cause large changes in the measured
natural frequencies of a structure. A bridge monitoring study by Peeters et al. [1] found that temperature alone
caused the eigenfrequencies of the Z24 bridge in Switzerland to change by as much as 18%.

Damage in structures is frequently modeled as the introduction of a nonlinearity into an a structure or
structural component that is otherwise (in a healthy state) accurately described by a linear model [2,3]. Such
mechanisms might include the presence of a crack (bi-linear stiffness), post-buckled behavior (Duffing
nonlinearity) and/or bolt rattling (impacting, stick-slip). Here we present an approach for detecting damage-
induced nonlinearities in a structure based on its vibrational response. Specifically we test whether or not the
observed data are consistent with the hypothesis of a linear stochastic process (i.c. a healthy structure
produced them). The approach yields an absolute measure of nonlinearity and therefore does not require an
explicit measurement of the healthy structure’s dynamics. Furthermore, the approach will be shown to be
insensitive to global changes in stiffness such as those caused by temperature fluctuations. While stiffness
changes may alter global system properties (e.g. modal properties) they do not necessarily change the form of
the underlying model (e.g. linear vs. nonlinear). The proposed approach targets the presence of nonlinearity
and is therefore not affected by this type of variability.

Many of the standard signal processing tools (e.g. frequency response functions) assume the underlying
system is linear and are thus unable to directly capture nonlinear relationships among time-series data.
Instead, nonlinearity will manifest itself as a breakdown in the ability of many linear time-series analysis
techniques to accurately describe the dynamics, i.e. a distortion [4]. This “deviation from linearity” could
conceivably be taken as a measure reflecting the degree of nonlinearity, however this requires some a priori
knowledge of the system under study, i.e. we need to know how the distortion will manifest itself. Perhaps the
most straightforward approach to nonlinearity detection is to apply varying load levels to the structure and
search for amplitude dependence in the frequency response. This technique may pose practical issues if
variable amplitude loading is unavailable. A more sophisticated approach is to use time-frequency analysis to
search for amplitude dependence in the structures parameters. This general approach to detecting damage-
induced nonlinearities was employed by Neild et al. [5]. Feldman [6] used the Hilbert transform to identify
“backbone” curves associated with a free-decay response for oscillators with various nonlinearities. The
method was further extended to forced vibration [7] and later applied to damage detection in rotors [8]. If one
knows how a certain nonlinearity will affect this backbone the approach could be used to yield a direct
measure of nonlinearity without necessarily requiring a baseline. It is unclear, however, how deviations from a
healthy model (backbone) are to be quantified or how the approach would perform in the absence of a well-
defined model (i.e. where multiple nonlinearities/damages are present). The practitioner essentially has to
make a judgment as to what level of nonlinearity is significant thus making an automated health monitoring
scheme difficult to implement. Furthermore, this approach was designed for monocomponent signals (single
harmonic) derived from a single degree-of-freedom (dof) system or from an appropriately filtered multi-dof
system thus limiting practicality in many situations. A similar approach was followed in Ref. [9] using the
wavelet transform. This approach is well suited to multi-dof systems but was designed to work with impulse
excitation and still requires user judgement as to the significance of the observed nonlinearity. Another
approach to nonlinear system identification was recently proposed by Kerschen et al. [10]. This approach is
based on Bayesian model selection and also requires a priori knowledge of an underlying model or class of
models to be tested. A different approach is to use higher-order spectra to assess the presence of nonlinearity.
For example, one might use the bi-spectrum to detect nonlinear coupling in various frequency components [4].
Higher-order approaches can capture certain types of nonlinearity but are not generic in the sense that they
still focus on a specific type of correlation.

Rather than modifying linear signal processing tools and/or methods, the approach described herein was
designed specifically to explore nonlinear relationships among time-series data. The method does not require a
specific model of the nonlinearity, works for any type of stationary excitation, and requires no pre-processing
(e.g. filtering) of the response time series. Furthermore, by using the method of surrogate data the diagnosis
may be made in a reliable, statistically significant fashion. In the absence of a priori knowledge of a specific
damage mechanism (nonlinearity), surrogate data provide a data-driven basecline leading to an absolute
measure of damage.



J.M. Nichols et al. | Journal of Sound and Vibration 297 (2006) 1-16 3

Two different information-theoretic (IT) measures are presented, the time-delayed mutual information, and
the time-delayed transfer entropy. These metrics have seen use in the physics literature but their utility in
analyzing structural dynamics has not yet been explored. Both quantities have their roots in information
theory and are designed to measure the co-dependence of dynamical variables in a probabilistic sense. Rather
than considering only second-order correlations in the data (e.g. linear cross-correlation) these metrics are
designed to consider the entire probability distribution of the signal(s), regardless of their underlying form,
and hence the higher-order correlations associated with nonlinearity. Our general approach consists of first
constructing surrogate data sets from the original structural response data. These surrogates are designed to
match exactly the linear auto- and cross-correlations among the data. We then compute the ITs on both the
original data and the surrogates and search for discrepancies. The surrogate data effectively serve as a
“bootstrapped” baseline data set that allow us to quantitatively test against the hypothesis of a linear
structure. We argue that ITs provide an appropriate framework for studying nonlinear coupling as they make
no assumptions about the underlying model.

Sections 2 and 3 describe the time-delayed mutual information and time-delayed transfer entropy,
respectively. In the case of linear coupling both quantities are shown to reduce to a simple function of the
dynamic, linear cross-correlation coefficient between the structure’s variables. An algorithm for estimating
both metrics from time-series data is presented in Section 4. The approach relies on a kernel density estimation
technique for approximating the various probabilities required by both metrics. The procedure for generating
the surrogate data sets is also described in Section 5. We then derive an analytical expression for both
quantities in Section 6 and compare times-series estimates to theoretical predictions. Finally, we demonstrate
the power of the proposed approach by detecting the presence and degree of nonlinearity in a 5 dof structure
subject to Gaussian excitation. Ambient conditions are varied, simulating a temperature gradient on the
structure. The proposed approach is unaffected by this variation and correctly identifies the presence of the
nonlinearity.

2. Time-delayed mutual information

Assume we can monitor the dynamics of a spatially extended system by recording the system output from L
different locations at N discrete points in time resulting in the multi-variate time series x(n) = x;(n) i =
l,...,Ln=1...N (we use boldface type to denote a vector). In order to draw inference about the coupling
mechanisms in a system we are effectively asking questions about the relationship(s) x;(n) = f,(x(n)) € L. In
structural dynamics, if the function(s) f; are linear there exist a variety of signal processing techniques i
capable of extracting the relevant parameters, e.g. stiffness, damping, etc. The linear cross-correlation and
transfer function estimates are two frequently used approaches. While computationally efficient, these
techniques are by definition only capable of exploring a specific kind of relationship in the data. These
methods assume that all of the relevant information is contained in second-order correlations, i.e. the
covariance matrix. A more general way to study the properties of the f; is to ask how much information the
two signals x;(n), x;(n) have in common and how that information varies in time (flows) between locations i
and j. Each measurement can be thought of as a random variable with underlying probability density function
p(xi(n)) and joint probability density p(x;(n), x;(m)). In the development that follows we assume stationarity
such that p(x;(n)) = p(x;(n + k)) = p(x;), i.e. a time shift does not affect the probability density function.
Similarly for joint densities p(x;(n), x;(m)) = p(xi(n + k), x;(m + k)) = p(x;, x;(m — n)), i.e. only relative lags
(advances) matter. This assumption is made for purely for practical reasons. In order to estimate probability
densities from a single observed time series (see Section 4) we will need to assume stationarity and ergodicity.

If the processes are statistically independent (uncoupled) p(x;, x;) = p(x;)p(x;), that is the joint probability
density is the product of the two individual probability densities. In order to quantify the degree of
independence one may compute the mutual information

pxi, ,)) o
1(x,,x])—//p(x,,xj)10g P dx; dx; (1

which effectively maps deviations from the assumption of independence to a scalar. The integrals in Eq. (1) are
taken over all possible states x;(n), x;(n). Another interpretation of Eq. (1) is a “distance from independence”.



4 J.M. Nichols et al. | Journal of Sound and Vibration 297 (2006) 1-16

The mutual information function is strictly non-negative and it is assumed that 01log(0) = 0. This quantity has
seen use in a variety of fields, most notably in nonlinear dynamics for selecting the delay for time series
embedding [11]. Other applications have included the selection of location for sensor placement [12] in SHM,
in communications [13], and as a ““contrast function” for performing independent component analysis [14].

If one seeks to study how information moves from i to j one can add a time delay in one of the variables.
Denote p(x;, x;(T)) as the joint probability density associated with considering the delayed time series x;(n +
T) in place of x;(m) (i.e. T = m — n). The average mutual information function then reads

P(Xi,xj(T))) o
oo (1)),) 14

This quantity was used by Vastano and Swinney [15] as a means of studying information transport in spatially
extended systems. If information present at location i is transmitted to location j there will be a peak in the
curve I(x;;x;(T)) at T>0 as the joint probability density increases and reaches its maximum. A peak that
occurs for 7T'<0 implies that the information is being transported from j to 7. Time-delayed mutual
information has been used to detect the direction of information flow in neuron firings [16], in a
reaction—diffusion system [15], a coupled map lattice [17], and more recently in population dynamics [18]. For
estimation purposes it will be convenient to expand Eq. (2) into entropy form

Ieix, T) = / / P x(T)log, @)

I(eix, T) = / / P x(TYlogy (P, x(T)) doxs do(T) — / P)logs(p(x)) dx;
- / PO(TYloga(p(x(T))) d(T), 3)

where [ p(a)log,(p(a)) and [ [ p(a, b)log,(p(a, b)) are the Shannon entropies associated with the single and joint
distributions of random variables a, b.

Assume the two processes X;, x; are zero-mean, Gaussian distributed with variances a O,
cross-correlation coefficient [ (7). Carrying out the integration required by Eq. (3) y1elds

I(xi;x;, T) = —3log(l — p5 (7). (4)

Eq. (4) is referred to as the “linearized” information flow between the two processes x; and x; and considers
only second moments in the data. In this special case all of the information shared between the two processes
can be captured by the linear cross-correlation coefficient. For the general case described by Eq. (2), however,
the information flow I(x;;x;, T) may be thought of as a nonlinear cross-correlation function capable of
capturing both linear and nonlinear (higher-order) correlations in time-series data. The algorithm required for
evaluating Eq. (2) is given in Section 4.

2 and dynamic

3. Transfer entropy

One potential drawback of using the mutual information function to measure coupling is that it does not
consider the dynamics of the underlying processes explicitly. Rather, one has to introduce a time delay in order
to explore dynamic correlations. More recently a different metric, the transfer entropy, has been introduced by
Schreiber [19] and incorporates the dynamic nature of the processes directly. The transfer entropy metric was
designed specifically to look at information transport and has been used already in examining physiological
coupling [20] and financial time series [21]. Rather than focusing on the joint probability density, transfer
entropy includes the notion of conditional probability. If the probability of a random variable having a given
value at discrete time n + 1 is conditional on the previous k values only, the dynamics of that variable are
said to be described by a kth order Markov process. Mathematically this means the transition probabilities
follow p(xi(n+ D)|x;(n),x(n—1),...,xi(n —k+1) = p(x;(n + 1)|x;(n), x;(n — 1),...,xi(n — k + 1), x;(n — k)),
that is to say the dynamics at discrete time n + 1) is independent of the dynamics at time n — k. Assuming
stationarity (absolute time index does not matter) we may define p(xi(1)|x§k)) = p(x;(n + 1)|xi(n), x;(n — 1),
xi(n —2),...,xi(n—k+1)). If two processes are being considered one could ask how the dynamics of x;
influence these transition probabilities. In other words, explore the possibility that the dynamics follow
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p(xi(n+ 1)|x;(n), xg coxi(n—k+ 1), (xj(m),xj(m —1),...,x;(m — [+ 1)) or in the more compact
notation p(x; (1)|x ()(m n)) (again we have assumed stationarity such that only time lags/advances are
relevant). Here the dynamlcs of x; are modeled as a /th order Markov process. The probability of the process
x; being in a given state at time 7 + 1 is dependent on past history and values of the process x; at discrete time
mm-—1,.... m—1+1.

Based on this description of the dynamics, we may define two processes to be coupled if one influences the
transition probabilities of the other. The degree of influence can be quantified in the same way as for mutual
information. Following Schreiber [19] and denoting 7' = m — n we write

TCx(D], x4

(k) (/)
- [ | [ sl <(x;i)|fi>|;d«>)(m> (! (1) )

as the time-delayed transfer entropy. While mutual information measures a distance from the hypothesis of
statistical independence, transfer entropy measures a distance from the hypothesis that the dynamics of x;(n)
can be described entirely by its past history and that no new information is gained by considering the dynamics
of xj(n+ T). Making use of the law of conditional probabilities p(a|b) = p(a, b)/p(b) and expanding Eq. (5)
may be re-written in entropy form as

T ) = [ [ [ a0 (T )logs (1) x0T () dx a7y

/ PaD)log, (p() / / P60, 0(T))
xlog, (p(e?, 2 (1)) dx® dx’(T)

- / / pCe(D), x)logs (p(i(1), %) dx/(1) de®. ©)

Should consideration of x;(n + T') provide no additional knowledge about the dynamics of x;(n) the transfer
entropy will be zero, rising to some positive value should x;(n + T') carry information not possessed in x;(n).
Several free parameters exist in Eq. (6), most notably the assumed order of the processes k, /. In this work we
assume k = [/ = 1 for simplicity and instead focus on varying the time delay 7= m — n in an effort to see how
much information x;(n + T) carries about x;(n) over various time scales.

For linear, Gaussian processes the transfer entropy between masses #,j can be written in terms of the
covariance matrices associated with its arguments as [20]

()

1 1% x,(1),x,0,(1) | | 6, |
T(xi(Dlxi, (T) = 3 1o < (D)o, (T) )

1% () 1 C ).,
where

Elxi(n+ Dxi(n+1)]  Elxi(n+ Dxi(n)]  E[xi(n+ Dxj(n+ T)]
(gxi(l)v"ivxj(T) = E[xi(n)xi(n + 1)] E[x,-(n)x,-(n)] E[xi(n)xj(n + T)] 5
Elxjn+ Txin+1)] Elxj(n+ Tx(n)] Elxj(n+ T)xj(n+ T)]

Elxi(n+ Dxi(n+ D] E[xi(n + Dx;(n)]

Cai0ni = B+ )] Bl

>

and

E[xi(n)xi(n)] E[xi(n)x;(n+ T)]

©xe9M = Blg(n+ Tyxm] Ebg(n + Thx(n + )]
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and E[-] takes the expected value. The determinant of %, is simply the variance E[x;(n)x;(n)] = oii. The other
expected values may also be computed, assuming stationarity, to give the linearized transfer entropy. Define
the linear cross-correlation between the stationary time series x;, x; as inxj(T ) = E[x{(n)xj(n+ T)]. For i =j
one has the autocorrelation Ry, (7). For convenience these quantities are normalized by the signal

variance(s). Therefore denote IAQXI,XI,(T ) = R,x,(T)/R,;x,(0) as the normalized auto-correlation. The linear
cross-correlation coefficient pr«Yj( T)= Rx,-xj(T) / Rx,—x,-(O)ijxj(O) has already been referred to in the previous
section (Eq. (4)). The quantities involving discrete time n + 1 are obtained by noting that E[x;(n + 1)x;(n)] =
Ry, (1) and E[x;(n + D)x;(n + T)] = Ry,;(T — 1). Correlations associated with negative delays are obtained by
the general relationship inxj(— T)= ijxi(T). Computing Eq. (7) therefore requires not only the dynamic
linear auto- and cross-correlation coefficients, but also their time-shifted versions. Using this notation, Eq. (7)
becomes

T(xi(1)|x;, x;(T))
~(= 1+ P2, (TR, (1) = 1)
=20, (T = DR (D (T) + 92, (T = 1)+ (R, (1) + (=1 + p2, (T)))

Eq. (8) gives the linearized, time-delayed transfer entropy between two stationary, Gaussian processes Xx;, X;.
For this special case all of the information being shared between x; and x; can be captured by the linear cross-
correlation coefficient and the autocorrelation for x;(n).

1
= 5 log, ®)

2

4. Computation from time series
4.1. Mutual information

Computing the time-delayed mutual information and/or transfer entropy between two time series involves
the estimation of the various probability densities that comprise Eq.(s) (2,6). It has been shown that these
quantities may be obtained through use of kernel density estimation [20,22,23]. If the practitioner has access to
an ensemble of measurements the densities can be estimated for non-stationary time series. However, in most
SHM applications the practitioner must use a single set of measured response data. The following approach
therefore assumes stationary, erogodic data. At each point in the data vector x(n) we form the estimate

. 1 S
P00 = oy D O IXG) = (), ©)
\m—;\>t
where
I e —|Ix(n) — x(m)] =0,
and the operator || - || takes the vector norm (here we use Euclidean norm). The parameter ¢ is referred to as a

Theiler window and is used to eliminate bias in the estimate due to serial correlations in the data [20]. Eq. (9)
takes the local density estimate about point n to be the number of points in a hyper-sphere of size ¢ about that
point divided by the total number of points in the time series N. Eq. (9) represents a simple form of kernel
density estimation using the ““step’” kernel with fixed band width &. Following Refs. [23,24] the entropy for the
process x(n) is simply the expected value of log,(p(x(n))) and may be approximated by

/ pOx(m)ogy(p(x(n)) ~ %Z log, (A(x(n). ). (10)

We may therefore use Eq. (10) to estimate the various Shannon entropies required of Eq. (3). For example, the
mutual information requires estimates of the single and joint probability densities p(x;), p(x;), and p(x;, x;).
Substituting Eq. (10) into Eq. (3) and considering a time delay in x; gives the estimated time-delayed
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mutual information
o 1 " N
I, T0) = 55D 0@ (p(xi(n). xi(n + T), 2)) — loga(P(xi(n), )

—log,(p(xj(n + T), ¢))}, (11)

where the dependence on the ¢ has been left explicitly in the equation. Given two time series x; and x; one may
compute /(x;; x;j, T, ¢) directly from the data. The above formulation is generic and may be extended to look at
shared information in more than two variables or between groups of variables. This extension of mutual
information is referred to in the literature as redundancy and is discussed thoroughly by Prichard and Theiler
[23] and Palus [25]. The algorithm for the multi-variate case stays basically the same, the only difference being
that the densities must be evaluated in a higher-dimensional space. The main difficulty in implementing this
scheme lies in finding near neighbors within a radius ¢ to a given point n. For time series of even modest size
using the naive O(N?) approach is prohibitive. However, there exist a number of fast near-neighbor search
algorithms available that can significantly reduce computation time. For example, the box-assisted approach
of Ref. [26] or a variant of the K-D tree algorithm [27] are two frequently used options.

4.2. Transfer entropy

Transfer entropy also reduces to a simple function of the local density estimates given by Eq. (9). Using
Eq. (10) to estimate the necessary entropies gives

R 1
TE(x;(1)]x;, x(T),¢) = NZ{Ing(ﬁ(xi(n + 1), xi(n), xj(n + T), ¢)) + log,(p(xi(n), £))

— logy(p(xi(n + 1), xi(n), £)) — log,y (p(xi(n), x;(n + T), ¢))}. (12)

Again dependence on the band width ¢ has been left in the equation. For illustrative purposes we examine the
first term on the right-hand side of Eq. (12). Expanding Eq. (9) gives the needed probability density estimate as

xi(n+1) — xi{(m+1)

1 &
P+ 1), xi(n), x;(n + T),2) = > ofe- xi(n) — x;(m) ; (13)

\m)ﬁj\gt X](l’l + T) - xf(m + T)
where | - || takes the Euclidean norm of the three vector components. It should be mentioned that both

algorithms can also be re-written to utilized a “fixed mass” approach rather than a fixed band width. In this
approach the local densities are estimated by the ratio of a fixed number of points to the volume of space
occupied by those points. In this case Eq. (9) is re-written

1 M
N =2t—1V(x®n)’

where M is the number of nearest neighbors to look at and V(x(#)) is the minimum volume that encompasses
those points (again we exclude neighbors with in ¢ time steps of the fiducial point # from consideration).
Hyper-spheres and hyper-rectangles are two commonly used volume elements. A discussion of non-parametric
density estimation techniques is given in Ref. [20]. In presenting the results we will drop the *“ * ” denoting
“estimate” from both mutual information and transfer entropy.

p(x(n), M) = (14)

5. Hypothesis testing: the method of surrogate data

Given two time series from a structure the practitioner may be interested in assessing whether or not the
relationship between the two signals can be accurately represented by a linear model. In this section we
describe one possible means of placing this question in a hypothesis testing framework using the notion of
surrogate data sets. The idea behind this approach is to construct additional time series that preserve specific
properties of the original data but are random with respect to other properties, presumably the ones the
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practitioner is testing for. The metric(s) of interest, in this case mutual information and transfer entropy, are
then computed for both surrogate data and the original data. Differences in the results indicate that the
original data possesses the specific property being tested for.

In this case we are testing against the null hypothesis of a linear relationship between two, Gaussian-
distributed variables. We therefore seek surrogate data sets that preserve the linear cross-correlation between
x; and x;. One approach is to randomize the phases of the two data sets such that their difference is preserved
[28]. The discrete Fourier transform of a real-valued process is given by

N-1
X)) =F{x(n)} = Z x(n)e2mnt
n=0
where X(f) is a complex-valued quantity evaluated at f = —1/2At,...,—1/NAt, 0,1/NAt,...1/2A¢.

Alternatively X(f) may be written in terms of a magnitude and phase as X(f) = |X(f)|e'?"). The linear
cross-correlation between two time records x;(n), x,(n) may be written in the frequency domain as a product of
Fourier transforms as a consequence of the Weiner—Khintchine theorem giving

F (R (D)) = 1/NAX (Y X () = 1/ NALX (NI X ()] 4D~ (15)

Both the magnitude of the cross-correlation and the phase relationship will remain unchanged if a random
phase ¥ (f) € [0,27) is added to both ¢,(f),d;(f). We may therefore generate the surrogate time series
Xi(n), X;(n) by taking

2i(n) = ZHX (VDY %1(n) = FHX (VD).

Because of the circular nature of the discrete transform the same random phase must be added to both positive
and negative frequency components. In other words, we must set y(—f) = ¥/(f). The general algorithm for
creating surrogate data sets for L time series is therefore to compute Xx(n) = Z Y{Xx(f)e¥} k= 1--- L. The
resulting time series will exactly match only the linear correlations in the original data. Randomizing the
phases will destroy any higher-order correlations. Utilizing either of the algorithms described by Egs. (11) and
(12) to explore relationships between the x;(n) will therefore produce different results when applied to x;(n) in
the case of nonlinear coupling. No difference means the processes are consistent with linear coupling. If the
data are not Gaussian distributed a different surrogate algorithm is required that also preserves the amplitude
distribution of the original data (in addition to the linear auto- and cross-correlations) [29].

6. Information flow in structures

Lets assume that our system of interest is the 5 dof spring—mass—damper depicted in Fig. 1. The equations of
motion for this system are

M{&} + C{x} + K{x} = (1), (16)

where M, C, and K are the mass, damping, and stiffness matrices respectively. Let the dynamical variables of
interest be the positions of the masses x; i =1--- L. For the analysis it is convenient to work in modal

m m m m m,

= S ol N
omoElomoElomoEdomo Rl omel

Fig. 1. Schematic of linear spring-mass—damper system.
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coordinates by allowing x; = Z,fumk where w; are the mass-normalized mode shapes. The decoupled
equations of motion in continuous time are

i, 4 2L, + win, = w (@) = ¢,0). (17)

Formulation of both Egs. (4) and (8) requires the auto- and cross-correlations for the response variables.
These may be derived in terms of the input (excitation) auto- and cross-correlations for the case of Gaussian
excitation as

Ryy4, (D) = Elq)(D)q,,(t + D] = Oy,,0(7),

where the entries of Q,,, are dictated by the mode shapes, J(-) is the unit impulse, and 7 is a “‘continuous time”
measure of delay (continuous time and discrete time are related through the sampling interval Azi.e. t = TAr).
For Gaussian excitation, the covariance function matrix associated with the modal forcing terms g¢; is
characterized by

QO = (u/ H)(u, f). (18)
By convolving the excitation with the impulse response for a spring—mass system
1 .
hi = —cei%isin(wgt) i=1,...,L (19)
Wgi

the response correlations may be written [30]

00 oo L L
Rx,-xj-(f) = / / Z Z uiluijlmé(T + 01 - 92)
0 0 i m

X sin(a)dlé)l) sin(codm@z) d@] d@z, (20)

where wg =+4/1— C?wi i=1,...,L are the damped natural frequencies for the system. Carrying out the
integration yields the needed correlations

e[—clwlﬂl —mem (‘)2]

WD dm

1 L L —{omt —Cnomt o3
Ry, (1) ZZZZQIIHL‘””J’"[AWe mom® co8(w ) + Bime M sin(@gm )], (21)
/ m

where

8(wil; + @ml,n)
of + 0% + 4070, (L + 403,000, + 202,07 (—1 + 20 +202)
40} + 2010000 + 02 (=1 +200))
Oan(@F + 0%, 4 403 0l 1Ly + 403 0101 + 202,07 (—1 + 207 +202)

Im =

By = (22)

Substituting into Eq. (4) or Eq. (8) along with Egs. (21) and (22) gives a closed-form solution to both the
mutual information and transfer entropy between masses i,;.

In an effort to test the algorithms we consider a linear 5 dof structure (L = 5) where the structure’s
parameters are m; = 0.01,¢; = 0.05,k; = 10.0 i = 1...5. Further assume that the excitation is Gaussian (unit
standard deviation) and is applied only at the end mass so that f={0,0,0,0,.47(0,1)}T. The natural
frequencies and damping ratios for this system are summarized in Table 1. Assuming a proportional damping
model (C = fK) we have as an approximation {; = (1/2)c¢;w;. Using these parameters, the system described by
Eq. (s) (16) was simulated using a fifth-order Runge—Kutta scheme with a time step of Az = 0.01 s. giving time
series for the displacements x;(n) n = 1--- N where N was chosen to be 50,000 points. Prior to analysis, each
time series was normalized to zero mean and unit variance.

6.1. Results: mutual information

For this analysis we focus on computing the information transport between masses i = 2 and j = 3, i.e. use
Xx»(n), x3(n) as the time series of interest. Fig. 2 shows the results obtained by applying Eq. (11) with ¢ = 0.05
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Table 1
Modal parameters for 5 dof structure

Mode G w; (rad/s) (nﬁ-A) (rad/s)
1 0.02 9.0 8.8
2 0.07 26.3 25.4
3 0.10 41.4 40.0
4 0.13 53.2 51.4
5 0.15 60.7 58.7
asF : : : : : _
3l i
25 1
i}
a
£ 21 1
=
X
=z

Delay T

Fig. 2. Time-delayed mutual information between masses 2,3. Theoretical results (solid line) vs. simulation results (open circles).

compared with theoretical predictions obtained via Eqgs. (4), (21), and (22). The kernel-based algorithm
accurately captures the time-dependent correlations in the data. The dominant mode is clearly visible, however
because the information fluctuates according to piz,XB(T) the linear cross-correlation is “‘rectified””. The period
associated with the information peaks is therefore exactly half that of the dominant period. The decay of the
information transport with time provides a rate of information loss. As expected, the dynamics of x3(7) say
less about the dynamics x,(0) as T increases.

In an effort to demonstrate the utility of the approach in diagnosing nonlinearity a cubic spring replaces k3
such that the linear stiffness matrix is now given by

ey +ks)  —ko 0 0 0
—ko (k2 — k3) k3 0 0
K= 0 k3 (—k3 + ka) —ky 0 |,
0 0 ke (ke ks) —ks
0 0 0 —ks ks

(—k3 replaces k3) and a nonlinear restoring force is added to the right-hand side of Eq. (16)

0
—pk3(x3 — x2)°
wks(x3 — x2)°
0
0

£ —
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In the context of structural dynamics this particular nonlinearity can be used to model the behavior of a post-
buckled structure [31]. The equilibrium point x3 —x, =0 is replaced by the two stable points
X3 —x; = £4/1/u. As u is increased the asymmetry in restoring force associated with the nonlinearity also
increases. For a large enough value u = p* this system will begin to oscillate between the two equilibria.

Fig. 3 shows the results of computing the average mutual information function for increasing levels of
nonlinearity. The curve with open circles represents the algorithm applied to the original data while the solid
lines show the results of applying to the algorithm to each of ten linear surrogates, generated using the
approach described in Section 5. As p increases, the curves begin to separate, particularly near the dominant
peak. The average mutual information shows an increase in the relative amount of information transmitted
compared to the linear surrogates. Our interpretation is that information associated with higher-order
correlations is still being transmitted, however it is “lost” when analyzing the surrogates. In order to quantify
this difference we form the confidence intervals at each delay

CL(T) = W(T) = Z,pa(T),

CU(T) = (T) + Z,20(T),

where w(T),o(T) are the mean and standard deviation of the surrogates at delay 7. The values for Z,, are
chosen by the practitioner and indicate the desired level of confidence associated with the null hypothesis that
the dynamics of the structure are linear. Consequently, values for the time-delayed mutual information that
fall outside these bounds indicate nonlinearity (violation of the null). In this work we take Z g5 = 1.96 giving
confidence intervals of 95%. Because the ITs show an increased information transport relative to their
linearized counterparts we need only focus on the upper bound. A convenient nonlinearity index for the
mutual information can therefore be define based on distance from this bound as

: I(x;, x;, T)SCU(T),
Zu = ZT:{ (I(xs, x5, T) — CU(T))/CU(T):  I(x;,x;, T)>CU(T),
where we are summing over all values of the mutual information that exceed the confidence interval. An
alternative is to take the maximum distance (rather than sum). We find few differences in the results regardless
of which index is used. A plot of Z,,; as a function of nonlinearity is shown in Fig. 4. The resulting index is
monotonic with 4 and quantifies the separation between the surrogates and I(x,, x3, T). For u = 0 we have the
linear system and no difference is observed between the data and the surrogates as expected. As the degree of
nonlinearity is increased so too the amount of separation as quantified by Z,,. For values of u> u* = 1.75 the
dynamics begin to oscillate between the two equilibria and the nonlinearity is trivial to detect. Values for Z,,
for this case are an order of magnitude larger than those shown in Fig. 4 and are therefore not presented. The
subtle nonlinearity introduced for pu< u* is much more difficult to detect and hence is the focus of this work.

4 4 4
c 3.5 c 3.5 c 35
K] _ K] _ kel _
Eos €25 E o5
L L L
£ 2 £ 2 £ 2
Tﬁ 1.5 Tg 15 Tg 15
2 1 2 1 2 1

0.5 0.5 0.5

0 0 0

-5 0 5 -5 0 5 -5 0 5
(a) Delay T (b) Delay T (©) Delay T

Fig. 3. Dominant peak of I(x,; x3, T) showing increasing discrepancy between surrogates (solid line) and data (open circles) for u =0
(linear system), p = 1.5, and 1.75.
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Fig. 4. Index Z,,; as a function of % nonlinearity (damage) in the system.
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Fig. 5. Time-delayed transfer entropy between mass 3 and mass 2 based on theory (solid line) and from time series (open circles) using the
algorithm based on the fixed band width kernel (a) and that based on the fixed mass kernel (b).

6.2. Results: transfer entropy

The time-delayed transfer entropy was also used in analyzing the relationship between masses 2 and 3. As an
example, consider the case where we examine the information transport from x; to x,, that is, compute
Ty, x,. Fig. 5 shows the analytical result for the linear system (1 = 0) plotted along with the results obtained
using two different approaches to estimating 7'y, ,,. Fig. 5a shows the results obtained using the fixed band
width kernel (Eq. (9)) with a band width of ¢ = 0.075 while Fig. 5b illustrates the fixed mass approach
(Eq. (14)) based on a mass of M = 10 points. Only qualitative agreement was obtained between simulation
and theory using the fixed band width kernel while the fixed mass approach yields a quantitative match to
theory. The difficulty in obtaining good estimates via Eq. (10) likely stems from the subtle effect the transfer
entropy is trying to capture. Rather than focusing on the joint density p(x;,x;(T)) (as does the mutual
information), transfer entropy is attempting to capture changes in the ratio p(x;(1), x;, x;(T))/p(x;, x,(T)). For
systems that possess significant auto-correlation, this ratio will be small; this can be seen by examining the
numerator of Eq. (8). Trying to capture these subtle differences in densities using a relatively crude density
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estimation technique is likely the cause of the discrepancy between numerics and theory. The fixed mass
kernel, on the other hand, is adaptive and effectively adjusts to maintain a constant density of points. This
estimator therefore tends to be more accurate. The problem with the fixed mass estimator is that it carries a
greater computational cost (finding the M nearest neighbors is inherently more difficult than finding all
neighbors within a radius ¢). For the application presented in this work (detecting differences between
surrogates and data) both estimators led to nearly identical results for several test cases. We therefore utilized
the more computationally efficient fixed band width kernel for the remainder of the study and take ¢ = 0.075.
We point out that results are largely insensitive to this choice. Any value for ¢ between 2.5% and 12.5% of the
standard deviation of the time series works well.

As with mutual information, results can be compared to those obtained from surrogate data as nonlinearity
is introduced into the system. Fig. 6 illustrates these results for several different values of the nonlinearity
parameter u. The transfer entropy appears more sensitive to increasing nonlinearity then does the mutual
information. Furthermore, the differences between surrogates and data are noticeable over a wider range of
delay T. As with the mutual information we may define a nonlinearity index (Fig. 7)

2 0: T(xi(Dxi, x;, T)<CU(T),
T—; (T(xi(Dx;, 7, T) = CU(T)/CUT):  T(xi(D)lxz, x5, T) > CU(T),
2 2 2
u=0 u=1.25 u=1.8
215 2 15 2 15
o o 2]
c c c
Yooy Yoo ral
(4] (0] (0]
2 . 2
=S 05 S 05 E 05
0-5 0 5 0-5 0 5 0-5 0 5
(a) Delay T (b) Delay T (c) Delay T

Fig. 6. Plot of T, ., showing increasing discrepancy between surrogates (solid line) and data (open circles) for u = 0 (linear system),
w=1.5,and 1.75.
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Fig. 7. Index Z7 as a function of % nonlinearity (damage) in the system.
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where again the upper confidence limit CU(T) is chosen based on the mean and standard deviation of
surrogate values for delay 7. The values of this index are larger than are those for the mutual information.
This is consistent with other model systems we have examined. We conclude that for this simple system,
transfer entropy is a more sensitive indicator of nonlinear coupling.

6.3. Invariance to ambient variation

Perhaps the greatest strength of the proposed approach is that it is insensitive to certain types of ambient
variability such as those caused by temperature, humidity, etc. Unless these changes affect the form of the
underlying dynamics (linear/nonlinear) they will not affect the proposed indicators Z,;, Z7. In an effort to
demonstrate this, the stiffness values were altered to simulate a temperature gradient across the structure. This
was accomplished by decreasing the first stiffness value by 2%, the next by 4% and so on. The last stiffness, ks,
was therefore altered by 10%. Again we explore the relationship between x;,x3; using both the original
simulated time series and ten linear surrogates. Sample results are displayed in Fig. 8 for both mutual
information and transfer entropy in the case of u = 1.45. Again we can see a clear difference between the
surrogates and the data indicating that there is a statistically significant degree of nonlinearity in the structure.
Although the global stiffness properties have changed, the nonlinearity remains. The natural frequencies for
the altered structure, denoted a)g-A), are summarized in Table 1.

Damage indices were computed in the same manner as in the previous example and the results are displayed
in Fig. 9. As the level of nonlinearity is increased both indices rise in monotonic fashion. The main difference is

2
u=1.45
.§ > 15}
o o
£ £
L weogql
= ko
s F o5t
0.5¢
0 - 0 H
-5 0 5 -5 0 5
(a) Delay T (b) Delay T
Fig. 8. Mutual information (left) and transfer entropy (right) for the case where p = 1.45.
0.25 T T 0.9
087
0.2¢ 07}
0.6
0.15} o5l
N N
01l 0.4
037
0.05 0271
017
0 . . 0 - -
0 0.5 1 1.5 0 0.5 1 1.5
(a) Nonlinearity (b) Nonlinearity

Fig. 9. Damage indices Zys, Z7 as a function of % nonlinearity (damage) in the system.
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that the values of both indices are slightly higher than in the previous case. For example, in the original
structure Z7 = 0.8 for u = 1.75 while here Z7 = 0.8 for u = 1.45. This can be explained by the fact that the
perturbed stiffness values have changed the point at which the system begins to oscillate between the two
equilibria. Given our fixed level of excitation (Gaussian noise with unit standard deviation), these oscillations
now occur for values u> u* = 1.45 (as opposed to p* = 1.75) and the nonlinearity becomes trivial to detect as
before. Differences in the progression of Z,,, Zy with damage from the previous case (no temperature
gradient) can at least partially be explained in terms of the number of surrogate data sets used. In this study
we utilized ten surrogates. Because Z,;, Z are based on the variance of the surrogates, larger numbers
of surrogates tend to produce a ‘“‘smoother”, more reliable progression. However, the computation time
increases with the addition of each surrogate set. Choice of number of surrogates will likely be application
specific. For illustrative purposes ten surrogate sets were deemed sufficient. The important feature to note
in Fig. 9 is that the damage index for the linear structure remains zero even though the natural frequencies
of the structure have shifted by between 2.2% and 5% (depending on the mode). Mode shapes for the
structure are similarly altered. Health monitoring schemes based on modal properties would, in this example,
produce false positives (declare damage when none exists) or suffer a reduced sensitivity to the damage. We
stress that this approach yields an absolute measure of nonlinearity as opposed to relative. This approach
therefore obviates the need for baseline data sets for feature comparisons. We still require a baseline
assumption equating “healthy’’ with linear, but no baseline time series. The surrogates are, in effect, a baseline
(null hypothesis) against which the hypothesis of nonlinearity may be tested. A structure that has been retro-
fitted with a health monitoring system (sensors/algorithms) and for which no baseline exists could still be
monitored for damage.

The main strengths of the described approach pre-suppose that damage takes the form of a nonlinearity.
However, if this is not the case (i.e linear damage or a healthy structure who’s dynamics are nonlinear) the
approach can still be utilized by drawing comparisons between IT metrics computed from a baseline data set
and a damaged data set. In this case there would be no need for surrogates, however, as a true baseline would
be required. As we have demonstrated (see Egs. (4) and (8)), in the limiting case of a linear structure the IT
metrics carry the same information as does the linear auto- and cross-correlation functions and (by the
Weiner—Khintchine theorem) the auto- and cross-spectral densities. Their use in the case of linear damage is
therefore tantamount to looking for changes in linear properties such as modal frequencies.

7. Conclusions

In this work we have described a process by which the vibrational response of a structure can be analyzed
for the presence of nonlinearity. Both the time-delayed mutual information and time-delayed transfer entropy
were presented as two alternative, probabilistic definitions of coupling. In contrast to standard signal
processing techniques which focus on second-order (linear) correlations, these two quantities capture coupling
in all moments of the signal’s underlying probability density functions. Because both quantities capture
general dependencies among time series they may be effectively used to diagnose when the coupling is
nonlinear. We have demonstrated an approach by which the practitioner constructs surrogate data sets that
preserve the second-order correlations in the data but that destroy any higher-order correlations. Computing
either mutual information or transfer entropy on both the actual data and the surrogates was shown to
produce different results when nonlinearity was present. A nonlinearity index for capturing this difference was
introduced and showed a monotonic increase with the degree of system nonlinearity. With regard to SHM,
this approach eliminates both the necessity of acquiring baseline statistics and the problems associated with
separating ambient variation from damage. With regard to the former, the proposed technique provides an
absolute measure of nonlinearity in the system and therefore does not require the comparison to a baseline
data set. This has recently been demonstrated for two different experimental systems [32,33]. Furthermore,
because the proposed approach seeks a direct measure of nonlinearity, global changes in system properties
such as stiffness will not affect the results. Here we have demonstrated this by changing the stiffness values of
the structure to simulate a temperature gradient. The nonlinearity indices for both mutual information and
transfer entropy were largely insensitive to this change.



16 J.M. Nichols et al. | Journal of Sound and Vibration 297 (2006) 1-16

References

[1] B. Peeters, J. Maeck, G.D. Roeck, Vibration-based damage detection in civil engineering: excitation sources and temperature effects,
Smart Materials and Structures 10 (3) (2001) 518-527.
[2] L.-A. Wong, J.-C. Chen, Damage identification of nonlinear structural systems, A/4A4 Journal 38 (8) (2000) 1444-1452.
[3] T.J. Johnson, D.E. Adams, Transmissibility as a differential indicator of structural damage, Journal of Vibration and Acoustics 124
(2002) 634-641.
[4] K. Worden, G.R. Tomlinson, Nonlinearity in experimental modal analysis, Philosophical Transactions of the Royal Society A 359
(2001) 113-130.
[5] S.A. Neild, M.S. Williams, P.D. McFadden, Nonlinear vibration characteristics of damaged concrete beams, Journal of Structural
Engineering 129 (2) (2003) 260-268.
[6] M. Feldman, Nonlinear system vibration analysis using hilbert transform—i: free vibration analysis method ““freevib”, Mechanical
Systems and Signal Processing 8 (2) (1994) 119-127.
[71 M. Feldman, Nonlinear system vibration analysis using hilbert transform—ii: forced vibration analysis method “forcevib”,
Mechanical Systems and Signal Processing 8 (3) (1994) 309-318.
[8] M. Feldman, S. Seibold, Damage diagnosis of rotors: application of hilbert transform and multihypothesis testing, Journal of
Vibration and Control 5 (3) (1999) 421-442.
[9] W.J. Staszewski, Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound
and Vibration 214 (4) (1998) 639-658.
[10] G. Kerschen, J.-C. Gonlival, F.M. Hemez, Bayesian model screening for the identification of nonlinear mechanical structures, Journal
of Vibration and Acoustics 125 (2003) 389-397.
[11] A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information, Physical Review A 33 (1986)
1134-1140.
[12] H.V.B.I. Trendafilova, W. Heylen, Measurement point selection in damage detection using the mutual information concept, Smart
Materials and Structures 10 (3) (2001) 528-533.
[13] O. Oyman, R.U. Nabar, H. Bolcskei, A.J. Paulraj, Characterizing the statistical properties of mutual information in mimo channels,
IEEE Transactions on Signal Processing 51 (11) (2003) 2784-2795.
[14] P. Comon, Independent component analysis, a new concept?, Signal Processing 36 (1994) 287-314.
[15] J.A. Vastano, H.L. Swinney, Information transport in spatiotemporal systems, Physical Review Letters 60 (18) (1988) 1773-1776.
[16] A. Destexhe, Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory
neurons, Physical Review E 50 (2) (1994) 1594-1606.
[17] M.C. Ho, F.C. Shin, Information flow and nontrivial collective behavior in chaotic-coupled-map lattices, Physical Review E 67 (5)
(2003) 056214.
[18] J.M. Nichols, Inferences about information flow and dispersal for spatially extended population systems using time series data,
Proceedings of the Royal Society of London - Biological Sciences 272 (1565) (2005) 871-876.
[19] T. Schreiber, Measuring information transfer, Physical Review Letters 85 (2000) 461.
[20] A. Kaiser, T. Schreiber, Information transfer in continuous processes, Physica D 166 (2002) 43-62.
[21] R. Marschinski, H. Kantz, Analysing the information flow between financial time series, European Physical Journal B 30 (2002)
275-281.
[22] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, 1986.
[23] D. Prichard, J. Theiler, Generalized redundancies for time series analysis, Physica D 84 (1995) 476-493.
[24] W. Liebert, H.G. Schuster, Proper choice of the time delay for the analysis of chaotic time series, Physics Letters A 142 (1989)
107-111.
[25] M. Palus, Testing for nonlinearity using redundancies: quantitative and qualitative aspects, Physica D 80 (1995) 186-205.
[26] P. Grassberger, An optimized box-assisted algorithm for fractal dimensions, Physics Letters A 148 (1990) 63-68.
[27] J.L. Bentley, Multidimensional binary search trees in database applications, IEEE Transactions on Software Engineering SE-5 (4)
(1979) 333-340.
[28] D. Prichard, J. Theiler, Generating surrogate data for time series with several simultaneously measured variables, Physical Review
Letters 73 (7) (1994) 951-954.
[29] T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests, Physical Review Letters 77 (4) (1996) 635-638.
[30] H. Benaroya, Mechanical Vibration: Analysis, Uncertainties, and Control, Prentice-Hall, Englewood Chiffs, NJ, 1998.
[31] L.N. Virgin, Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration, Cambridge University Press,
Cambridge, 2000.
[32] J.M. Nichols, M. Seaver, S.T. Trickey, L.W. Salvino, D.L. Pecora, Detecting impact damage in experimental composite structures: an
information-theoretic approach, Smart Materials and Structures 14 (2005) 1-11.
[33] J.M. Nichols, M. Seaver, S.T. Trickey, T. Bash, M. Kasarda, Use of information theory in structural monitoring applications, in:
F.-K. Chang (Ed.), Proceedings of the Fifth International Workshop on Structural Health Monitoring, DEStech Publications,
Lancaster, PA, 2005.



	A method for detecting damage-induced nonlinearities in structures using information theory
	Introduction
	Time-delayed mutual information
	Transfer entropy
	Computation from time series
	Mutual information
	Transfer entropy

	Hypothesis testing: the method of surrogate data
	Information flow in structures
	Results: mutual information
	Results: transfer entropy
	Invariance to ambient variation

	Conclusions
	References


