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Abstract

A direct method is proposed to derive the exact solution for the free vibration of a thin rectangular plate with two
opposite edges simply supported and with internal column supports. Considering the compatibility of displacements and
rotations between the plate and the columns, the coupled vibration of a plate—column system is derived. The accuracy and
correctness of the present method are demonstrated through the comparison of the results obtained from the proposed
method and from finite-element analysis. Then the effects of column sizes and column models on the natural frequencies of
a plate—column system are investigated in detail. A parametric study is focused on fully simply supported rectangular
plates with a single internal column. It is shown that the effect of column flexibility in plate—column structures should be
considered. The solution provided in the paper is general and includes several particular solutions for fixed point-supports,
pinned point-supports and elastic point-supports. Results with high accuracy have been obtained and these can be used as
the benchmark for the further investigation and for other approximate methods.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Floor slabs supported by columns are typical structures in civil engineering. For a long-span flat slab, the
internal column supports can greatly enhance the loading capacity and improve the dynamic characteristics of
the slab. Therefore, it is important for designers to understand how the columns affect the dynamic
characteristics of a floor structure [1].

There are several models to describe the effect of a column on the vibration of a floor. The simplest model is
to consider the column as having infinite stiffness in the longitudinal direction, i.e., a pinned point-support. An
improved model is to consider the effect of the stiffness of the column, i.e., to model the column as three
massless springs in the longitudinal and two rotational directions.

There are many publications on free vibration of plates with either rigid or elastic point-supports and only a
typical selection is mentioned here. A general study to vibration characteristics of rectangular plates with
arbitrarily located point-supports came from Fan and Cheung [2] using the spline finite strip method. Kim and
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Dickinson [3] used the Lagrangian multiplier method combined with the orthogonally generated polynomials
to study the rectangular plates with point-supports. Zhou [4] and Cheung and Zhou [5] used static beam
functions as admissible functions to study tapered rectangular plates with point-supports and composite
rectangular plates with point-supports, respectively. The 3-D vibration of composite plates with internal
point-supports has been studied by Zhou et al. [6] using the finite layer method. Liew et al. [7] studied the free
vibration of arbitrarily shaped Mindlin plates with internal point-supports. Bergman et al. [8] derived the
dynamic Green function for rectangular plates having two opposite edges simply supported and attached by
substructures. Petyt and Mirza [9] used the finite-element (FE) method to study the free vibration of column-
supported floor slabs by simplifying the columns as pinned point-supports. El-Dardiry et al. [10] examined the
effects of FE models on the dynamic characteristics of a column-supported long-span flat concrete floor. Three
different models for the columns: pinned point-supports, fixed point-supports and continuous columns, were
considered. The predicted frequencies of the three models were compared with 11 measured natural
frequencies of the floor. This showed that the column-floor model provided the most appropriate
representation of the floor system. The results also indicated that the first 12 calculated natural frequencies
of the column-floor model were just between the corresponding natural frequencies of the pinned point-
support and fixed point-support models [10]. This paper will show that this observation cannot be used as a
general conclusion.

In the present study, the exact analytical solution for a thin rectangular plate with two opposite edges simply
supported and with internal column supports is derived directly from the governing differential equations. The
eigenvalue equations are then obtained by considering the compatibility of displacements and rotations
between the plate and the columns. The number of the eigenvalue equations equals to three times of the
number of the columns. The natural frequencies are determined by using the searching root method. Several
special cases can be directly derived from the solutions. The correctness and accuracy of the proposed method
is first verified by using the FE method, then parametric studies are conducted to examine the effects of the
ratio of the dimensions of plate to column, the ratio of the diameter of column to the thickness of a plate and
different column models.

2. Governing differential equations

A uniform thin rectangular plate with » internal column supports is considered as shown in Fig. 1. It is
assumed that the plate is simply supported at two opposite edges x = 0 and x = «, and the length and width of
the plate are @ and b, respectively. According to the theory of thin plate vibration, the governing differential
equation is given as follows:
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Fig. 1. A rectangular plate with internal column supports.
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where w is the transverse deflection of the plate, p is the mass density per unit volume, / is the thickness of the
plate, D is the flexural rigidity and C, is the damping of the plate. fo(x, y, f) and f(x, y, f) are the external loads
acting on the plate and the forces between the internal columns and the plate. The internal forces can be
expressed as:

a0 =Y plD3(x = X3y — y) + > ma(0)d (x = x)3(y = »))
i=1 i=1

+ > mu03(x = x)5 (v = y,), 2)
i=1

where p(7) is the vertical internal force of the ith column acting on the plate, m.(t) and m,(¢) are the bending
moments, respectively, about the y and x axes, (x;, y;) is the position of the ith column, d(x—x;) and §(y—y,) are
the Dirac delta functions, and ¢'(x—x;) and ¢'(y—y;) are the doublet functions.

Assuming that the principal axes of the cross-section of all columns are parallel to the x and y axes, the
transverse vibration of the ith column should satisfy the following two governing differential equations

*oy vy %0y .

Eilxi?f+ Cv,-a—;”—i-p,A T =gz, i=12,...,n, (3)
oty ov,, %y .

Eil,; 6‘{ + Cyi a}’—f-pA 6t2y 4z 0, i=12,....n, 4)

where E; is the modulus of elasticity of the ith column, I,; and I, are the second moments of area of the ith
column in the oxz and o0;yz planes respectively, and v,; and v, are the deflections in the x and y directions,
respectively, C,; is the damping for the transverse vibration of the ith column and p;4; is the mass density per
unit length. ¢,,(z, 7) and ¢,,(z, 7) are the external forces acting on the ith column within the 0;xz and 0;yz planes,
respectively.

The longitudinal vibration of the ith column should satisfy the following governing differential equation:

2 2
EA%2+Cu,aa + p;A 6 —f(zt) i=1,2,...,n, (5)

where u; is the displacement of the ith column in the longitudinal direction, C,; is the damping coefficient for
the longitudinal vibration of the ith column and f(z,?) is the external load in the longitudinal direction.

When the plate-column system experiences free vibration, fo(x,»,7) =0, ¢(z,1) =0, ¢,/(z,1) =0 and
fiz,t)=0,({=1,2,...,n). The solutions of Egs. (1)=(5) have the following forms when the damping effect is
neglected:

w= W(x,»)e,  f(x,3,0)=F(x,p)e, pit)=Pe",
my(t) = Mye™,  myu(t) = Mye™,  v(z,1) = Vy(2)e,
iz, 1) = Vyi(2)el,  ui(z, t) = Ui(z)e™, (6)

where W(x,y), V.i(z), V,i(z) and Ui(z) are the displacement functions. F(x,y) and P; are the amplitudes of
forces. M,; and M,; are the amplitudes of bending moments. w is the natural frequency of the plate—column

system and j= \/—'1.

Using the following dimensionless coordinates
(=x/a, n=y/b, (i=z/li, &=xi/a, n;=y;/b (7
and substituting Eqs. (6) and (7) into Eqgs. (1)—(5) leads to
1atw 2 o'w o'w ph
A A toaas + 4
ptogt - progtonr  On

4
b4 2W_ F(é,n), (8)
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where § = a/b is the aspect ratio of the plate. Egs. (8)—(11) are the governing equations of free vibration for
the plate—column system.

3. Boundary and compatibility conditions

Considering that the plate is elastically restrained at the edges n = 0 and 1, its boundary conditions are given
by

W W bkyoW

6—112+VW=TW’ at n =0, (12a)
GSTVZH%?I)?%—ZV’ at =1, (12b)
a;vaJr(z_v)%:%W, at n =1, (12d)

where k,o and k,;, are the stiffnesses of the rotational restraints at boundaries # = 0 and 5 = 1 respectively, ko
and k,, are the stiffnesses of the vertical restraints at # = 0 and n = 1 respectively. By taking these stiffness
coefficients to be infinite or zero, various classical boundary conditions of the plate can be obtained.

® k,o=k, =0and k,y = k,, = 0o, the plate is simply supported at n =0 and n = 1.
® k,o=k, = o0 and k, = ky = oo, the plate is clamped at # = 0 and n = 1.
® ko=k, =0and k, = ky =0, the plate is free at n =0 and n = 1.

Similarly, general boundary conditions can also be considered for the columns. For the ith column:

Vi kil dVe &V keal]
&, Bl AL, a0 Edy M e=0 (13a)

dz xi ]\4)ct'l2
£ Loat =1, (13b)

V=0
X1 > d2Ci Ei]xj

v, kyldv, AV, kil
dzz}. :Ey.ly' dCi ’ dci‘ = _Ey.tl;. Vyi at §;=0, (13c)
i =yt i iLyi
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v, ML
vV, =0, L2 at =1, (13d)
g d¢? Ely,
dU;  k.l; _
i " EA, U, at {;=0, (13e)
dU,‘ Pili
= C .= 1 1
& LA at {; =1, (13f)

where k,; and k,; are, respectively, the stiffnesses of the rotational and translational restraints of
the ith column in the o;xz plane at the end (; = 0. ky,; and k,,; are the equivalent in the o,yz plane at the
end {; = 0. k_; is the stiffness of the longitudinal constraint of the ith column at the end {; = 0. By taking
these stiffness coefficients to be infinite or zero, several classical boundary conditions of the column can be
obtained.

® kyi=ky; =0, ky =kyi =00 and k.; = oo, the ith column is simply supported at {; = 0.
® ki =ky;= 0, ky = ky; =00 and k.; = oo, the ith column is clamped at {; = 0.

The compatibility conditions of displacements and rotations between the plate and the columns are
respectively:

W(éa 77)’5:5[,,7:”[ = Ui(é/i)“:izl > (14‘1)
ow _ 4% ow _ bV i=1.2,. ... (14b)
af &=¢in=n; li aC’ (=1 611 E=En=n; Ii ac’ (=1

4. Solutions

For a plate with two opposite edges simply supported, its solution can be given as

W(Em) =) sin(mn&)W,(n). (15)

m=1

It is clear that the above equation exactly satisfies the simply supported conditions at edges ¢ =0 and & = 1.
Now, expanding F(&,n) into a Fourier sinusoidal series as follows

00 1
F(En) =2 sinmad)F(n).  Fuln) = /0 F(Z,n)sin(mré) d¢ (16)
m=1
and substituting Egs. (15) and (16) into Eq. (8) leads to:
W) ) EWaln) | [m)* bt
L +{ ’ —a“] W) = 27 F(), (17)

where o = phb*e? /D. The solution of Eq. (17) can be obtained using the theory of ordinary differential
equation.
When o <mn/f:

W..(n) = A, sinh(4,,1) + By, cosh(A,n) + Cy, sinh(4,,01) + Dy, cosh(,0n) + Wm(n), (18a)
R 4 n
W) = 57—— / Fi($)[Zm sinh(A2 (7 — ) — Ao sSinh(Zy1 (n — 5))] ds, (18b)
Do /‘Lml)va 0



D. Zhou, T. Ji | Journal of Sound and Vibration 297 (2006) 146—166 151

where
2 2 2 2
2= [(””? - aﬂ = [(’"2) + aﬂ . (19)
B B
When o>mmn/f:
W.(n) = Ay sin(Ayn) + By, cos(Amn) + Cyy, sinh(4,01) + D, cosh(4,2n) + Wm(n) (20a)
~ 4 11
W) = F () Zm sinh(An2 (1 — 8)) — Az SIn(Ai1 (1 — 5))] ds. (20b)

DazlmlimZ 0

In Eqgs. (18a) and (20a), the first four terms with unknown constants 4,,, B,,,, C,, and D,, are the homogeneous
solutions while 1,,(y) is the special solution.
Assuming a positive integer L, when m< L, o.>mn/f and when m> L, « <mn/f, the modal shape W(¢, ) in
Eq. (15) can be expressed as
-1
W(f, ’7) = Z Sin(mnf){Am Sin()”mln) + Bm COS()“mln) + Cm Siﬂh(imﬂ?) + Dm COSh(/lnﬁn)

m=1
b* "

Dotz o Fr W sinh (o) =) = i sinG (1= 5) ds}

00
+ Z Sin(mn(:){Am Sinh(lmln) + Bm COSh(lmln) + Cm Sinh(lm2’7) + Dm COSh(;Lmﬂ'I)

m=L
b* "
+Da2/1n1]/1n12 0
Substituting Eq. (9) into Eq. (16) leads to:

Fm(s)[/lml Sinh(/‘{mZ(’/I - S)) - /Im2 Sinh(/lml(n - S))] ds} (21)

1 n
Fp(n) = ZP Sin(mu o0y — 1) + — > Muimmcos(mné)o(n — ;)
i=1

+ W Z M, sin(mmn;)d' (& — &). 22)
i=1

Substituting Eq. (22) into Eq. (21) gives

L—1
W(é, ’7) = Z Sin(l’)’lﬂ.’é){Am Sin(imlr]) + Bm COS(;“mln) + Cm Sinh(/lmZn) + Dm COSh(/lmZn)
m=1
b2
+ BDa s 2 Z Pisin(mu;) 2 Sinh(Zo (1 = 1)) = Znz Sin(on (7 = )] HGp = ;)

n

— ) M ;cos(mn&;)| Ay sinh(Au2(n — 1,)) — Amz Sin(Zp1 (n — 1)) | H(n — 1,)
ﬁzDaz/Lml/Lnﬂ ; [ }

bmn

-3 Doc2 Z M, sin(mné;) [cosh(Zua(n — 1)) — cos(hu (n — 1) | H(n — n; )}

+ Z sin(mn&j){Am sinh(4,,,11) + By, cosh(Z,,1m) + C,y, sinh(4,,01) + D, cosh(4,,21)
m=L
b2 n

+ m; P;sin(mng;) [/lml sinh(An2(1 — ;) — Ama sinh(Zp,1 (7 — ’71’))} H@—n,)
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bmn

————— Y M,;cos(mni;)| Ay sinh(4,, — Ama sinh(4,, Hn—

ﬁpawmlxmz,z (m;) [t SO0z = 1)) = Az SNt (0 = )] H (1 = )

b
= 5D Z M sin(mné;) [cosh(Zua(nn — 1)) — cosh(mi (1 — n ) Hn —n,) ¢, (23)
<’7i9 . .. .
where H(n — ;) = BT is the Heaviside function.
The solutions of longitudinal and transverse vibrations of the ith column can be obtained as follows:
Ui(() = Piisin(si(;) + o cos(si{;), (24a)

Vili) = @it sin(ryil;) + Puip c08(ryil;) + P sinh(ryi;) + Pia cosh(ryily), (24b)
V3i(Ci) = @yir sin(ry;(;) + Pyin cos(ryil;) + @yiz sinh(ry;(;) + Pyia cosh(ry, (), (24¢)

4/ piAi 4 4/ piAi 4 . .
where s; = +/p,;/E;ol; and ry = \/ﬁwzli, Fyi = ,/ﬁaﬂl,. Vi, Pauli=1,2,...,n) and @y &, (=

1,2,3,4, i=1,2,...,n) are the unknown constants.
5. Unknown coefficients

Substituting Eq. (23) into Eq. (12), the unknown constants A4,,,, B,,, C,, and D,, can be determined. As an
example, for the plate simply supported at # =0 and 5 = 1,

when m<L:
B
Am = m {Aml Z P sm(mnf ) Sln(/lml(l ))
mn <
B ﬁ/lml Z b
— Z T2 sin(mné;) cos(Am (1 — 1)) }» (26a)
B
C, = ~ 3D smiia |7 { Z Pisin(mng;) sinh(4y(1 — 1;))
mn M,
—— ‘'m 1 - i
B 2 b 2(1 —ny))
n Ml .
- Z 2 sin(mmné;) cosh(Ayn(1 — ’11'))}7 (26b)
i=1
when m>L:
b2
Am — m /Lml Z P sm(mmf ) Slnh(lml(l ))
mn
n:)

‘m§ b

"M .
- Z b} i vml(l - 7],))}, (27‘1)
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b2
= ‘W{A 3 Prsintn sinh (1~ 1)

mm Z xi
T
ﬁ/LmZ i1 b

im2(1 = 1;))

— En: % sin(mmn¢;) cosh(Zn(1 — ’71‘))} . (27b)
i=1

Substituting Eqgs. (26) and (27) into Eq. (23) gives

2

L—1 n
W(En) = ﬁ,’;ﬁ; sin(mé){; P; sin(mné,-){Wsin(xml(l — 1)) sin(Ay1n)

sinh(4y(1 — n;)) sinh(4yon) + -—— [ﬂ mi SINh(An2(n — 1;))

/1,,,2 sinh /lmz

1
j-ml
. . mm & M
— Am2 Sln(/bml("] - ﬂ;))]H(”I - 771)} - FZ b
i=1

x {;smumla — n)sinCianin) — sinh(a(1 — 1) sinh(iar)
j~ml SIN A1

Jo2 SINN
+- 1 —[ A1 SInh (L2 (1 — 1)) — A2 SIN(A1 (n — nNDIH (M — 17,) ¢ — zn:% in(mné,)
)vml/lmZ ol S m2{ i m2 S m1 (1] n; n n; b s mmg;

i=1

1
X {sin cos(Am1 (1 — 1)) sin(Am1n) — cosh(Zma(1 — ;) sinh(A,217)
‘'ml

sinh 4,

+[cosh(Ana(n — 1;)) — cos(Ami(n — n)H(n — ’7[)}}

1
ﬁ D — Z sm(mn.»:){ZP sin(mné; ){Wsinh(iml(l — ;) sinh(A1 1)

m= ml
Sinh(imZ(l n; )) Slnh()”m2’7) +— /1 } 5 [}ml Sinh(}~m2(7] - ’71))

M,

/1,,12 sinh /lm2

— o Sinh i (1~ n)IH G — ) ";fz

sinh(4,,1(1 — n;)) sinh(Apn) — sinh(4,2(1 — n;)) sinh(4,,,21)

1
* {zml Sinh Zpn;

+— ! [;ml SIHh(imZ(’/I —N; )) m2 Sinh(iml(” - W,))]H(W - ’71)}

Ama Sinh 2,2

mllm
- Z — X sin(mre, ){ —cosh(A (1 = 1)) sinh(in) — ﬁcoshumz(l — 1) sinh(Z21)
+lcosh(Zma (1 — 1;)) — cosh(Am (n — n)1H(n — ’11-)} } (28)

Substituting the three formulae in Eq. (24) into the appropriate expressions in Eq. (13), the unknown
constants ¥Yy;, Yoi(i=1,2,...,n) and @y, @,;( =1,2,3,4, i=1,2,...,n) can be uniquely determined. For
example, for columns clamped at {; =0 (i= 1,2, ..., n), there are

Mxl,
2Ed 12

‘Cl xi

in(Ci) = {Gul [sm(rx,C,) Slnh(”xi([)] - Gx,‘z[COS(VX,‘C,') - COSh(rxiCi)]}a (29‘1)
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M l? . .
Vyili) = % {Gyil [Sln(”ini) - Slnh(”yi(;‘)} -Gy [COS(”ini) - COSh(”yiﬁi)] }, (29b)
2E,‘Iy,‘ryi
P,‘li .
Uil = ————sin(s)), 29
(0) = oo sG55 (29¢)
in which,
COS Fyj — COSh ry;
G =— - s 30
Y= Sinry; cosh g — cos 7y sinh ry (30a)
sinr,; — sinhry;
Gin = — - s 30b
Y2 = Sinr, cosh ry — cos ry sinh 7y (30b)
cosry,; — coshry,;
Gyt = v o 30
7= Sin ryi cosh ry; — cos ry; sinh ry,;° (30¢)
sinr,; — sinh r;
Gy L o (30d)

6. Eigenfrequency equation

sin ry; coshry; — cosry; sinhry;

The unknown forces P; and moments M., M, (i=1,2,...,n) can be determined from the
compatibility of displacements and rotations between the plate and the columns. Substituting Eqgs. (28)
and (29) into Eq. (14) produces a group of homogeneous equations for My;, M,; and P; (i=1,2,...,n) as

follows
[A']
[A%]
[A]
where
Ay, Ay
A
[AT=1 .
4 A
cy o Ch
&
[CT=1| . )
o,
Py
P,
Py=4 . 4.
P,

[B'] [CY {P} {0}
B3] [C}|{ My} § = {0}
B [C| | My} {0}
Y, BY, B,
AIZCn Bl]€2 B]2(2
S|, BY=
Aﬁn_ _Bfl BﬁZ
ct,
c5,
| k=123,
Ck
M, /b
My, /b
Mg=¢ . b (M=
Mxn/b

>

(3D
By,
B3,
Bk
(32a)
(32b)
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The elements in the sub-matrices (32a) are given in the appendix in which,

t .
A= (33a)
Si
I'yi = [Gyi1(cosry; — coshry) + Gyp(sinry; + sinh ry)]/(2ry), (33b)
I'y; = [Gyi(cosry — coshry) + Gyo(sinry; + sinh r,;)]/(2ry:), (33¢)
Di; DI; DI; i =/,

el = =S = o 34
TRy T EL TELD YT\ 0 i 9

Here, A;, I'y; and I'); are referred to as the dynamic stiffness coefficients of the ith column in the
longitudinal and two rotational directions, respectively. t;, oy and o, are referred to as dimension-
less stiffnesses of the ith column in these directions, respectively. In order to obtain the non-zero
solutions for P;, M., M,(i=1,2,...,n), the determinant of coefficient matrix in Eq. (31) should be
zero, 1.e.

[A'] [B'] [C]
[A%] [B’] [C]|=0. (35)
[A’] [BY] [C]

Eq. (35) is nonlinear in respect of the eigenfrequency w which can be determined using the searching root
method. In the present analysis, the common bisection method is used to obtain the roots. If a non-real root
appears, the value of the determinant in Eq. (35) would be infinite rather than zero. A small step length such as
1072 in the search is used to ensure that no roots are missed. Substituting the known o into Eq. (31) yields the
associated coefficient vector containing {P}, {M,} and {M,}. Then, substituting these results into Eq. (28)
gives the vibration modes of the plate—column system. Substituting Eq. (29) into Eq. (14), it can be noted that
if W(&,n)=0W /0 =0W/on=0 at the connection point (¢ = &, n = n;) of the plate-column system, then
P;j= M, = M,; = 0. This means that the vibrations of the plate and the jth column are independent because
no rotation occurs at the connection point. Giving dimensionless stiffnesses t;, oy; and ¢,; extreme values,
several special cases can be obtained. For example, taking t; = o,; = 6,; = 0 provides a fixed point-support at
(x;, 7)), taking oy; = 0,; = oo means ignoring the effect of rotational constraints of the jth column to the plate
and the column acts as a vertical bar, and taking 7; =0, o,; = 6,; = 00 means a pinned point-support at
(%) ))-

It is a common approximation in engineering to model each column as three springs without masses. One
spring is vertical, which constrains the vertical displacement of the plate. The other two springs are rotational,
which constrain the rotations of the plate in two concerned directions, respectively. The static displacements of
the ith column under P;, M,; and M,; can be easily obtained as follows:

Pil; Mxil,2 30 Myil? 32
Uiy = HC,', Vii= AE . G =4 V= E,1, & =) (36)

In such a case, the dynamic stiffness coefficients A;, I'y; and I',; defined in Eq. (33) reduce to

Ai=1, Iy=TI;=1/4 (37)

7. Numerical studies

In order to identify the effect of columns on floor vibrations, the numerical analyses of fully
simply supported rectangular plates with one internal column support are undertaken. In all the
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calculation, the first 200 terms of each series were used to guarantee that the results are at least
accurate to 107* for all cases except for the fully simply supported plates with one column near to
or at its centre where an improved approach, as given in the following sub-section, is used. In the
following study, it is assumed that the columns and the plate are made of the same material and the Poission’s
ratio, v, is 0.2.

7.1. Improved convergence

It should be mentioned that the convergence rate of Eq. (35) depends on the positions of the columns.
The closer the columns to the centre of the plate, the lower the convergence rate. However, an improved
approach can be used for this case. Consider the fact that for a fully simply supported plate, interchanging
the variables ¢ and # in Eq. (27) should produce a valid solution. Hence, Eq. (27) can be rewritten in an
identical form to M,; and M. In order to save the space, the detailed process is omitted but the three
sub-matrices for M,; in the appendix should be replaced by the following formulae:

Z sin(mmny;) sin(mny; ){ i’ cos(/lml(l &) sin(Zy1 )

ml

- %coshdmz(l — &) sinh(ing) + [coshCa (& — £))

sinh A,,»
— o8 (& — ENH(E — «:)} — " sin(nmn,) sin(mmn,)
m=L
{ ! cosh(Zy1 (1 = &;)) sinh(Z, € i) — cosh(Z(1 — &) Sinh(zmzf]’)
sinh }ml m2
+lcosh(Za(&; — &)) — cosh(Zui (& — ENIH(E; — ii)} (38a)

ml
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. . /Iml
B = sin(mmnn;) sin(mmnn; cos(Ayi (1 — cos(An
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;Wl
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sinh L,
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N . Tont X X
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m=L tml

;Lm Y 5 . 5
- : COSh(/LmZ(l éz)) COSh(/1m2ij) + [)vm2 SlnhOva(fj - él))
sinh )m2

_zml Sinh(zml(ij - 51))]H(é] - 51)} ﬁOC waxt ij» (38b)
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1 - .
= Y mmusin(mmn,) Cos(mmqj){ —s—cO8(i (1 = &) sin(Z &)
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=608~ DG ) | + D mmsintomn) costom)

m=L

s coshin(1 = & sintin) =~ coshilall - &) sintClpad)

sinh A,,,1 sinh A,,»
Hleosh(Apa(&; — &) — cosh(i (& — ENIH(E — @)} (38¢)

in which

Jn = B [(mn)? — 2]

Using the above formulae, more rapid convergence can be achieved in the numerical calculation.

L T = By + o2 (39)

7.2. Comparative study

Plates with two different aspect ratios and supported by a column with two different square cross-
sectional sizes are, respectively, analysed using the proposed method. One plate is square and has the
sides of @ = b = 16 m, the other plate is rectangular and has the sides of @ = 21 m and » = 14 m. Both plates
have the same thickness of 4 = 0.25m. Two column cross-sections are considered with a. = b, = 0.4 m and
a. = b, =03 m respectively. The sides of the column cross-sections are parallel to the sides of the
plates. The column has a constant length of / = 5 m. An elastic modulus of E = 30 x 10° N/m? and a material
density of p = 2400 kg/m? are used in the calculation. Two different support positions of the column are
considered. One is at (¢; = 0.5,#;, = 0.5) and the other is at (¢; = 0.375,n, = 0.25). Two extreme cases
are also considered when the column is replaced by a pinned vertical support or a fixed point support.
The first six natural frequencies of the two plates, each including eight cases, are given in Table 1. The
first mode for the simply supported square plate with a column (cross-sectional sizes a. = b. = 0.3 m) at its
centre is given in Fig. 2, in which the column only provides the longitudinal restraint to the plate.
The first mode for the simply supported square plate with a fixed point-support at &; = 0.375, ;, = 0.25 is
given in Fig. 3, in which the deflection and rotations of the plate at the support point are zero. The first
mode for the simply supported square plate with a column (cross-section size @, = b, = 0.3 m) at &; = 0.375,
n, =0.25 is given in Fig. 4. In such a case, the column provides both the longitudinal and the
rotational restraints to the plate. The FE solutions resulting from the commercial software package
LUSAS [11] are used to check the present solutions. The thin shell elements QSI4 (4 nodes for each
element and 6 degrees of freedom (dof) on each node) are used to model the plate and the thick beam
elements BMS3 (3 nodes for each element and 5 dof on each node) are used to model the column
in the calculations. Different mesh divisions are taken, including 8 x 8, 16 x 16, 32 x 32 and 64 x 64 elements
for the plate, and 5 and 10 elements for the column. The first six natural frequencies of the FE solutions
from the different mesh divisions are almost the same. For comparison, the FE solutions in the case
of 32 x 32 elements for the plate and 10 elements for the column are listed in Table 1. It can be seen from
Table 1 that:

e The present results closely agree with the FE solutions for all cases.

e For the square plate with a column support at its centre, the fourth and fifth frequencies are constants in all
the cases. For the rectangular plate with a column at its centre, the fourth frequency is also a constant in all
the cases.

e The natural frequencies of the plates supported by columns are not always larger than those of the plates
with pinned point-supports at the corresponding locations.

It is well known that if a bare plate has a duplicate natural frequency, the corresponding modes
are degenerated: an arbitrary linear combination of these two modes has the same natural frequency.
Therefore, it is always possible to find a coefficient to let the combined mode be zero at any selected
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Table 1
Comparison of the first six natural frequencies (Hz) f; (i = 1,2, ..., 6) of a plate with one internal column support
<, m ac, be h S2 f3 Ja fs Js
Square plate, a=b =16m, h=0.25m
0.5, 0.5 0.3m, 0.3m 8.041 8.073 8.073 12.784 15.979 20.796
(8.040) (8.072) (8.072) (12.773) (15.963) (20.770)
0.4m, 0.4m 8.195 8.195 8.241 12.784 15.979 20.844
(8.203) (8.203) (8.241) (12.773) (15.963) (20.821)
Fixed point-support 8.519 8.570 8.570 12.784 15.979 20.995
(8.519) (8.696) (8.696) (12.773) (15.963) (21.020)
Pinned point-support 7.989 7.989 8.519 12.784 15.979 20.774
(7.986) (7.986) (8.519) (12.773) (15.963) (20.746)
0.375, 0.25 0.3m, 0.3m 4.583 8.017 10.888 14.479 16.015 18.509
(4.583) (8.014) (10.883) (14.468) (16.000) (18.498)
0.4m, 0.4m 4.639 8.056 10.988 14.638 16.075 18.727
(4.640) (8.056) (10.984) (14.634) (16.064) (18.709)
Fixed point-support 4.753 8.172 11.152 14.996 16.262 19.008
(4.777) (8.200) (11.165) (15.071) (16.308) (18.992)
Pinned point-support 4.637 7.989 11.064 14.606 15.979 18.993
(4.637) (7.986) (11.057) (14.594) (15.963) (18.974)
Rectangular plate, a =21m, b = 14m, h = 0.25m
0.5, 0.5 0.3m, 0.3m 5.857 6.638 9.358 12.059 14.041 16.736
(5.856) (6.637) (9.353) (12.049) (14.034) (16.720)
0.4m, 0.4m 5.938 6.739 9.479 12.059 14.314 16.807
(5.947) (6.738) (9.481) (12.049) (14.307) (16.795)
Fixed point-support 6.181 6.874 9.865 12.059 14.698 17.066
(6.273) (6.873) (9.955) (12.049) (14.690) (17.121)
Pinned point-support 5.797 6.874 9.276 12.059 14.698 16.696
(5.795) (6.873) (9.270) (12.049) (14.690) (16.679)
0.375, 0.25 0.3m, 0.3m 4.272 6.565 10.294 11.030 14.093 16.774
(4.272) (6.563) (10.288) (11.024) (14.083) (16.757)
0.4m, 0.4m 4318 6.629 10.321 11.102 14.241 16.820
(4.319) (6.630) (10.317) (11.100) (14.233) (16.808)
Fixed point-support 4.411 6.776 10.383 11.277 14.468 16.974
(4.429) (6.807) (10.393) (11.326) (14.474) (17.020)
Pinned point-support 4.317 6.607 10.295 11.071 14.393 16.748
(4.317) (6.605) (10.289) (11.064) (14.382) (16.730)

Data in parentheses come from FE solutions.

location of the plate. When a square plate has a column support at its centre, the first-order derivatives
of the double symmetric modes in the two perpendicular directions are always equal to zero at the
centre of the plate. In such a case, a combination of the double symmetric duplicate modes can give a new
mode which not only has zero displacement but also zero first-order derivatives at the centre of the
plate in the two directions. Taking a fully simply supported square plate as an example, the (1,3) mode
sin(né) sin(37y) and the (3,1) mode sin(3né)sin(nwy) are both double symmetric modes with the same
natural frequency. Therefore, whether or not there is a column support at the centre of the plate, a
frequency f :5n/b2\/D/ph Hz for the double symmetric mode can always be obtained. The fifth
natural frequency of the square plate with a central column support just corresponds to such a mode.
Moreover, the double antisymmetric modes of the bare plate always satisfy the conditions of zero-
deflection and zero-rotations at the centre in the ¢ and # directions. The fourth frequency of the square
and rectangular plates with a central column support corresponds to the first double antisymmetric mode of
the bare plate.
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Fig. 2. The first mode of the square plate with a column support at its centre, i.e., the cutaway view when 1 = 0.5.
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Fig. 3. The first mode of the square plate with a fixed point-support at &, = 0.375, n, = 0.25.

7.3. Effect of column sizes

Consider a fully simply supported square plate with aspect ratio a/b = 1 and thickness ratio /#/b = 0.02
with a square cross-section column support at the centre of the plate. In such a case, the vibration
modes of the plate—column system can be classified into double symmetric, symmetric—antisymmetric,
antisymmetric-symmetric and double antisymmetric modes. For the double symmetric modes, only
the longitudinal stiffness of the column contributes to the vibration of the system while for the
symmetric-antisymmetric and antisymmetric-symmetric modes, only the rotational stiffness of the
column contributes to the vibration. Neither the longitudinal stiffness nor the rotational stiffness
contributes to the double antisymmetric vibration. Hence it is possible to investigate separately
the effect of column size on the natural frequencies of a plate—column system. A non-dimensional
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Fig. 4. The first mode of the square plate with a column support at & = 0.375, ; = 0.25, (a) the mode of the plate, (b) the flexural mode
of the column in the - plane, (c) the flexural mode of the column in the 5—{ plane.

frequency parameter, defined as A = wb’\/ph/D, is introduced. Table 2 gives A3 (i=1,3,4) for the
double symmetric modes and AP (i=1,2,3) for the antisymmetric-symmetric modes or A* (i=1,2,3)
for the symmetric-antisymmetric modes. It is obvious that the frequencies of the antisymmetric-
symmetric modes are the same as those of the symmetric-antisymmetric modes due to the double
symmetry of the structure. The second double symmetric mode 43’ = 98.696 and all the double antisymmetric
modes are not included in the table, because they are always constants and independent of the size of
the column.

Changing the sizes of the column will result in different frequency parameters. In the present study, four
column length ratios //b = 0.4, 0.5, 0.6, 0.7 and four cross-sectional size ratios a./h = 1.5, 2, 3, 4 are considered
respectively. It can be seen from Table 2 that:

e The sensitivity of the frequency parameters depends on both //b and a./h. The frequency parameters of
antisymmetric—-symmetric modes (or symmetric—antisymmetric modes) are more sensitive to the sizes of the
column than those of double symmetric modes.

® The increase of column length ratio and/or decrease of the cross-sectional size ratio will result in the
monotonic decrease of frequency parameters.

® When the column becomes thicker, i.e. //b reduces and/or a./h increases, the results become closer to those
of a slab with a fixed point-support.

e A column support at the centre of a plate can greatly increase the natural frequency of the first double
symmetric mode of the plate (4 = 47.478-52.62 versus 4 = 19.739).

7.4. Effect of column models

In engineering practice, different column models have been used. This section examines the effect of column
models on the frequency parameters of the plate—column system. Four different column models are considered
as follows:

® The column is treated as a pinned point-support.
® The column is treated as a fixed point-support.
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Table 2
The size effect of the column on the frequency parameter A = o? = wh? /ph/D of a plate-column structure with a/b = 1.0 and /b = 0.02

1/b a.lh 3 3 3 245, A¢ 55, 43 e
0.4 1.5 49.523 137.38 196.59 50.373 128.46 165.06
2 50.816 141.26 200.65 51.383 128.97 169.08

3 51.798 144.23 204.28 52.475 129.48 171.67

4 52.154 145.29 205.70 52.7175 129.61 172.24

0.5 1.5 48.818 135.14 194.35 50.128 116.05 129.79
50.385 139.84 198.90 51.119 127.81 140.98

3 51.594 143.56 203.31 52.362 129.37 170.12

4 52.037 144.91 205.11 52.736 129.59 172.07

0.6 1.5 48.134 132.94 192.27 49.816 82.823 128.89
2 49.960 138.36 197.09 50.814 99.328 129.53

3 51.392 142.84 202.22 52.236 127.80 134.06

4 51.920 144.50 204.44 52.691 129.53 175.64

0.7 1.5 47.478 130.80 190.33 49.100 62.382 128.62
2 49.541 136.83 195.22 50.320 74.816 129.20

3 51.188 142.06 200.97 52.069 98.191 129.70

4 51.803 144.05 203.64 52.638 125.15 130.36

Fixed point-support 52.620 146.67 207.64 52.934 129.68 172.50
Pinned point-support 52.620 146.67 207.64 49.348 128.30 167.78
No column 19.739 98.696 177.65 49.348 128.30 167.78

e The column is modelled as a bar, which only provides vertical stiffness (the bar model).
® The column is modelled as three springs representing the actual stiffnesses of the column but without
considering the mass of the column (the spring model).

The comparison of results from the above four approximate models to those from the exact model
are given in Table 3. A square plate @/b = 1 with thickness ratio 4/b = 0.025 is studied with a column of
circular cross-section of diameter d placed at the centre of the plate. Three different column length ratios
[/b=0.4, 0.5, 0.6and two different cross-sectional size ratios d/h = 1.5, 3.0 are considered respectively. It is
found that:

e With the increase of the column length ratio and/or the decrease of the cross-sectional size ratio, the lower
order modes are dominated by the column vibration. However, such a mode cannot be predicted by using
any of the approximate column models. For examples, for a column having the sizes of d/h = 1.5, [/b = 0.5
or 0.6 and for a column having the sizes of d/h = 3, I/b = 0.6, the second antisymmetric-symmetric mode
cannot be found using the approximate column models.

e The fixed point-supported column model in most cases leads to the largest errors of the four approximate
column models.

e The bar and spring models are better than the fixed and pinned point-support models, and provide good
approximations to the exact solutions in most cases.

8. Conclusions

This paper presents an exact solution for the study of free vibration of a thin rectangular plate with two
opposite edges simply supported and internal column supports. The governing differential equations of the
free vibration of the plate—column system are solved directly.
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Table 3
Frequency parameter /. = o2 = wbh* /ph/D of a plate-column structure with /b = 1.0 and h/b = 0.025

d/h iIb 3 a3 a3 s e A
15 0.4 47.909 132.55 192.25 50.147 128.22 156.35
(47.909) (132.55) (192.25) (49.348) (128.30) (167.78)
[47.930] [133.16] [193.26] [50.224] [128.64] [168.82]
0.5 46.896 129.49 189.71 49.909 103.57 129.09
(46.896) (129.49) (189.71) (49.348) * (128.30)
[46.948] [130.52] [191.32] [50.082] * [128.58]
0.6 45.942 126.63 187.50 49.547 73.465 128.70
(45.942) (126.63) (187.50) (49.348) * (128.30)
[46.011] [128.16] [189.73] [49.976] * [128.55]
3 0.4 51.323 142.72 202.24 52.333 129.41 171.32
(51.323) (142.72) (202.24) (49.348) (128.30) (167.78)
[51.328] [142.97] [202.83] [52.354] [129.46] [171.66]
0.5 51.005 141.59 200.60 52.191 129.20 162.68
(51.005) (141.59) (200.60) (49.348) (128.30) (167.78)
[51.024] [142.04] [201.76] [52.228] [129.40] [170.50]
0.6 50.687 140.34 198.69 52.019 116.02 130.10
(50.687) (140.34) (198.69) (49.348) * (128.30)
[50.721] [141.15] [200.77] [52.119] * [129.38]
Fixed point-support 52.620 146.67 207.64 52.934 129.68 172.50
Pinned point-support 52.620 146.67 207.64 49.348 128.30 167.78

The data in parentheses are the results for the column modelled as a bar and the data in square brackets are the results for the column
modelled as springs without mass.

The correctness and the accuracy of the present method are demonstrated by the comparison of the results
obtained from the proposed method and from FE method. Thus, the solutions provided can be used as
benchmarks for further investigations and for other approximate methods. In order to understand better the
effect of a column in floor vibration, the following has been investigated:

@ The effect of column parameters, including the length, the cross-section size and the location of the column.

It has been shown that increasing the length of the column and/or decreasing the cross-sectional size of the
column will decrease the natural frequencies of the structure. A column support at the centre of a plate can
greatly increase the natural frequency of the first double symmetric mode of the plate.

® The effect of column models, including the pinned point-support model, the fixed point-support model, the
bar model and the spring model.

It is found that the fixed point-support model always overestimates the natural frequencies of the structure
and produces the largest errors in all the four approximate models. With the increase of column length and the
decrease of cross-sectional size, the modes dominated by the column vibration become the low-order ones,
which cannot be predicted by any of the approximate column models. In this situation, the actual column
model should be taken.
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Appendix

The elements in Eq. (32a) are given as follows:
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+[COSh(/1n12(’7j —n)) — COSh(iml(nj - ni))]H(nj - '71-)},

Z sin(mné;) sm(mnfj){ cos(/lml (1 —n,)) cos(Zmin;)

~ b coshla(l = ) cosh(uom)

A2 sinh(Ap2(n; — 1)) + At S (At (7; — 1)) 1H (n; — m)}
> . . Am
+ n; sin(mn¢;) sm(mnéj) e /1m1 ————cosh(4u1(1 —n;)) cosh(4,1n;)

Sl h Am2 COSh()mZ(l ’71)) COSh(/lmﬂ/lj) + [/lmZ Sinh(/lmz(nj — 111))

_;Lml Sinh(/lml(nj - ’7,))]H('IJ - ']1)} ﬁa yzayz i
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