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Abstract

A multi-degree-of-freedom vibratory system having symmetrically placed rigid stops is considered. The system consists

of linear components, but the maximum displacement of one of the masses is limited to a threshold value by the

symmetrical rigid stops. Repeated impacts usually occur in the vibratory system due to the rigid amplitude constraints.

Such models play an important role in the studies of mechanical systems with clearances or gaps. Local codimension two

bifurcation of maps, involving a real eigenvalue and a complex conjugate pair escaping the unit circle simultaneously, is

analyzed by using the center manifold theorem technique and normal form method for maps. Symmetrical double-impact

periodic motion and Poincaré map of the system are derived analytically. A center manifold theorem technique is applied

to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with the codimension two

bifurcation is obtained. Local behaviors of the vibratory systems with symmetrical rigid stops, near the points of

codimension two bifurcations, are reported by the presentation of results for a two-degree-of-freedom vibratory system

with symmetrical stops. The existence and stability of symmetrical double-impact periodic motion are analyzed explicitly.

Also, local bifurcations at the points of change in stability, are analyzed. Near the point of codimension two bifurcation,

there exists not only Hopf bifurcation of period-one double-impact motion, but also pitchfork bifurcation of the motion.

Pitchfork bifurcation of period-one double-impact symmetrical motion results in the period-one double-impact

unsymmetrical motion. The unsymmetrical double-impact motion is of two antisymmetrical forms due to different initial

conditions and symmetrical stops. With change of the forcing frequency, the unsymmetrical double-impact periodic

motion will undergo Hopf bifurcation. Moreover the period-one double-impact symmetrical motion will undergo Hopf

bifurcation directly as the forcing frequency is changed in the contrary direction. The routes of quasi-periodic impact

motions to chaos are observed by results from simulation.
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1. Introduction

Vibrating systems with clearances, gaps or stops are frequently encountered in technical applications of
mechanism, vehicle traffic and nuclear reactor, etc. Repeated impacts, i.e., vibro-impacts, usually occur whenever
the components of a vibrating system collide with rigid obstacles or with each other. The principle of operation of
vibration hammers, impact dampers, shakers, pile drivers, offshore structures, machinery for compacting, milling
and forming, etc., is based on the impact action for moving bodies. With other equipment, e.g., mechanisms with
clearances or gaps, heat exchangers, fuel elements of nuclear reactors, gears, piping systems, wheel–rail interaction
of high speed railway coaches, etc., impacts also occur, but they are undesirable as they bring about failures,
strain, shorter service life and increased noise levels. Researches into vibro-impact problems have important
significance on optimization design of machinery with clearances or stops, noise suppression and reliability
analysis, etc. The physical process during impacts is strongly nonlinear and discontinuous, but it can be described
theoretically and numerically by discontinuities in good agreement with reality. Compared with single impact,
vibro-impact dynamics is more complicated, and hence, has received great attention. Many new problems of
theory have been advanced in researches into vibro-impact dynamics, and the study of vibro-impact problems
becomes a new subject on nonlinear dynamics. Some important problems on vibro-impact dynamics, including
global bifurcations [1–10], grazing singularities [10–18], chattering and rattling impacts [19], quasi-periodic
impacts [20–24] and controlling chaos [25,26], etc., have been studied in the past several years. Along with the
theory researches into vibro-impact dynamics, the researches into application to these systems were also
developed, e.g., wheel–rail impact of railway coaches [27–29], impact noise analysis [30,31], inertial shakers
[32,33], vibrating hammer [34], offshore structure [35], impact dampers [36–39] and gears [40–42], etc. However,
these studies focused mainly attention on stability and codimension-one bifurcations of periodic-impact motions,
codimension two bifurcations of the vibro-impact systems are rarely considered until now.

The purpose of the present study is to focus attention on codimension two bifurcation of period-one double-
impact symmetrical motion of vibratory system having symmetrically placed rigid stops. There are many types
of codimension two bifurcations of ordinary differential equations and maps, some of which have been studied
in Refs. [43–48]. Here one of codimension two bifurcations of maps, involving a real eigenvalue and a complex
conjugate pair escaping the unit circle simultaneously, is analyzed by using the center manifold theorem
technique and normal form method of maps. A multi-degree-of-freedom systems having symmetrically placed
rigid stops and subjected to periodic excitation is considered. The symmetrical double-impact periodic motion
and Poincaré map of the system are derived analytically. A center manifold theorem technique is applied to
reduce the Poincaré map to a three-dimensional one, and the normal form map associated with the
codimension two bifurcation is obtained. The existence and stability of period-one double-impact symmetrical
motion are analyzed explicitly. Also, local bifurcations at the points of change in stability, are analyzed. Near
the point of codimension two bifurcation there exists not only Hopf bifurcation of period-one double-impact
motion, but also pitchfork bifurcation of the motion. Pitchfork bifurcation of symmetrical double-
impact periodic motion results in unsymmetrical double-impact periodic motion. With change of the forcing
frequency, the unsymmetrical double-impact periodic motion will undergo Hopf bifurcation. Moreover the
period-one double-impact symmetrical motion will undergo Hopf bifurcation directly as the forcing frequency
is changed in the contrary direction.

2. Mechanical model

A multi-degree-of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation is shown in Fig. 1. Displacements of the masses M1;M2; . . . ;Mn�1 and Mn are represented by
X 1;X 2; . . . ;X n�1 and Xn, respectively. The masses are connected to linear springs with stiffnesses
K1;K2; . . . ;Kn�1 and Kn, and linear viscous dashpots with damping constants C1;C2; . . . ;Cn�1 and Cn.
Damping in the mechanical model is assumed as proportional damping. The excitations on the masses are
harmonic with amplitudes P1;P2; . . . ;Pn�1 and Pn. The excitation frequency O and phase angle t are the same
for these masses. The masses move only in the horizontal direction. For small forcing amplitudes the system
will undergo simple oscillations and behave as a linear system. As the amplitude is increased, the kth mass Mk

eventually begins to hit the rigid stops and the motion becomes nonlinear (the other masses are not allowed to
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Fig. 1. Schematic of a multi-degree-of-freedom vibratory system with symmetrical rigid stops.
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impact any rigid stop). The impact is described by a coefficient of restitution R, and it is assumed that the
duration of impact is negligible compared to the period of the force.

Suppose M1a0; K1a0; and let F 0 ¼ P1j j þ P2j j þ � � � þ Pkj j þ � � � þ Pnj j. The non-dimensional quan-
tities are given by

mi ¼
Mi

M1
; ki ¼

Ki

K1
; f i0 ¼

Pi

F 0
; zi ¼

Ci

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1M1

p ; xi ¼
X iK1

F0
,

o ¼ O

ffiffiffiffiffiffiffiffi
M1

K1

r
; t ¼ T

ffiffiffiffiffiffiffiffi
K1

M1

r
; d ¼

BK1

F 0
; i ¼ 1; 2; . . . ; k; . . . ; n. ð1Þ

The motion processes of the system, between consecutive impacts occurring at the stop A, are considered.
Between any two consecutive impacts, the time T is always set to zero directly at the starting point A (the mass
Mk departing from the X k ¼ B stop with negative velocity), and the phase angle t is used only to make a
suitable choice for the origin of time in the calculation. The state of the vibro-impact system, immediately after
impact, has become new initial conditions in the subsequent process of the motion. Between the stops, the
non-dimensional differential equations of motion are given by

M €xþ C _xþ Kx ¼ F sinðotþ tÞ; ð xkj jodÞ, (2)

where a dot ( � ) denotes differentiation with respect to the non-dimensional time t; M, K and C are the non-
dimensional mass, stiffness and damping matrixes, respectively, x ¼ ðx1;x2; . . . ;xnÞ

T, F ¼ ðf 10; f 20; . . . ; f n0Þ
T.

Analyzing some special bifurcations of periodic-impact motion of the vibro-impact systems, e.g., strong
resonance bifurcations, codimension two bifurcation, etc., one must first find the total-analytical expressions
for the periodic-impact motion, Poincaré mapping and associated Jacobian matrix, then compute the exact
bifurcation values by using the Jacobian matrix. However, it is difficult that the multi-degree-of-freedom
vibro-impact systems with general damping are uncoupled by using a modal matrix approach. In some
available references, e.g., Refs. [5–7,23,24], special bifurcations of the vibro-impact systems are studied by
assuming such system possessing proportional damping to uncouple the vibration equation and find the total-
analytical expressions for the periodic-impact motion, Poincaré mapping and associated Jacobian matrix. In
the paper, we adopt the way used in aforementioned references and assume the system possess the
proportional damping to find the total-analytical expressions for period-one double-impact symmetric
motion, i.e., the damping matrix C, in Eq. (2), is assumed to be the proportional damping matrix (Ref. [49]),
C ¼ g0M þ g1K . The purpose of the present study is to focus attention on existence of codimension two
bifurcations of period-one double-impact symmetrical motion of vibratory system with symmetrical stops. If
codimension two bifurcations of period one double-impact symmetric motion are found to exist in the vibro-
impact system possessing the proportional damping, it is certain that there exist also corresponding
codimension two bifurcations in the vibro-impact system possessing general linear damping.

When the impacts occur, for xkj j ¼ d, the velocities of the impacting mass Mk are changed according to the
impact law

_xkAþ ¼ �R _xkA� ðxk ¼ dÞ; _xkĀþ ¼ �R _xkĀ� ðxk ¼ �dÞ, (3)
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where _xkA� and _xkAþ ( _xkĀ� and _xkĀþ) represent the impacting mass velocities of approach and departure at
the instant of impacting with the stop A (Ā), respectively.

Let C represent the canonical modal matrix of Eq. (2), oiði ¼ 1; 2; . . . ; nÞ denote the eigenfrequiencies of the
system, modal damping ratio Zi, damping eigenfrequency odi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

p
. Eq. (2) is amenable to analytical

treatment due to the proportional damping. Using the formal coordinate and modal matrix approach, one can
obtain the general solutions of Eq. (2):

xðtÞ ¼ CxðtÞ, (4)

xðtÞ ¼ GðtÞA1 þHðtÞB1 þ Fs sinðotþ tÞ þ Fc cosðotþ tÞ; 0ptpt1, (5)

x tð Þ ¼ Gðt� t1ÞA2 þHðt� t1ÞB2 þ Fs sinðotþ tÞ þ F c cosðotþ tÞ; t1otpt1 þ t2, (6)

in which, it takes the time t1 and t2 for the mass Mk to move from the stop A to Ā and from the constraint Ā to
A, respectively; A1, A2, B1 and B2 are the constant matrixes of integration, GðtÞ ¼ diag½e�Zioi t sinðoditÞ�,
HðtÞ ¼ diag½e�Zioi t cosðoditÞ�, i ¼ 1; 2; . . . ; n (the symbol ‘‘diag[ ]’’ is used to denote the diagonal matrix);
Fs ¼ f s1; f s2; . . . ; f sn

� �T
and Fc ¼ f c1; f c2; . . . ; f cn

� �T
are the amplitude constant vectors.
3. Period-one double-impact symmetrical motion

Periodic-impact motions of the vibratory system with symmetrical rigid stops can be characterized by the
symbol n–p–q, where q and p is the number of impacts occurring, respectively, at the constraint A and Ā, and n

is the number of the forcing cycles. In this section, only the periodic motion of the model, with two
symmetrical impacts per force cycle, is considered, which is called period-one double-impact symmetrical
motion. Let us choose the Poincaré section s ¼ fðx1; _x1; x2; _x2; . . . ; xk; _xk; . . . ;xn; _xn; yÞ 2 R2n � S;xk ¼ d; _xk ¼

_xkþg to establish the Poincaré map of the vibratory system with symmetrical rigid stops. The disturbed map of
period-one double-impact symmetrical motion is represented briefly by

X 0 ¼ ~f ðn;X Þ, (7)

where y ¼ ot, X 2 R2n, v is real parameter, v 2 R1 or R
2; X ¼ X � þ DX , X 0 ¼ X � þ DX 0. X � ¼

ðx10;x20; . . . ;xðk�1Þ0; t0;xðkþ1Þ0; . . . ; xn0; _x10; _x20; . . . ; _xðk�1Þ0; _xkþ; _xðkþ1Þ0; . . . ; _xn0Þ
T is a fixed point in the hyper-

plane s, of which the disturbed vectors are represented by

DX ¼ ðDx1;Dx2; . . . ;Dxk�1;Dt;Dxkþ1; . . . ;Dxn;D _x1;D _x2; . . . ;D _xk�1;D _xkþ;D _xkþ1; . . . ;D _xnÞ
T,

DX 0 ¼ ðDx01;Dx02; . . . ;Dx0k�1;Dt
0;Dx0kþ1; . . . ;Dx0n;D _x

0
1;D _x

0
2; . . . ;D _x

0
k�1;D _x

0
kþ;D _x

0
kþ1; . . . ;D _x

0
nÞ

T.

The period-one double-impact symmetrical motion means that if the dimensionless time t is set to zero
directly after an impact occurring at the constraint A, it becomes 2p=o just before the next impact occurring at
the same constraint. After the origin of y-coordinate is displaced to an impact point o1, the determination of
period-one double-impact symmetrical motion is based on the fact that they satisfy the following set of
periodicity and matching conditions:

xð0Þ

_xð0Þ

" #
¼ �

xðp=oÞþ
_xðp=oÞþ

" #
¼ D

xð2p=oÞ

_xð2p=oÞ

" #
¼

x0

_x0

" #
;

xðp=oÞ�
_xðp=oÞ�

" #
¼ �

xð2p=oÞ

_xð2p=oÞ

" #
, (8)

where D ¼ diag½di�, ðdi ¼ 1; i ¼ 1; 2; . . . ; k; . . . ; nþ k � 1; nþ k þ 1; . . . ; 2n; dnþk ¼ �RÞ, x0 ¼ ðx10;x20; . . . ;
xðk�1Þ0; d;xðkþ1Þ0; . . . ;xn0Þ

T, _x0 ¼ ð _x10; _x20; . . . ; _xðk�1Þ0; _xkþ; _xðkþ1Þ0; . . . ; _xn0Þ
T.

The response of 1–1–1 symmetrical orbit is given by

xðtÞ

_xðtÞ

" #
¼ FP1ðtÞF�1

xð0Þ

_xð0Þ

" #
þQ1ðtÞ

sin t

cos t

� �
; 0ptpt̄1�, (9)
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xðtÞ

_xðtÞ

" #
¼ FP2ðtÞF�1D�1

xð0Þ

_xð0Þ

" #
þQ2ðtÞ

sin t

cos t

� �
; t̄1þptpt̄1 þ t̄2, (10)

where t̄1 ¼ t̄2 and t̄1 þ t̄2 ¼ 2p=o.
Substituting the formula (8) and inserting t ¼ 2p=o to the formula (10), one obtains the following equation:

xð0Þ

_xð0Þ

" #
¼ D½L� FP2ð2p=oÞF�1��1Q2ð2p=oÞ

St

Ct

" #
, (11)

where L is a unit matrix of degree 2n� 2n.
Let E ¼ D½L� FP2ð2p=oÞF�1��1Q2ð2p=oÞ, then E ¼ ½eij� is a matrix of degree 2n� 2. According to the

periodicity and matching conditions (8), one obtains the kth component x0(0) from the formula (11), which is
now

xkð0Þ ¼ d ¼ ek1 sin t0 þ ek2 cos t0. (12)

Solving Eq. (12) for t0 and substituting it for t in solutions (9) and (10), we obtain the analytical expression for
period-one double-impact symmetrical orbit.

4. Disturbed map of period-one double-impact symmetrical motion

If 1–1–1 symmetrical motion is disturbed at the instant of impact by the difference DX, then one can express
the differences DX0 at the instant of the next impact. Between two consecutive impacts occurring at the stop A,
the disturbed solutions of 1–1–1 symmetrical motion are written in the form

~xðtÞ
_~xðtÞ

" #
¼ F ~EðtÞ

~A1

~B1

" #
þ FU ~Q

~St

~Ct

" #
; 0ptp~t1�, (13)

~xðtÞ
_~xðtÞ

" #
¼ F ~Eðt� ~t1Þ

~A2

~B2

" #
þ FU ~Q

~St

~Ct

" #
; ~t1þptpte, (14)

where ~St ¼ sinðotþ t0 þ DtÞ, ~Ct ¼ cosðotþ t0 þ DtÞ, ~t1 ¼ p=oþ Dt1, ~t2 ¼ p=oþ Dt2, te ¼ ~t1 þ ~t2,

~EðtÞ ¼
GðtÞ HðtÞ

_GðtÞ _HðtÞ

" #
, ~Q ¼

F s Fc

�Fc Fs

" #
, U ¼

I

oI

� �
, I is a unit matrix of degree n� n.

For t ¼ te, Eq. (14) is written by

~Y 0 ¼
x0 þ Dx0

_x0 þ D _x0

" #
¼ DF ~Eðp=oþ Dt2Þ

~A2

~B2

#"
þDFU ~Q

~SDt

~CDt

#"
. (15)

where ~SDt ¼ sinðoDt1 þ oDt2 þ t0 þ DtÞ, ~CDt ¼ cosðoDt1 þ oDt2 þ t0 þ DtÞ.
Taking t ¼ ~t1 and te, respectively, one obtains, from the kth term of the disturbed solutions (13) and (14),

the following formulae:

hðDX ;Dt1Þ ¼ ~xkðp=oþ Dt1Þ þ d ¼ 0; gðDX ;Dt1;Dt2Þ ¼ ~xkð2p=oþ Dt1 þ Dt2Þ � d ¼ 0. (16)

Using the implicit function theorem and supposing ðqh=qDt1Þ
��
DX¼0

a0 and ðqg=qDt2Þ
��
DX¼0

a0, one can solve
Eq. (16) for Dt1 and Dt2. Inserting Dt1 and Dt2 into the state vector (15), one gets finally the disturbed map of
period-one double-impact symmetrical motion

DX 0 ¼ D1
~Y 0 þD2 � Xn ¼

Def
f ðv;DX Þ, (17)

in which, D1 ¼ diag½d
ð1Þ
i �, d

ð1Þ
i ¼ 1; i ¼ 1; . . . ; k � 1; k þ 1; . . . ; 2n, d

ð1Þ
k ¼ 0; D2 ¼ diag½d

ð2Þ
i �, d

ð2Þ
i ¼ 0; i ¼ 1; . . . ;

k � 1; k þ 1; . . . ; 2n, d
ð2Þ
k ¼ t0, t0 ¼ t0 þ oDt1 þ oDt2.

Linearizing the Poincaré map at the fixed point Xn results in the matrix Df ðv; 0Þ ¼ q f ðv;DX Þ=qDX
��
ðv;DX¼0Þ

.

The stability of 1–1–1 symmetrical motion is determined by computing and analyzing eigenvalues of Df(v,0).
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Variations of the parameters of the system will cause the fixed point and its associated eigenvalues to move. If
one of them passes through the unit circle in the complex plane, i.e., liðvcÞ ¼ 1

�� �� (vc is a bifurcation value), an
instability and an associated bifurcation will occur. In general, bifurcation occurs in various ways according to
the numbers of the eigenvalues on the unit circle and their position on the unit circle. Here, we shall consider
the case of v 2 R2, and dynamics of the system is studied with special attention to the interaction of Hopf and
pitchfork bifurcations of fixed points.

5. Codimension two bifurcation

5.1. The center manifold and normal form map

We continue to consider the map X 0 ¼ ~f ðv;X Þ. X n is a fixed point for the map for v in some neighborhood
of a critical value v ¼ vc at which Jacobian matrix Df ðv; 0Þ satisfies the following assumptions:

H.1. Jacobian matrix Df ðv; 0Þ has the eigenvalues l1ðvcÞ, l2ðvcÞ and l3ðvcÞ on the unit circle, in which l1ðvcÞ is a
real eigenvalue and l2;3ðvcÞ are a pair of complex conjugate eigenvalues, and l1ðvcÞ ¼ 1, l2ðvcÞ ¼ l̄3ðvcÞ,
l2;3ðvcÞ
�� �� ¼ 1.

H.2. The remainder of the spectrum of Df ðv; 0Þ are strictly inside the unit circle.
Let riðvÞ denote the eigenvector of Jacobian matrix Df ðv; 0Þ corresponding to the eigenvalue

liðvÞ ði ¼ 1; 2; . . . ; 2nÞ. If ljðvÞ is one of a pair complex conjugate eigenvalues (j 6¼1,2,3, but j may be
4; . . . ; 2n� 1), the eigenmatrix is expressed by P ¼ ðr1;Re r2;�Im r2; . . . ;Re rj ;�Im rj ; . . .Þ. If ljðvÞ is a real
eigenvalue (j 6¼1,2,3, but j may be 4, 5; . . . ; 2n), then P ¼ ðr1;Re r2;�Im r2; . . . ; rj ; . . .Þ. For all v in some
neighborhood of vc, the map (17), under the change of variables m1 ¼ v1 � v1c, m2 ¼ v2 � v2c, m ¼ ðm1;m2Þ

T and
DX ¼ P ~Y , becomes

~Y 0 ¼ ~F ðm; ~Y Þ, (18)

where D ~F ðm; 0Þ has the form

D ~F ðm; 0Þ ¼

l1 0 0 0

0 Re l2 �Im l2 0

0 Im l2 Re l2 0

0 0 0 ~D1

2
6664

3
7775, (19)

where li ¼
~liðmÞ ¼ liðvc þ mÞ, ~l1ð0Þ ¼ 1, ~l2;3ð0Þ ¼ a� i$, ~l2;3ð0Þ

�� �� ¼ 1. ~D1 is a real matrix of degree
(2n-3)� (2n-3) with the eigenvalues ~l4ðmÞ; . . . ; ~l2n�1ðmÞ and ~l2nðmÞ.

Let z1 ¼ y1, z2 ¼ y2 þ iy3, z̄2 ¼ y2 � iy3, z ¼ ðz1; z2; z̄2Þ
T, Gð1Þ ¼ ~F1 � l1z1, Gð2Þ ¼ ~F2 þ i ~F3 � l2z2,

W ¼ ð ~y4; ~y5; . . . . . . ; ~y2nÞ
T, H ¼ ð ~F4; ~F5; . . . . . . ; ~F2nÞ

T
� ~D1W , the map (18) is rewritten by

z01 ¼ l1z1 þ Gð1Þðz1; z2; z̄2;W ;mÞ; z02 ¼ l2z2 þ Gð2Þðz1; z2; z̄2;W ; mÞ;

W 0 ¼ ~D1W þHðz1; z2; z̄2;W ; mÞ. (20)

For the map (20), there exists a local center manifold W ðz1; z2; z̄2; mÞ [50,51], which can be determined by the
following equation:

W ðz01; z
0
2; z̄
0
2; mÞ ¼ ~D1W ðz1; z2; z̄2; mÞ þHðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ. (21)

On the center manifold the local behavior of the map (20) can be reduced to a three-dimensional map
~Fðz; mÞ, which is now

z01 ¼
~l1ðmÞz1 þ Gð1Þðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ;

z02 ¼
~l2ðmÞz2 þ Gð2Þðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ: (22)
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where the Taylor series expansion of W ðz1; z2; z̄2; mÞ and Giðz1; z2; z̄2;W ðz1; z2; z̄2; mÞ; mÞ about (0,0,0,m) can be
determined by the method which is introduced in Ref. [51].

By using the center manifold theorem technique and normal form method of maps, we can reduce the map
(22) to the normal form map Fðz; �Þ, which is given by

z01 ¼ z1 þ �1z1 þ az21 þ bz2z̄2 þ gz31 þ hz1z2z̄2 þOðð z1j j þ z2j jÞ
5
Þ

z02 ¼
~l2ð0Þz2 þ ~�2z2 þ ~cz1z2 þ ~ez21z2 þ ~mz22z̄2 þOðð z1j j þ z2j jÞ

5
Þ

)
, (23)

The normal form map (23), in the real form FðY ; �Þ, is expressed by

y01 ¼ y1 þ �1y1 þ ay2
1 þ bðy2

2 þ y2
3Þ þ gy3

1 þ hy1ðy
2
2 þ y2

3Þ þ h:o:t;

y02 ¼ ðaþ �2Þy2 � ð$þ �3Þy3 þ cy1y2 � dy1y3 þ ey2
1y2 � fy2

1y3 þmy2ðy
2
2 þ y2

3Þ � ny3ðy
2
2 þ y2

3Þ þ h:o:t;

y03 ¼ ð$þ �3Þy2 þ ðaþ �2Þy3 þ cy1y3 þ dy1y2 þ ey2
1y3 þ fy2

1y2 þmy3ðy
2
2 þ y2

3Þ þ ny2ðy
2
2 þ y2

3Þ þ h:o:t:

(24)

in which, � ¼ �1; �2; �3ð Þ
T, �i ¼ �iðmÞ, �ið0Þ ¼ 0.

5.2. Local codimension two bifurcation of normal form map

There may exist pitchfork, saddle-node or transcritical bifurcation of period-one double-impact symmetrical
motion near the point of codimension two bifurcation. The period-one double-impact symmetrical motion of
the system shown in Fig. 1 undergoes pitchfork bifurcation in most cases, so let us assume that there exist the
new fixed points of period one for the map FðY ; �Þ near the value of codimension two bifurcation, caused by
pitchfork bifurcation. In view of the normal form map (24), the new fixed points of period one, represented by
Yn, satisfy the equation

FðYn; �1; �2; �3Þ ¼ Yn. (25)

Ignoring the terms of high order of e, the solutions of Eq. (25) become

Yn

0 ¼ ð0; 0; 0Þ
T; Y n

1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4g�1

p
2g

; 0; 0

 !T

; Y n

2 ¼
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4g�1

p
2g

; 0; 0

 !T

. (26)

Yn
0 ¼ 0; 0; 0ð Þ

T is the trivial fixed point of period one. If a ¼ b ¼ ~c ¼ 0 [2] and �1=go0 then there exist the fixed
points of period one Yn

1P and Yn
2P caused by pitchfork bifurcation, which are expressed by

Y n

1P ¼

ffiffiffiffiffiffiffiffiffi
�
�1
g

r
; 0; 0

� �T

; Yn

2P ¼ �

ffiffiffiffiffiffiffiffiffi
�
�1
g

r
; 0; 0

� �T

. (27)

They are symmetrical at the origin due to symmetry of the structure and excitation point. The fixed point of
period one Y n

1P or Yn
2P may be born by giving different initial conditions of map, respectively.

The linearized maps of FðY ; �Þ at the fixed point Yn
0 and Yn

1P (or Yn
2P), respectively, are given by

Q0 ¼
qFðY ; �Þ

qY

����
ðY�0 ;�Þ

¼

1þ �1 0 0

0 aþ �2 �ð$þ �3Þ

0 $þ �3 aþ �2

2
64

3
75, (28)

QP ¼
qFðY ; �Þ

qY

����
ðY �iP;�Þ

¼

r 0 0

0 p q

0 �q p

2
64

3
75 ði ¼ 1; 2Þ, (29)

in which, r ¼ 1� 2�1, p ¼ a� e=g�1 þ �2, q ¼ �$þ f =g�1 � �3.
The partial bifurcation sets for the normal form map (24) can be determined by computing and analyzing

the eigenvalues of Jacobian matrixes (28) and (29), respectively. However, a full understanding of the normal
form map (24) requires more than Jacobian matrixes (28) and (29). So it is necessary to change the
normal form map (23) to the polar coordinate form Fðr; y; �0Þ 2 R2 � S, ðx; r; yÞ ! ðx0; r0; y0Þ.
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Let ~�2 ¼ ~l2ð0Þ~�20, �0 ¼ ð�1; �20Þ
T, ~c ¼ ~l2ð0Þ~c0, ~e ¼ ~l2ð0Þ~e0, ~m ¼ ~l2ð0Þ ~m0, the normal form map (23) becomes

z01 ¼ z1 þ �1z1 þ az21 þ bz2z̄2 þ gz31 þ hz1z2z̄2 þOðð z1j j þ z2j jÞ
5
Þ,

z02 ¼
~l2ð0Þz2ð1þ ~�20 þ ~c0z1 þ ~e0z

2
1 þ ~m0z2z̄2Þ þOðð z1j j þ z2j jÞ

5
Þ. ð30Þ

In polar coordinates, the map Fðz; �0Þ 2 R3 is changed to Fðx; r; y; �0Þ 2 R2 � S, which is given by

x0 ¼ xþ �1xþ ax2 þ br2 þ gx3 þ hxr2 þ h:o:t,

r0 ¼ rð1þ �20 þ c0xþ e0x
2 þm0r

2Þ þ h:o:t,

y0 ¼ yþ y0 þ �30 þ d0xþ f 0x
2 þ n0r2 þ h:o:t ð31Þ

in which, �20 ¼ a�2 þ$�3, �30 ¼ a�3 �$�2, e0 ¼ aeþ$f , f 0 ¼ af �$e, m0 ¼ amþ$n, n0 ¼ an�$m.
We ignore the influence of phase angle y to the map (31) temporarily. By the map, a two-dimensional map is

obtained, which is now

x0 ¼ xþ �1xþ ax2 þ br2 þ gx3 þ hxr2 þ h:o:t,

r0 ¼ rð1þ �20 þ c0xþ e0x
2 þm0r

2Þ þ h:o:t, ð32Þ

if a ¼ b ¼ ~c0 ¼ 0, the map (32) becomes

x0 ¼ xð1þ �1 þ gx2 þ hr2Þ þ h:o:t; r0 ¼ rð1þ �20 þ e0x2 þm0r
2Þ þ h:o:t, (33)

for which there exist the fixed points of period one caused by pitchfork bifurcation.
The map (33) has four fixed points:

Y 0 ¼ ð0; 0Þ
T; Y 0T ¼ 0;

ffiffiffiffiffiffiffiffiffiffi
��20
m0

r� �T

; Y 1P ¼

ffiffiffiffiffiffiffiffi
��1

g

r
; 0

� �T

; or Y 2P ¼ �

ffiffiffiffiffiffiffiffi
��1

g

r
; 0

� �T
 !

;

Y 1T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0�1 � h�20
e0h�m0g

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�20 � e0�1
e0h�m0g

r� �T

or Y 2T ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0�1 � h�20
e0h�m0g

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�20 � e0�1
e0h�m0g

r� �T
 !

:

Two simple cases and a complex case are considered. We first analyze the unfolding of the simple case (I)
associated with a scheme of coefficients of high order terms: go0, m0o0, ho0, e0o0, goe0, hom0 and
e0h�m0go0. Stable conditions of these fixed points can be determined by computing and analyzing of
eigenvalues of corresponding Jacobian matrix, respectively.

Y 0 ¼ ð0; 0Þ
T is the trivial fixed point of map (33), local stable condition of which is �1o0 and �20o0. It

should be noted that the existence of the fixed point Y 1 ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��20=m0

p
Þ
T requires the condition �20=m0o0,

local stable condition of the fixed point Y1 is �1oh�20=m0 and �2040. The existence of the fixed point Y1P (or
Y2P) requires the condition �1=go0, and local stable condition of the fixed point is �140, �20oe0�1=g. The
existence of the fixed point Y1T (or Y2T) requires the condition ðm0�1 � h�20Þ=ðe0h�m0gÞ40 and ðg�20 �
e0�1Þ=ðe0h�m0gÞ40 (according to e0h�m0go0, the existent region of the fixed point Y1T (or Y2T) can be
given by �204e0�1=g and �20om0�1=hð�140Þ), and local stable conditions of the fixed point Y1T (or Y2T) are
�140, �204e0�1=g and �20om0ðg� e0Þ�1=ðgh� gm0Þ.

Local behavior of the map (33) is not only determined by e1 and e20, but also by the coefficients of high
order terms of the map. We consider the influence of phase angle y to the map (33) to analyze the unfolding of
the map (24). By making a comparison between the simplified map (33) and normal form map (24), we can
unfold qualitative analyses for the normal form map. The fixed point Y0 of the map (33) corresponds to the
trivial fixed point Yn

0 ¼ ð0; 0; 0Þ
T of the normal form map (24). The fixed point Y0T of the map (33)

corresponds to the invariant circle of the normal form map (24) which is associated with the fixed point Y n
0;

the fixed point Y1P (or Y2P) of the map (33) corresponds to the fixed point Yn
1P (or Yn

2P) of the normal form
map (24), caused by pitchfork bifurcation; the fixed point YiT of the map (33) corresponds to the invariant
circle of the map (24), associated with the fixed point Yn

iP. For the map (24), the trivial fixed point Yn
0 loses its

stability upon crossing the half-line L1: �1 ¼ 0; �20o0, and the other fixed point Y n
1P (or Y n

2P) bifurcates
simultaneously from the trivial fixed point Y n

0 via a pitchfork bifurcation. On the line L4: �20 ¼ m0�1=hð�140Þ,
Hopf bifurcation associated with the fixed point Yn

iP occurs for the map (24), and a closed circle associated
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with the fixed point Yn
1P (or Y n

2P) exists in region R4. On the line L5: �20 ¼ m0ðg� e0Þ�1=ðgh� gm0Þð�140Þ, the
invariant circle associated with the fixed point Yn

iP will change its stability, and torus bifurcation occurs, which
possibly results in torus doubling, phase locking or quasi-attracting invariant circle, etc. The trivial fixed point
Yn

0 loses its stability upon crossing the half-line L2: �20 ¼ 0 ð�1o0Þ, and a closed circle bifurcates from
the trivial fixed point Yn

0 via a non-degenerate Hopf bifurcation. On the line L3: �20 ¼ m0�1=h ð�140Þ, the
invariant circle associated with the fixed points Y n

0 will change its stability, and torus bifurcation occurs, which
possibly leads to torus doubling, phase locking or quasi-attracting invariant circle, etc.

In the present case of scheme of coefficients of high order terms: go0, m0o0, ho0, e0o0, e0h�m0go0,
h�m0o0, the bifurcation set for map (33), near the critical point � ¼ ð�1; �20Þ

T
¼ ð0; 0ÞT, can be illustrated by

Fig. 2. Only the positive (x, r) quadrant is shown in Fig. 2. The fixed points Y2P and Y2T in the (�x, r)
quadrant are not plotted in Fig. 2. Since the portraits are symmetric under reflection about r axis. The bounds
of the regions shown in Fig. 2 can be listed as follows:

L1 ¼ ð�1; �20Þ : �1 ¼ 0; �20o0
	 


; L2 ¼ ð�1; �2Þ : �20 ¼ 0; �1o0
	 


,

L3 ¼ ð�1; �20Þ : �20 ¼
m0

h
�1; �140

n o
; L4 ¼ ð�1; �2Þ : �20 ¼

e0

g
�1; �140

� �
,

L5 ¼ ð�1; �20Þ : �20 ¼
m0ðg� e0Þ

gðh�m0Þ
�1; �140

� �
. ð34Þ

We analyze the unfolding of the case (II) associated with a scheme of coefficients of high order terms: go0,
m040, ho0, e040 and e0h�m0go0. The formulae of the bounds L1–L5 of the regions, shown in Fig. 3, are
the same algebraically as those in simple case (I).

Let us analyze the local behavior of the normal form map (24) near the bifurcation point � ¼ ð0; 0; 0ÞT by
means of Fig. 3. By comparison with Fig. 2, we can find that pitchfork bifurcation and further transition of the
normal form map in the case (II) are similar to those in the case (I). However, the difference is that Hopf
bifurcation of normal form map associated with the fixed point Y

ð1Þ
0 in the case (I) is supercritical; in the case

(II), subcritical. The difference of the unfolding of two cases can be observed obviously in the third and fourth
quadrants of Figs. 2 and 3. In the sector region R3, there exist fixed points Y0, Y0T, YiP and YiT. However, only
the fixed point Y1T (or Y2T) is stable, and others unstable. By analyzing the Jacobian matrix of map (33), we
can obtain two real eigenvalues associated with the fixed points YiT in the sector region R3, one of which
escapes the unit circle from the point (1,0) upon crossing the half-line L5. The fixed point Y1T (or Y2T) is stable
node in the region R3, and not unstable in the sector region R4. It is to be noted that very complicated behavior
Fig. 2. Unfolding of case (I), go0, m0o0, ho0, e0o0, goe0, hom0 and e0h�m0go0. Bifurcation set of map (33).
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Fig. 3. Unfolding of case (II), go0, m040, ho0, e040 and e0h�m0go0. Bifurcation set of map (33).

Fig. 4. Unfolding of a complex case (III), g40, m0o0, h40, e0o0 and e0h�m0go0. Bifurcation set of map (33).
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occur in region R4, i.e., there exists possibly tori doubling, phasing locking or quasi-attracting invariant circle
for the normal form in the region.

Now we continue to analyze the unfolding of the complex case (III) associated with a scheme of coefficients
of high order terms: g40, m0o0, h40, e0o0 and e0h�m0go0. The bifurcation set of map (33) in the case
(III) is shown in Fig. 4. The bounds of the regions shown in Fig. 4 can be listed as follows:

L1 ¼ ð�1; �20Þ : �1 ¼ 0; �20o0
	 


; L2 ¼ ð�1; �2Þ : �20 ¼ 0; �1o0
	 


,

L3 ¼ ð�1; �20Þ : �20 ¼
m0

h
�1; �1o0

n o
; L4 ¼ ð�1; �2Þ : �20 ¼

e0

g
�1; �1o0

� �
,

L5 ¼ ð�1; �20Þ : �20 ¼
m0ðg� e0Þ

gðh�m0Þ
�1; �1o0

� �
.



ARTICLE IN PRESS
G.W. Luo et al. / Journal of Sound and Vibration 297 (2006) 17–36 27
By making a comparison between the map (33) and normal form map (24), we can unfold qualitative analyses
for the normal form map in the case (III). Now we analyze the local behavior of the normal form map (24) near the
bifurcation point � ¼ ð0; 0; 0ÞT by means of Fig. 4. For the normal form map (24), in region R1 we have two fixed
points, the stable trivial fixed point Y

ð1Þ
0 ¼ ð0; 0; 0Þ

T and unstable fixed point Yn
1P (or Y n

2P). As we have known, the
trivial fixed point is node/focus, and the fixed point Yn

1P (or Yn
2P) is saddle in the region R1. As the parameters

cross the line L2 from the region R1, Hopf bifurcation of the trivial fixed point Y
ð1Þ
0 occurs so that a quasi-periodic

attractor represented by the attracting closed circle is generated in region R2, and the fixed point Y n
1P (or Y n

2P)
retains its sense. As the parameters cross the line L3 from the region R2, the closed circle becomes non-attracting
and the torus bifurcation occurs, which causes that a new closed circle is born. The closed circle is attracting in
region R3, and non-attracting in region R4. In region R5, there exist the unstable trivial fixed point, unstable fixed
point Yn

1P (or Y n
2P) and non-attracting invariant circle associated with the trivial fixed point. In region R6, we have

the unstable trivial fixed point and non-attracting invariant circle associated with the trivial fixed point.
It is to be noted that the closed circles of the normal form map (24), in region R4 of Fig. 2, regions R3 of

Figs. 2 and 3, are born by different ways. In cases (I) and (II), the closed circle is generated via Hopf
bifurcation of the fixed point Yn

1P (or Y n
2P); in case (III) by torus bifurcation.

The bifurcation sets for the map (24), corresponding to the other cases of scheme of coefficients of high
order terms, can be obtained by the similar method used in three cases above-mentioned.

In view of the Jacobian matrixes (28) and (29), we can find that there exist the period one point Yn
1P (or Yn

2P)
for �1=go0. According to the unfolding of the simple case (I), the bifurcation set of the map (24), near
� ¼ ð0; 0; 0ÞT, can be further illustrated by Fig. 5. Three possible cases for l1; l2;3 of Jacobian matrix Q0

escaping the unit circle are shown in Fig. 6. The unfolding of normal form map (24), corresponding to the
cases (II) and (III), can be obtained by the similar method used in the present case. The bounds of the regions
shown in Fig. 5 can be listed as follows:

ag�2 þ$g�3 � ðaeþ$f Þ�1 ¼ 0,

L11 : �1 ¼ 0; �2o0; L12 : �2 ¼ 0; �1o0; L13 : �2 ¼
aeþ$f

ag
�1; �140,

L21 : �1 ¼ 0; �3o0; L22 : �3 ¼ 0; �1o0; L23 : �3 ¼
aeþ$f

$g
�1; �140. ð35Þ

a�2 þ$�3 �
ðamþ$nÞðg� ae�$f Þ

gðh� am�$nÞ
�1 ¼ 0,

L14 : �2 ¼
ðamþ$nÞðg� ae�$f Þ

agðh� am�$nÞ
�1; �140; L24 : �2 ¼

ðamþ$nÞðg� ae�$f Þ

$gðh� am�$nÞ
�1; �140. ð36Þ
Fig. 5. Bifurcation set of the normal form map (24) in the case (I).
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Fig. 6. Three possible cases for l1; l2;3 of Jacobian matrix Q0 escaping the unit circle, in case (I).
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ah�2 þ$h�3 � ðamþ$nÞ�1 ¼ 0,

L15 : �2 ¼
amþ$n

ah
�1; �140; L25 : �2 ¼

amþ$n

$h
�1; �140. ð37Þ

Here we can assume, without loss of generality, a40. In formulae (35)–(37), aeþ$f ¼ e0o0,
amþ$n ¼ m0o0, g� ae�$f ¼ g� e0o0 and h� am�$n ¼ h�m0o0.

By analyzing the eigenvalues of Jacobian matrix Q0 and QP, we can conclude that when the parameters pass
across the regions as Ri1! Ri2 (i ¼ 1,2), the type of the fixed point of period one changes from Yn

0 to Y n
1P (or

Yn
2P); see Figs. 2 and 5. When the parameters cross the line Li1, the pitchfork bifurcation associated with the

fixed point Y n
0 occurs. When the parameters pass across the regions as Ri2 ! Ri3, then the type of period one

point Yn
1P (or Yn

2P) changes as stable node-stable focus-unstable focus. On the line Li3, Hopf bifurcation
associated with the fixed point Y n

1P (or Y n
2P) takes place. When the parameters pass across the regions as

Ri1! Ri4, the type of the fixed point of period one Y n
0 changes from stable focus to unstable focus, and on the

line Li2, Hopf bifurcation associated with the fixed point Yn
0 occurs. The direction of Hopf bifurcation

(supercritical or subcritical) depends on the coefficients of high order terms of the normal form map.
By analysis of unfolding of the map (24) in the present case, we can find that on the line Li4 the invariant

circle associated with the fixed point Y n
iP changes its stability, and torus bifurcation occurs. On the line Li5 the

invariant circle associated with the fixed point Yn
0 changes its stability, and torus bifurcation occurs.

According to the center manifold theory, local behavior of the map ~f ðv;X Þ, near the bifurcation point vc, is
equivalent to that of FðY ; �Þ for e near � ¼ ð0; 0; 0ÞT. By virtue of the analysis of local bifurcation of the normal
form map (24), we can find out dynamical behavior of the vibro-impact system in the case of codimension two
bifurcation considered. Local behavior of the map ~f ðv;X Þ, near the bifurcation point vc, conforms to the
numerical results below.
6. Numerical analysis

The local stability analysis, discussed in the previous section, can reveal different kinds of bifurcations of
1–1–1 symmetrical motions namely Hopf, saddle-node, pitchfork and codimension two bifurcation, etc. In this
section the analysis developed in the former section is verified by the presentation of results for a two-degree-
of-freedom vibratory system shown in Fig. 7. The existence and stability of period-one double-impact
symmetrical motion are analyzed explicitly. Also, local bifurcations at the points of change in stability,
discussed in the previous section, are considered, thus giving some information on dynamical behavior near
the point of codimension two bifurcation.

The two-degree-of-freedom vibratory system, with system parameters (1): m1 ¼ 1:0, m2 ¼ 5:6, k1 ¼ 1:0,
k2 ¼ 6:2, f 10 ¼ 1:0, f 20 ¼ 0:0, z1 ¼ 0:001, z2 ¼ 0:0062 and R ¼ 0:82, has been chosen for analyzing the
question. The forcing frequency o and clearance d are taken as the control parameters, i.e. v ¼ ðd;oÞT. The
eigenvalues of Df ðv; 0Þ are computed with oA[6.0, 8.7] and dA[0.015, 0.04]. All eigenvalues of Df ðv; 0Þ
stay inside the unit circle for v ¼ (0.04, 6.0)T. By increasing the forcing frequency o and decreasing the
value of clearance d gradually from the point v ¼ (0.04, 6.0)T to change the control parameter v, we found
that there exist a real eigenvalue l1ðvcÞ ¼ 1:0000002 and a complex conjugate pair of eigenvalues
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Fig. 8. Partial bifurcation set near the point of codimension two bifurcation.

Fig. 7. Schematic of a two-degree-of-freedom vibratory system with symmetrical rigid stops.
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l2;3ðvcÞ ¼ 0:66776710� 0:74313420i ð l2;3ðvcÞ
�� �� ¼ 0:9991Þ, which are very close to the unit circle, and the

eigenvalue l4ðvÞ still stays inside the unit circle ðl4ðvcÞ ¼ 0:45218780Þ as v equals vc ¼ (0.019998, 8.492056)T.
The eigenvalues l1ðvÞ and l2;3ðvÞ have already escaped the unit circle as o (increasingly) and d (decreasingly)
pass through o ¼ 8.492057 and d ¼ 0.019996. The eigenvalues l1ðvÞ and l2;3ðvÞ almost escape the unit circle
simultaneously, and vc ¼ (0.019998, 8.492056)T may be approximately taken as the value of codimension two
bifurcation, involving a positive real eingevalue and a complex conjugate pair escaping the unit circle
simultaneously.

Numerical analyses are carried out to unfold dynamic behavior of the two-degree-of-freedom vibro-impact
system near the point of codimension two bifurcation. The partial bifurcation set, near the value of
bifurcation, is plotted in Fig. 8, in which 1–1–1 symmetrical motion is represented by (S), and 1–1–1
antisymmetrical one by (AS). The whole dynamical transitions from simulation are shown in the bifurcation
diagrams for the clearance value d ¼ 0.025 (Fig. 9) in which the velocities of mass M1, immediately after
impact, are shown versus the varying forcing frequency o. One can observe, from Figs. 8 and 9, that there
exists the window of period-one double-impact symmetrical motion in the bifurcation diagrams. The width of
the window of 1–1–1 symmetrical motion increases with increase in the value of clearance d, and the width
of the window shrinks to zero at the critical value v ¼ vc. The 1–1–1 symmetrical motion will undergo
pitchfork bifurcation with decrease in the forcing frequency o so that a pair of antisymmetrical double-impact
periodic orbits are born. With further decrease in the forcing frequency o, the 1–1–1 antisymmetrical motions
will lose stability, these motions then each undergo supercritical Hopf bifurcation so that the system exhibits
quasi-periodic impact motion associated with 1–1–1 antisymmetrical motion, which eventually results in
apparently nonperiodic, or chaotic motions via torus doubling, phase locking or quasi-attracting invariant
torus. Moreover, the 1–1–1 symmetrical motion undergoes also subcritical Hopf bifurcation with increase
in o. Some projected Poincaré sections are plotted for d ¼ 0.025 in Figs. 10–12. The Poincaré section is taken
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Fig. 9. Bifurcation diagram near the point of codimension two bifurcation, d ¼ 0:025.

Fig. 10. The projected Poincaré sections: (a) transient points as well as the fixed point associated with 1–1–1 antisymmetrical motion,

starting from the initial condition near the fixed point of 1–1–1 symmetrical motion, o ¼ 7:45; (b) transient points as well as the attracting
invariant circle associated with 1–1–1 antisymmetrical point, starting from the initial condition near the fixed point of 1–1–1 symmetrical

motion, o ¼ 7:41; (c) attracting invariant circle of 1–1–1 antisymmetrical point, o ¼ 7:27; (d) chaos, o ¼ 7:266.

Fig. 11. Projected Poincaré sections: (a) attracting invariant circle of 1–1–1 antisymmetrical point, o ¼ 7:41; (b) a comparison of

symmetry of two quasi-periodic attractors about the original fixed point o ¼ 7:41.
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in the form s ¼ ðx1; _x1; x2; _x2; yÞ 2
	

R4 � S; x1 ¼ d; _x1 ¼ _x1þ



, which is four-dimensional. The section is

projected to the ðt; _x2Þ or ðt; _x1þÞ plane, etc., which is called the projected Poincaré section. The fixed point
associated with 1–1–1 symmetrical motion, with the corresponding parameter v, is taken as the initial map
point in every numerical analysis. We choose the value of clearance d ¼ 0.025 and change the forcing
frequency o in the following analyses. It is shown, by numerical results, that the system exhibits stable 1–1–1
symmetrical motion with oA(7.590414, 7.883305); see Fig. 9.

The 1–1–1 symmetrical motion has changed its stability, and pitchfork bifurcation associated with the
motion occurs as o is decreased gradually and passes through oc1 ¼ 7.590414, i.e., the system exhibits stable
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Fig. 12. Projected Poincaré sections: (a) local map near the unstable fixed point of 1–1–1 symmetrical motion, o ¼ 8:0 (3000 impacts); (b)

transient points as well as chaotic attractor, starting from the initial condition near the fixed point of 1–1–1 symmetrical motion, o ¼ 8:0
(15 000 impacts).
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1–1–1 antisymmetrical motion as seen in Figs. 9 and 10(a). Transient points as well as the fixed point
associated with 1–1–1 antisymmetrical motion, starting from the initial condition near the unstable fixed
point of 1–1–1 symmetrical motion, are ploted for o ¼ 7.45 in Fig. 10(a). Two different orbits with
antisymmetrical double-impact characteristic are possibly caused by different initial conditions, respectively.
With further decrease in the forcing frequency o, the 1–1–1 antisymmetrical motions will change stability,
these motions then each undergo Hopf bifurcations. The system, shown in Fig. 7, exhibits quasi-periodic
motion associated with 1–1–1 antisymmetrical one. The quasi-periodic attractor is represented by an
attracting invariant circle in projected Poincaré sections; see Figs. 10(b) and (c) which show transient points as
well as the attracting invariant circle associated 1–1–1 antisymmetrical point, starting from the initial
condition near the unstable fixed point of 1–1–1 symmetrical motion. It is to be noted that the attracting
invariant circle is smooth in nature near the value of Hopf bifurcation of 1–1–1 antisymmetrical motion. As
the value of o moves further away from the value of Hopf bifurcation, the attracting invariant circle expands,
and the smoothness of quasi-periodic attractor is changed by degrees until it is destroyed. The quasi-periodic
impact motion finally transits to chaos via the quasi-attracting invariant circle as o is changed decreasingly;
see Fig. 10(d). The quasi-attracting invariant circle is attracting for the map point inside the circle, and
repelling for the map point on or outside it.

A phenomenon needs mentioning. Pitchfork bifurcation of 1–1–1 symmetrical motion may leads to
two different orbits with antisymmetrical double-impact characteristic due to different initial conditions,
respectively. Hopf bifurcation associated with 1–1–1 antisymmetrical motion may lead to two different quasi-
periodic orbits with antisymmetrical characteristic due to different initial conditions, respectively; which is
illustrated by Figs. 10(b) and 11(a). A comparison of symmetry of two quasi-periodic attractors about the
trivial fixed point can be observed in Fig. 11(b). However, the symmetry of two quasi-periodic attractors,
about the trivial fixed point, will be changed as the forcing frequency is further far away the value of Hopf
bifurcation.

The 1–1–1 symmetrical motion undergoes subcritical Hopf bifurcation as o passes through oc2 ¼ 7.883305
in a increasing way, which is illustrated by the center manifold theorem technique and normal form method of
maps used in Ref. [22]. At the critical value oc2 ¼ 7.883305, the eigenvalues of Df ðo; 0Þ and associated
bifurcation parameters are given as follows:

l1ðoc2Þ ¼ 0:9886617; l2;3ðoc2Þ ¼ 0:6193914� 0:7850825i;

l2;3ðoc2Þ
�� �� ¼ 1:0000001; l4ðoc2Þ ¼ 0:4785741;

dl2ðmÞ=dm
��
m¼0 ¼ 2:355861; m ¼ o� oc2; f 1ð0Þ ¼ �1:562334:

We can conclude, according to the results above-mentioned and Ref. [52], that a subcritical Hopf bifurcation
of 1–1–1 symmetrical motion occurs for o47.883305, and a change from stable focus to unstable focus,
associated with the fixed point of 1–1–1 symmetrical motion, is generated. The analysis is verified by numerical
results. Fig. 12(a) shows local map near the unstable fixed point associated with 1–1–1 symmetrical motion
(unstable focus) for o ¼ 8:0. Fig. 12(b) shows transient points as well as chaotic attractor, starting from the
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initial condition near the fixed point associated with 1-1-1 symmetrical motion (unstable focus) for o ¼ 8:0.
The example analyzed corresponds to the unfolding case (II) in Section 5.2.

The system shown in Fig. 7, with parameters (2): m1 ¼ 1, m2 ¼ 1:8, k1 ¼ 1, k2 ¼ 4:0, f 10 ¼ 1, f 20 ¼ 0,
z1 ¼ 0:0003 and z2 ¼ 0:0012 has been chosen for analyzing its dynamical behavior near the point of
codimension two bifurcation. The forcing frequency o and the clearance d are taken as the control parameters,
i.e. v ¼ ðd;oÞT. The eigenvalues of Jacobian matrix Df ðv; 0Þ are computed with oA[3.3, 4.0] and dA[0.08,
0.12]. All eigenvalues of Df ðv; 0Þ stay inside the unit circle for v ¼ (0.1, 3.8)T. By gradually increasing o
and decreasing d from the point v ¼ (0.1, 3.8)T to change the control parameter v, we can obtain a real
eigenvalue l1ðvcÞ ¼ 1:0000016 and a complex conjugate pair of eigenvalues l2;3ðvcÞ ¼ 0:6736258� 0:7390723i,
( l2;3ðvcÞ
�� �� ¼ 0:9999998) which are very close to the unit circle, and the other eigenvalue (l4ðvcÞ ¼ 0:6574091)
still stay inside the unit circle as v equals vc ¼ (0.0089917, 3.982374)T. The eigenvalues l1ðvÞ and l2;3ðvÞ have
escaped the unit circle as o (increasingly) and d (decreasingly) pass through vc ¼ (0.009, 3.9825)T. The
eigenvalues l1ðvÞ and l2;3ðvÞ almost escape the unit circle simultaneously, so vc ¼ (0.0089917, 3.982374)T is
approximately taken as the value of codimension two bifurcation.

Local behavior of the system, near the point of codimension two bifurcation, is obtained by numerical
simulation. The partial bifurcation set near the critical value is plotted in Fig. 13. As the clearance d is fixed,
the 1–1–1 symmetrical motion will undergo pitchfork bifurcation, with decrease in the forcing frequency o, so
that a pair of antisymmetrical double impact periodic orbits stabilize. With further decrease in o, instability of
1–1–1 antisymmetrical motions occurs, these motions then each undergo supercritical Hopf bifurcation so that
the quasi-periodic impact motions associated with 1–1–1 antisymmetrical one stabilize, which eventually result
in apparently non-periodic, or chaotic motions via torus doubling, phase locking or quasi-attracting circle.
Whereas the 1–1–1 symmetrical motion undergoes also supercritical Hopf bifurcation with increase in the
forcing frequency o. Dynamical behavior of the system, near the point of codimension two bifurcation, is
further illustrated by bifurcation diagram and projected Poincaré sections plotted in Figs. 14–16. The fixed
point associated with 1–1–1 symmetrical motion, with the corresponding parameter v, is still taken as the
initial map point in every numerical analysis. We choose the clearance value d ¼ 0:1 and change the forcing
frequency o in the following numerical analysis. The stable 1–1–1 symmetrical motion is shown to exist in the
forcing frequency range oA(3.772726, 3.838787); see Fig. 14.

Instability of 1–1–1 symmetrical motion occurs, and pitchfork bifurcation associated with the motion is
generated as o is decreased gradually and passes through oc1 ¼ 3.772726. The system begins to exhibit stable
1–1–1 antisymmetrical motion. The type of fixed point of 1–1–1 antisymmetrical motion, from stable node to
Fig. 13. Partial bifurcation set near the point of codimension two bifurcation.
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Fig. 14. Bifurcation diagram near the point of codimension two bifurcation, d ¼ 0:1.

Fig. 15. Projected Poincaré sections: (a) transient points as well as the fixed point associated with 1–1–1 antisymmetrical motion, starting

from the initial condition near the fixed point of 1–1–1 symmetrical motion, o ¼ 3:75; (b) transient points as well as the attracting

invariant circle associated with 1–1–1 antisymmetrical point, starting from the initial condition near the fixed point of 1–1–1 symmetrical

motion, o ¼ 3:73; (c) chaos (2500 impacts), o ¼ 3:7225; (d) chaos (20 000 impacts), o ¼ 3:722.

Fig. 16. Projected Poincaré sections: (a) attracting invariant circle associated with the fixed point of 1–1–1 symmetrical motion, o ¼ 3:841;
(b) phase locking, q ¼ 5=5 fixed points, o ¼ 3:852; (c) chaos, o ¼ 3:865.

G.W. Luo et al. / Journal of Sound and Vibration 297 (2006) 17–36 33
stable focus, is changed with decrease in the forcing frequency. With further decrease in o, instability of
1–1–1 antisymmetrical motions occurs, these motions then undergo Hopf bifurcations. The quasi-periodic
attractor is shown in Fig. 15(b). With decrease in o, the quasi-periodic motion falls into chaotic one.
The transition of quasi-periodic attractor to chaos, via the quasi-attracting invariant circle, is illustrated by
Figs. 15(c) and (d).

Increase of the forcing frequency leads to instability and supercritical Hopf bifurcation of 1–1–1
symmetrical motion. At the critical value oc3 ¼ 3.838787, the eigenvalues of Df ðo; 0Þ and associated
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bifurcation parameters are given as follows:

l1ðoc2Þ ¼ 0:9882613; l2;3ðoc2Þ ¼ 0:7563341� 0:6541861i; l2;3ðoc2Þ
�� �� ¼ 1:000000,

l4ðoc2Þ ¼ 0:6786712.

A supercritical Hopf bifurcation of 1–1–1 symmetrical motion occurs for o43.838787, and a change from
stable focus to unstable focus, associated with the fixed point of 1–1–1 symmetrical motion, is generated. Hopf
bifurcation of double-impact symmetrical motion and transition to chaos, with increase in the forcing
frequency, are shown in Figs. 14 and 16.

By studying codimension two bifurcation of vibro-impact system of Fig. 7, we can find that the system
exhibits similar dynamical behavior near the points of codimension two bifurcations. It is to be noted that the
second representative example analyzed corresponds to the unfolding case (I) in Section 5.2.

7. Conclusions

A class of multi-degree-of-freedom system having symmetrically placed rigid stops and subjected to periodic
excitation is considered. An important application where the model studied here may be of use is in the dynamics
of heat exchanger tubes in nuclear reactors [53]. Such tubes are designed to have clearances at support points to
allow for thermal expansion. When fluid flows past these tubes vortex shedding occurs and the tubes are excited.
The response of such systems is very complicated [53] and the wearing of these tubes is a major problem in the
nuclear industry. Fluid flow past panels and beams can result in chaotic motions and thus bifurcation behavior
and chaotic motions may provide an appropriate tool in the study of tube wear. Stability and local bifurcations of
period-one double-impact symmetrical motion of the vibratory system with symmetrical rigid stops may be
analyzed by computing the eigenvalues of Jacobian matrix of linearized Poincaré map. Routes of symmetrical
double-impact periodic motions to chaos are also observed by numerical simulation.

Local codimension two bifurcation of maps, involving a real eingevalue and a complex conjugate pair
escaping the unit circle simultaneously, is analyzed by using the center manifold technique and normal form
method of maps. Dynamical behavior of the vibratory systems with symmetrical rigid stops, near the points of
codimension two bifurcations, is investigated by qualitative analyses and numerical simulation. The vibro-
impact systems, under the condition of codimension two bifurcations, exhibit more complicated quasi-
periodic impact motions than those which occur in the case of codimension one bifurcations. Near the point of
codimension two bifurcation there exists not only Hopf and pitchfork bifurcations of 1–1–1 symmetrical
motion, but also Hopf bifurcation of 1–1–1 unsymmetrical motion. It is to be noted that no Hopf bifurcation
of 1–1–1 symmetrical motion occurs for single degree-of-freedom vibratory system with symmetric stops, see
Ref. [2]. However, Hopf bifurcations of 1–1–1 motions are shown to exist in multi-degree-of-freedom vibro-
impact system with symmetrical rigid stops.

The strict condition of codimension two bifurcation is not easy to encounter in practical application of
engineering. However there exist the possibilities that actual nonlinear dynamical systems, with two varying
parameters or more, work near the critical value of codimension two bifurcation due to change of parameters.
The impact-forming machinery is a typical example. Besides the forcing frequency o, the clearance varies also
with different thickness of the formed workpieces [54]. Another representative example is the inertial vibro-
impact shaker, of which the distribution of masses is generally metabolic with casts of different masses, and
the forcing frequency is also important parameter changed [55]. The change of multi-parameters possibly leads
to the result that the vibro-impact systems work near the critical parameters of codimension two bifurcation.
It is necessary to study the bifurcations caused by change of multi-parameters and reveal dynamical behavior
of nonlinear systems near the points of bifurcations.
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Appendix

F ¼ diag½C;C�; PiðtÞ ¼
Pi1ðtÞ Pi2ðtÞ

_Pi1ðtÞ _Pi2ðtÞ

" #
; QiðtÞ ¼

PsiðtÞ PciðtÞ

_PsiðtÞ _PciðtÞ

" #
,

P11ðtÞ ¼ diag½giðtÞZioi=odi þ hiðtÞ�; P12ðtÞ ¼ diag½giðtÞ=odi�,

P21ðtÞ ¼ diag½ ~hið2p=oÞðgiðtÞZioi=odi þ hiðtÞÞ � ~gið2p=oÞðhiðtÞZioi=odi � giðtÞÞ�,

P22ðtÞ ¼ diag½ðgiðtÞ
~hið2p=oÞ � ~gið2p=oÞhiðtÞÞ



odi�,

PsiðtÞ ¼ CðF s cos ot� Fc sin otþ Pi2ðtÞoFc � Pi1ðtÞF sÞ,

PciðtÞ ¼ CðFs sin otþ Pc cos ot� Pi2ðtÞoF s � Pi1ðtÞF cÞ.

where ~giðtÞ ¼ eZioi t sinðoditÞ, ~hiðtÞ ¼ eZioi t cosðoditÞ, giðtÞ ¼ e�Zioi t sinðoditÞ, hiðtÞ ¼ e�Zioi t cosðoditÞ.

~A1

~B1

" #
¼ F ~Eð0Þ
� ��1 x0 þ Dx

_x0 þ D _x

" #
� F ~Eð0Þ
� ��1

FU ~Q
~SDt

~CDt

" #
;

~A2

~B2

" #
¼ F ~Eð0Þ
� ��1 ~xð~t1þÞ

_~xð~t1þÞ

" #
� F ~Eð0Þ
� ��1

FU ~Q
~S ~t1

~C ~t1

" #
,

where ~SDt ¼ sinðt0 þ DtÞ, ~CDt ¼ cosðt0 þ DtÞ, ~S ~t1 ¼ sinðo~t1 þ t0 þ DtÞ, ~C ~t1 ¼ cosðo~t1 þ t0 þ DtÞ.
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