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Abstract

Utilizing the infinite circular cylinders solution based on the technique of variables separation, a general solution is

developed to analyze the vibration of finite circular cylinders. The vibration of finite circular cylinders with different end

boundary conditions as well as the curved panels can be analyzed by the semi-analytical method developed in the present

study. In the present paper two different boundary conditions are considered, namely the free-end and fixed-end hollow

cylinders. Convergence and precision of the method are determined to calculate the natural frequencies of various

geometrical configurations. It is shown that the results obtained from the present semi-analytical method are in good

agreement with those obtained using the previously developed methods. Generality, high accuracy and good convergence

with a small sized of coefficient matrix are the merits of the present method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Finite length hollow cylinders are indispensable in many industries such as marine structures, necessitating
the thorough comprehension of their vibration with different boundary conditions. These understanding may
be used to analyze the sound transmission through the single and multilayered finite cylinders. The earliest
investigation concerning the vibration of cylinders was performed by Pochhamer [1] and Chree [2]. The
Pochhamer–Chree solution was developed for an infinitely long solid cylinder. Greenspon [3], Gazis [4] and
Armenakas [5] studied the vibration of infinitely long traction free hollow cylinders using linear three
dimensional (3D) theory of elasticity. McNevin et al. [6] developed a three-mode theory for axisymmetric
vibrations of rods and hollow cylinders. Gladwell and Tahbildar [7] investigated axisymmetric vibrations of
cylinders using the finite-element method. The vibration of free finite length circular cylinders using the finite-
element method was analyzed by Gladwell and Vijay [8]. Hutchinson [9,10] developed a semi-analytical highly
accurate method to solve the vibrations of finite length rods and solid cylinders on the basis of linear 3D
elasticity. Hutchinson and El-Azhari [11] investigated the vibrations of free hollow finite length circular
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b inner and outer radii of the cylinder
Ak, Bk, Fk, Gk, F̄ k,Ḡk, constants
C1, C2 propagation velocity of dilatational and

distortional waves
H ratio of the thickness with respect to the

mean radius
H vector potential functions
In, Kn modified Bessel functions (order n)
Jn, Yn bessel and Neumann functions (order n)
l half length of the cylinder
L ratio of the length over the mean radius

n circumferential wave number
N1, N2 number of truncated series terms in z and

r directions
r, y, z cylindrical coordinates
t time
u displacement vector
l, m lame constants
r density
r stress field
j scalar potential functions
o circular frequency
O ¼ ob=C2 non-dimensional natural frequency
r2 three-dimensional Laplacian operator
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cylinders using the method which had been previously reported by Hutchinson. In Hutchinson’s heretofore
studies different forms of solutions, by combining some fundamental solution forms are suggested for the
above mentioned cases. Singal and Williams [12] investigated the vibrations of thick hollow cylinders using the
energy method based on the 3D theory of elasticity. Leissa and So [13,14] studied the vibrations of free and
cantilevered solid cylinders using simple algebraic polynomials in the Ritz method. Liew et al. [15–17] studied
the free vibrations of solid and hollow cylinders with different end boundary conditions using 3D energy
displacement-based expressions. The convergence of the method and parametric investigations were
performed for different boundary conditions and cross-sections of hollow cylinders. Some studies have also
been performed on the vibrations of the cylinders that include the classification of natural frequencies or mode
shapes such as the one presented by Wang and Williams [18] using the finite element method. Modified
methods are also used to obtain more accurate and better convergence of the results, for example Zhou et al.
[19] studied 3D vibrations of the solid and hollow cylinders using the Ritz method and Chebyshev
polynomials.

In this paper a general semi-analytical solution using the technique of variables separation on the basis of
linear 3D theory of elasticity is developed which covers different cases of finite length cylinders such as rods,
solid cylinders, hollow cylinders and curved panels with various boundary conditions. In this method some of
the boundary conditions need to be approximately satisfied using orthogonalization technique while the others
to be exact. Comparing with the previously developed series solutions, high accuracy and good convergence
with a small sized of coefficient matrix are achieved in the eigenvalues estimation using the present method.

2. Formulation

The geometry of a typical hollow circular cylinder is shown in Fig. 1. An orthogonal cylindrical coordinate
(r, y, z) system is considered as shown in this figure. The corresponding components of the displacement vector
u at a point are ur, uy and uz in the r, y, and z directions, respectively. The displacement equations governing
the motion of an isotropic media are

r
q2u
qt2
¼ mr2uþ ðlþ mÞrðr:uÞ, (1)

where r is the density, l and m are the Lame constants, and r2 is the 3D Laplacian operator. The most general
solution of Eq. (1) may be obtained using Helmholtz decomposition as follows:

u ¼ rjþ r�H (2)

with the condition of

r:H ¼ F r; y; z; tð Þ, (3)
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Fig. 1. A half hollow circular cylinder configuration.
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where j andH are scalar and vector potential functions respectively and F is an arbitrary function that may be
taken as zero [5]. Substituting u from Eq. (2) into Eq. (1) results the following wave equations:

C2
1r

2j ¼
q2j
qt2

,

C2
2r

2H ¼
q2H
qt2

, ð4Þ

where

C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
,

C2 ¼

ffiffiffi
m
r

r
. ð5Þ

The constants C1 and C2 are the propagation velocity of dilatational and distortional waves in an infinite
medium, respectively. Employing the technique of variables separation the following general solutions in
cylindrical coordinates can be obtained

jðr; y; z; tÞ ¼ R1ða1rÞT1ðd1zÞ þ R̄1ðā1rÞT1ðd̄1zÞ
� �

E1ðnyÞeiot,

Hrðr; y; z; tÞ ¼ R2ða23rÞT2ðd23zÞ þ R̄2ðā23rÞT2ðd̄23zÞ
� �

E2ðnyÞeiot,

Hyðr; y; z; tÞ ¼ R3ða23rÞT3ðd23zÞ þ R̄3ðā23rÞT3ðd̄23zÞ
� �

E3ðnyÞeiot,

Hzðr; y; z; tÞ ¼ R4ða4rÞT4ðd4zÞ þ R̄4ðā4rÞT4ðd̄4zÞ
� �

E4ðnyÞeiot, ð6Þ

where

R1ða1rÞ ¼ F1Jnða1rÞ þ G1Y nða1rÞ,

R2ða23rÞ ¼ F2Jnþ1ða23rÞ þ G2Y nþ1ða23rÞ þ
n

a23r
F 3 � F2ð ÞJnða23rÞ þ G3 � G2ð ÞY nða23rÞ½ �,

R3ða23rÞ ¼ F3Jnþ1ða23rÞ þ G3Y nþ1ða23rÞ þ
n

a23r
F 2 � F3ð ÞJnða23rÞ þ G2 � G3ð ÞY nða23rÞ½ �,

R4ða4rÞ ¼ F4Jnða4rÞ þ G4Y nða4rÞ,

d21 þ a21 ¼ d̄
2

1 þ ā21 ¼
o2

C2
1

 !
,

d223 þ a223 ¼ d̄
2

23 þ ā223 ¼
o2

C2
2

 !
,
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d24 þ a24 ¼ d̄
2

4 þ ā24 ¼
o2

C2
2

 !
, ð7Þ

T1ðd1zÞ ¼
cosðd1zÞ

sinðd1zÞ

( )
; T2ðd23zÞ ¼

sinðd23zÞ

cosðd23zÞ

( )
,

T3ðd23zÞ ¼
� sinðd23zÞ

cosðd23zÞ

( )
; T4ðd4zÞ ¼

cosðd4zÞ

sinðd4zÞ

( )
,

E1ðnyÞ ¼ E3ðnyÞ ¼
cosðnyÞ

sinðnyÞ

( )
; E2ðnyÞ ¼ E4ðnyÞ ¼

sinðnyÞ

cosðnyÞ

( )

and Jn and Yn denote the Bessel and Neumann functions for real arguments, or will be replaced by In and Kn

for imaginary arguments, n is a real number, Fk and Gk (k ¼ 1, 2, 3, 4) are the constants and o is the circular
frequency. The second terms in Eq. (6) are added to satisfy the end boundary conditions. The functions of
R̄kðārÞ and Tkðd̄zÞ (k ¼ 1, 2, 3, 4) can be calculated using ā and d̄ in Eq. (7) instead of a and d, respectively.
This general solution for potential functions may be used to analyze the wave propagation in infinite or finite
circular cylinders and curved panels. In comparison with those investigated by Gazis [4] for infinite circular
cylinders, the above solution provides more coefficients to evaluate the wave propagation in the finite circular
cylinders and curved panels with different end boundary conditions. Comparing with the before mentioned
Hutchinson’s studies on the vibration of free-end circular cylinders, additional terms have been included to the
solution of the infinite cylinders.

In this paper two different boundary conditions are considered. At first the free-end hollow circular cylinder
is analyzed to verify the obtained results with those performed by Hutchinson and El-Azhari [11], So and
Leissa [14] and Zhou et al. [19]. Then the fixed-end hollow circular cylinder is analyzed to present the
combination of the displacement and stress boundary conditions. The fixed-end hollow circular cylinder is
more applicable in design and analysis of industrial problems such as the analysis of the coupled structure-
acoustic models. The results obtained may be affected by scattering and transmission of sound through the
open end as provided by Lee and Kim [20]. To avoid this, the fixed-end boundary conditions are chosen in the
experiments. In addition the present method can be used to evaluate the wave propagation in the curved
panels, which will be investigated in future work.

If an isotropic elastic circular cylinder with the inner and outer radii of a and b and finite length of 2 l is
considered, the generalized solution form (6) is reduced to a simple form with 12 independent terms by
identifying the variables as follows:

n ¼ n,

d2 ¼ d23 ¼ d4,

a ¼ a1 ¼ a2 ¼ a23 ¼ a4,

d̄ ¼ d̄1 ¼ d̄2 ¼ d̄23 ¼ d̄4,

ā2 ¼ ā23 ¼ ā4, ð8Þ

where n is circumferential wave number. Substituting from Eq. (8) into Eq. (6), and the resultant equation into
Eq. (2) leads to the following displacement components:

ur ¼
n

r
JnðarÞ � aJnþ1ðarÞ

� �
A1 þ

n

r
Y nðarÞ � aY nþ1ðarÞ

� �
B1

h i cosðd1zÞ

sinðd1zÞ

( )(
,

þ d2Jnþ1ðarÞA2 þ d2Y nþ1ðarÞB2 þ
n

r
JnðarÞA3 þ

n

r
Y nðarÞB3

n o 1

�1

( )#"
cosðd2zÞ

sinðd2zÞ

( )
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þ
n

r
Jnðā1rÞ � ā1Jnþ1ðā1rÞ

� �
A4 þ

n

r
Y nðā1rÞ � ā1Y nþ1ðā1rÞ

� �
B4þ

h
d̄Jnþ1ðā2rÞA5

þ d̄Y nþ1ðā2rÞB5 þ
n

r
Jnðā2rÞA6 þ

n

r
Y nðā2rÞB6

n o 1

�1

( )#
cosðd̄zÞ

sinðd̄zÞ

( ))
cosðnyÞ

sinðnyÞ

( )
eiot,

uy ¼ �
n

r
JnðarÞA1 �

n

r
Y nðarÞB1

h i 1

�1

( )
cosðd1zÞ

sinðd1zÞ

( )(

þ d2Jnþ1ðarÞA2 þ d2Y nþ1ðarÞB2½ �
1

�1

( )"
�

n

r
JnðarÞ � aJnþ1ðarÞ

� �
A3

�
n

r
Y nðarÞ � aY nþ1ðarÞ

� �
B3

#
cosðd2zÞ

sinðd2zÞ

( )
þ �

n

r
Jnðā1rÞA4 �

n

r
Y nðā1rÞB4

nh

þ d̄Jnþ1ðā2rÞA5 þ d̄Y nþ1ðā2rÞB5

o 1

�1

( )
�

n

r
Jnðā2rÞ � ā2Jnþ1ðā2rÞ

� �
A6

�
n

r
Y nðā2rÞ � ā2Y nþ1ðā2rÞ

� �
B6

i cosðd̄zÞ

sinðd̄zÞ

( ))
sinðnyÞ

cosðnyÞ

( )
eiot ð9Þ

uz ¼ � d1JnðarÞA1 þ d1Y nðarÞB1½ �
sinðd1zÞ

cosðd1zÞ

( )
þ aJnðarÞA2 þ aY nðarÞB2½ �

sinðd2zÞ

cosðd2zÞ

( )(

þ d̄Jnðā1rÞA4 þ d̄Y nðā1rÞB4 þ ā2Jnðā2rÞA5

�
þā2Y nðā2rÞB5

� sinðd̄zÞ

cosðd̄zÞ

( ))
1

�1

( )
cosðnyÞ

sinðnyÞ

( )
eiot,

where

A1 ¼ F 1;A2 ¼ F 3;A3 ¼ F4 þ
d2
a

F2 � F 3ð Þ
1

�1

( )
; B1 ¼ G1;B2 ¼ G3;B3 ¼ G4 þ

d2
a

G2 � G3ð Þ
1

�1

( )
;

A4 ¼ F̄ 1;A5 ¼ F̄ 3;A6 ¼ F̄4 þ
d̄
ā2

F̄2 � F̄ 3

� � 1

�1

( )
; B4 ¼ Ḡ1;B5 ¼ Ḡ3;B6 ¼ Ḡ4 þ

d̄
ā2

Ḡ2 � Ḡ3

� � 1

�1

( )
.

ð10Þ

In light of Eqs. (9) and (10), two forms of symmetric and antisymmetric solutions are obtained Utilizing the
strain–displacement and stress–strain relations, the relevant stress components can be obtained in a similar
form as the displacement components that are given in Appendix A. The aforementioned displacement and
stress fields satisfy the equilibrium equations, which confirms their validity. In the following sections, solutions
of the hollow circular cylinders with two different boundary conditions are performed.

2.1. Free-end hollow circular cylinder

The boundary conditions of the free-end hollow circular cylinder are defined as follows:

srr ¼ sry ¼ srz ¼ 0 at r ¼ a; b;

szz ¼ srz ¼ syz ¼ 0 at z ¼ �l; l:
(11)

Exact satisfaction of the end boundary conditions for aprpb forces more than one relationship between the
12 independent coefficients presented in Eq. (9) and Appendix A. This implies that some of the boundary
conditions should be approximately satisfied using the orthogonalization technique. Choosing which
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boundary conditions are satisfied exactly and the others approximately is arbitrary. For example the following
boundary conditions are satisfied exactly.

srz ¼ 0 at r ¼ a; b;

srz ¼ syz ¼ 0 at z ¼ �l; l;
(12)

And the other boundary conditions are satisfied using orthogonalization technique.

srr ¼ sry ¼ 0 at r ¼ a; b;

szz ¼ 0 at z ¼ �l; l:
(13)

For the sake of brevity of calculations, the first form of the solution ‘‘symmetric mode’’, is presented here.
Satisfaction of the boundary conditions (12) leads to the following expressions:

A2 ¼ �A1
2d1a

a2 � d22

sinðd1lÞ
sinðd2lÞ

; B2 ¼ �B1
2d1a

a2 � d22

sinðd1lÞ
sinðd2lÞ

,

A3 ¼ A1
2d1d2
a2 � d22

sinðd1lÞ
sinðd2lÞ

; B3 ¼ B1
2d1d2
a2 � d22

sinðd1lÞ

sinðd2lÞ
,

A5i ¼ K1iA4i þK2iB4i þK3iA6i þK4iB6i; B5i ¼ L1iA4i þ L2iB4i þ L3iA6i þ L4iB6i,

d̄i ¼
ði � 1Þp

l
i ¼ 1; 2; 3; . . . , ð14Þ

where the coefficients Kki and Lki ðk ¼ 1; 2; 3; 4Þ are the functions of d̄i; ā1i; ā2i and given in Appendix B. To
apply the orthogonality on the second boundary conditions in Eq. (13), the following condition is considered:

J 0nðajbÞA1j ¼ �Y 0nðajbÞB1j, (15)

where prime denotes differentiation with respect to the relevant argument, aj (j ¼ 1, 2, 3, y) is the root of
P0n aja
� �

and the orthogonal function Pn ajr
� �

is defined as:

PnðajrÞ ¼ Y 0nðajbÞJ
0
nðajrÞ � J 0nðajbÞY nðajrÞ. (16)

And the orthogonality can be demonstrated as follows

Z b

a

Pn ajr
� �

Pn akrð Þrdr ¼

0 for jak;

1
2

b2
� a2

� �
þ

n2 P2
nðajaÞ�P2

nðajbÞð Þ
a2

j

� 	
for j ¼ k:

8><
>: (17)

Therefore, the boundary conditions (13) are satisfied using orthogonalization as follows:R b

a
szzðr; y; lÞPnðajrÞrdr ¼ 0;R l

0
srrðr; y; zÞcosðd̄izÞdz ¼ 0 at r ¼ a; b;R l

0 sryðr; y; zÞcosðd̄izÞdz ¼ 0 at r ¼ a; b:

(18)

The displacement and stress fields are written in the series form with the indices i and j which are truncated
with N1 and N2 terms respectively. Using Eqs. (18) and Appendix A the following linear algebraic system of
equations (N1+4N2)� (N1+4N2) is obtained:

Mst½ �5�5 Dt½ �5�1 ¼ 0½ �5�1. (19)

The components of matrix and vectors in Eq. (19) are

Mst ¼ Mst;ij

� �
t�Z; t ¼

N1 at s ¼ 1

N2 at sa1

(
; Z ¼

N1 at t ¼ 1;

N2 at ta1;

(

D1 ¼ A1j


 �
N1�1

;D2 ¼ A4j


 �
N2�1

;D3 ¼ B4j


 �
N2�1

;D4 ¼ A6j


 �
N2�1

;D5 ¼ B6j


 �
N2�1

;

(20)
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where the components of the matrix Mst are given in Appendix C. Setting the determinant value of ½Mst�5�5
equal to zero, the natural frequencies of the cylinder can be obtained.

2.2. Fixed-end hollow circular cylinder

In this case the combination of the displacement and stress boundary conditions are considered to show that
the present method is capable to evaluate the other boundary conditions, and to show that the accuracy of the
results is affected by the type of boundary conditions. The boundary conditions of the fixed-end hollow
circular cylinder are defined as

srr ¼ sry ¼ srz ¼ 0 at r ¼ a; b;

ur ¼ uy ¼ uz ¼ 0 at z ¼ �l; l:
(21)

The following boundary conditions are exactly satisfied.

srz ¼ 0 at r ¼ a; b;

ur ¼ uy ¼ 0 at z ¼ �l; l:
(22)

And the five remaining boundary conditions are satisfied using the orthogonalization technique.

srr ¼ sry ¼ 0 at r ¼ a; b;

uz ¼ 0 at z ¼ �l; l:
(23)

For the first form of the solution ‘‘symmetric mode’’, the boundary conditions (22) are employed assuming:

A2 ¼ A1
a cosðd1lÞ

d2 cosðd2lÞ
B2 ¼ B1

a cosðd1lÞ
d2 cosðd2lÞ

,

A3 ¼ �A1
cosðd1lÞ

cosðd2lÞ
B3 ¼ �B1

cosðd1lÞ

cosðd2lÞ
,

A5i ¼ K1iA4i þ K2iB4i þ K3iA6i þ K4iB6i; B6i ¼ L1iA4i þ L2iB4i þ L3iA6i þ L4iB6i,

d̄i ¼
2i � 1ð Þp

2l
; i ¼ 1; 2; 3; :::, ð24Þ

where Kki and Lki (k ¼ 1, 2, 3, 4) are the same as those presented in Appendix B. The stresses boundary
conditions in Eq. (23) are satisfied using orthogonalization technique similar to those presented in Eq. (18) and
the displacement boundary condition in Eq. (23) is satisfied as follows:Z b

a

uzðr; y; lÞPnðajrÞrdr ¼ 0, (25)

where aj (j ¼ 1,2,3, y) is calculated in the same way as the case of free-end cylinder. Utilizing the equations
which are obtained from the satisfaction of the boundary conditions in Eq. (23) leads to the linear algebraic
system of equations similar to that obtained in Eq. (19). The components of the matrix Mst in Eq. (19) related
to this case are given in Appendix D. In the following section the convergence, accuracy and numerical
robustness of the present method are evaluated.

3. Results and discussions

The analysis developed in the preceding sections allows the investigation of the convergence, accuracy and
robustness of the method for the explained boundary conditions.

3.1. Free-end hollow circular cylinder

The convergence of the method is evaluated for the two lowest frequencies of the symmetric and
antisymmetric modes with circumferential wave number of 0 and 1. The results are presented in Figs. 2 and 3.
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Fig. 2. Ratio of O/Oexact versus the number of series terms for symmetric mode (S) and antisymmetric mode (A) with H ¼ 1, L ¼ 2 and

n ¼ 0 (- - -, first natural frequency; —, second natural frequency).
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Fig. 3. Ratio of O/Oexact versus the number of series terms for symmetric mode (S) and antisymmetric mode (A) with H ¼ 1, L ¼ 2 and

n ¼ 1 (- - -, first natural frequency; —, second natural frequency).
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O is the non-dimensional natural frequency defined as

O ¼
ob

C2
, (26)

where b is the outer radius and C2 is the velocity of distortional wave (H is the ratio of the thickness with
respect to the mean radius and L is the ratio of the length over the mean radius). The Poisson’s ratio is taken
as 0.3 in the present work. O is calculated from Eq. (26) and Oexact is the natural frequency obtained from the
series with a tolerance convergence of 0.00001. In the case of n ¼ 0, the rate of convergence is similar to that
obtained by Hutchinson and El-Azhari [11]. In Table 1 the high precision results of the present method are
compared with those obtained by So and Leissa [14] and Zhou et al. [19]. The results are presented for the first
four natural frequencies of the circumferential wave number 0 with H ¼ 1.4 and L ¼ 1, 4 and 10. This table
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Table 1

Comparison between the results of the present method with those obtained by So and Leissa [14] and Zhou et al. [19] for the free-end

hollow cylinder with H ¼ 1.4 and n ¼ 0

L Non-dimensional natural frequency (O)

Symmetric mode Antisymmetric mode

Present [14] [19] Present [14] [19]

1 3.0858 3.0858 3.0857 1.7887 1.7884 1.7883

7.2376 7.2372 7.2374 5.3172 5.3168 5.3169

7.7658 7.8200 7.8204 6.7195 6.7194 6.7195

8.9148 8.9145 8.9148 9.6716 9.6715 9.6718

4 2.0239 2.0239 2.0239 2.7783 2.7783 2.7782

2.8076 2.8076 2.8074 3.1772 3.1770 3.1769

3.4970 3.4971 3.4969 4.5259 4.5259 4.5259

4.2570 4.2568 4.2567 4.7387 4.7388 4.7386

10 0.8551 0.8551 0.8551 1.6646 1.6646 1.6646

2.3271 2.3271 2.3270 2.7274 2.7275 2.7274

2.7958 2.7953 2.7953 2.8252 2.8246 2.8245

3.0917 3.0911 3.0911 3.3404 3.3407 3.3405
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shows that the obtained results are in good agreement with those given by So and Leissa [14] in some cases and
they are closer to the results obtained by Zhou et al. [19] in the other cases.

Since some of the boundary conditions are approximately satisfied such as those given in Eq. (13), the
precision of the method is evaluated by the estimation of the natural frequencies which are presented in
Table 1 and using the calculation of boundaries stresses. To evaluate the error percentage in the calculated
boundaries stresses, the stresses satisfied by the orthogonalization technique on the boundaries for the first
symmetric natural frequency are divided by the maximum value of the stresses on the normal cross-sections.
The obtained error percentage for szz, srr and sry are calculated and depicted in Figs. 4, 5 and 6, respectively.
Fig. 4 shows that the error percentage reduces as the number of terms in the series increases. In the case of szz,
increasing the number of terms from 15 to 35 in both series leads to a reduction in the minimum error
percentage from 1.2% to less than 0.5%, while a noticeable decreasing in error percentage is not obtained next
to the boundaries edges. Figs. 4 and 5 show that through the major part of the boundaries the error percentage
is less than 1% for szz and less than 0.4% for srr. Fig. 6 shows that the error percentage for sry is less than
0.02% on the major part of the inner and outer boundaries. According to the results presented in Figs. 4–6, it
is concluded that the boundary conditions satisfactions are obtained with an acceptable error percentage. It is
noted that the error percentage at the boundaries’ edges is higher in comparison with the rest of the
boundaries.

The mode shapes of the first three natural frequencies are presented in Fig. 7 to illustrate the symmetric and
antisymmetric mode shapes and the differences between them. The highly accurate first four natural
frequencies are presented in Table 2 for three values of the H ¼ 0.2, 1 and 1.8 and three values of the L ¼ 1, 5
and 10.

3.2. Fixed-end hollow circular cylinder

In this section accuracy and convergence of the method are evaluated for a hollow circular cylinder with the
fixed-end boundary conditions. Convergence is carried out for the lowest two frequencies of the symmetric
and antisymmetric modes with circumferential wave number of 0 and 1 as illustrated in Table 3. The
convergence of the method in this case is almost the same as that evaluated in the free-end hollow circular
cylinder case. It is seen that using 15 terms in both series leads to the desirable precision in the results. The
capability of the method to satisfy the boundary conditions is re-examined for the fixed-end boundary
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conditions using the evaluations of uz, srr and sry. The error percentages are calculated similar to
those explained in the former case except for uz in which the z-displacements on the boundaries are divided
by the maximum value of displacement on the normal cross-section. Fig. 8 shows that the error percentage
for uz decreases rapidly while the number of series terms increases to 35. For example in the case of uz

as the number of terms increases from 15 to 35 in both series, the minimum error percentage decreases
from 0.05% to less than 0.005%. At the boundaries edges, the error percentage decreases from 0.8% to
less than 0.4%. Fig. 9 shows that on the major part of the boundaries the error percentage is less than 0.3%
for srr. Clearly, similar to the case of free-end boundary conditions the error percentage for sry is almost zero
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Fig. 7. The free-end cylinder mode shapes of the first natural frequencies for n ¼ 0, 1 and 2, (a) symmetric mode (b) antisymmetric mode.
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over the most of the boundaries as shown in Fig. 10. It can be concluded that the boundary conditions
for a fixed-end cylinder are satisfied better than those for a free-end cylinder. To verify the present
semi-analytical method in the case of fixed-end boundary conditions, the non-dimensional natural frequencies
corresponding to the mode shapes presented in Fig. 11 are compared with those provided by Zhou et al. [19]
in Table 4. It is noted that in both cases of, ‘‘symmetric’’ and ‘‘antisymmetric’’ modes, there are
excellent agreements between the natural frequencies obtained using the present method with those given
by the Ritz–Chebyshev method [19]. Moreover, it may be noticed that, increasing the ratio of the length
over the mean radius leads to the decreasing in the natural frequencies. Generally, the results obtained
for a fixed-end cylinder using the present method are in better agreement with those reported in the
literatures than those obtained for a free-end cylinder. It is considered because low-order Bessel functions
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Table 2

The first four natural frequencies of the free-end hollow circular cylinders with three values of H and L, for n ¼ 0, 1 and 2

H L Non-dimensional natural frequency (O)

n ¼ 0 n ¼ 1 n ¼ 2

Syma Antb Syma Antb Syma Antb

1.7726 1.7447 2.4706 1.6514 0.2740 0.4467

1 2.6832 5.1756 2.7435 4.0280 2.9186 2.0080

5.8555 11.5393 5.6706 5.2441 3.8021 5.1297

8.3328 11.6279 7.3440 10.2811 5.6079 5.4663

1.0855 1.6827 0.6715 0.9949 0.2807 0.3016

1.7574 1.7746 1.4027 1.3223 0.4793 0.8232

0.2 5 1.8215 1.9115 1.6063 1.7685 1.2038 1.5684

1.9162 2.3472 2.0241 2.0721 1.9337 2.1105

0.5545 1.0855 0.2317 0.4905 0.2817 0.2841

1.5068 1.6830 0.7547 0.9664 0.3164 0.4007

10 1.7372 1.7614 1.1496 1.1630 0.5412 0.7139

1.8331 1.7966 1.3326 1.3229 0.8998 1.0882

2.6092 1.8191 2.8248 2.4417 1.4272 1.0899

6.6422 6.1879 6.2329 5.2108 4.0573 3.8487

1 7.0580 7.0129 6.7939 5.9905 6.5273 6.0666

8.2698 9.8304 7.3249 6.9858 6.9941 6.2521

1.4753 2.3874 1.0117 1.4856 1.4522 1.4479

1 2.4682 2.5699 2.1341 2.1347 1.6396 2.1406

5 2.8273 3.4615 2.8511 2.7819 2.7965 2.9982

3.0655 3.7091 2.9620 3.2916 3.4906 3.6202

0.7554 1.4753 0.3470 0.7434 1.4536 1.4523

10 2.0648 2.3562 1.1676 1.4818 1.7678 1.5754

2.4824 2.5123 1.7632 1.7582 2.3634 2.0387

2.6688 2.8271 2.1850 2.1392 2.9619 2.6946

3.3826 1.7459 2.7329 3.1038 2.3081 1.1037

7.8785 4.8152 5.8052 5.8001 4.1923 4.4069

1 8.7639 7.8746 6.8054 6.4918 7.0816 6.6371

9.9487 8.9141 8.7743 6.8765 8.1876 7.3547

1.8464 2.9192 1.4070 1.8872 2.2032 2.0531

2.9197 3.0698 2.6697 2.8129 2.3177 2.8377

3.6819 4.2363 2.9822 3.1516 3.5923 3.5464

1.8 5 4.1861 4.5017 3.5529 3.9416 4.3064 4.2776

0.9543 1.8465 0.5029 1.0424 2.2334 2.1217

2.5519 2.9195 1.6032 1.8839 2.3117 2.3140

10 2.9369 3.0336 2.2334 2.3055 2.5085 2.8311

3.3981 3.6313 2.7677 2.7540 3.1903 3.1998

aSymmetric mode.
bAntisymmetric mode.
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are employed in the displacements components related to the end boundary conditions for a fixed-end
cylinder.

4. Conclusion

A general solution using the technique of variables separation on the basis of linear 3D theory of elasticity
with the minimum required coefficients is developed to analyze the vibration of finite circular cylinders. The
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Table 3

Convergence of the method in the case of fixed-end cylinder for H ¼ 2/3 and L ¼ 4 with equal number of terms in both of series

Number of terms Non-dimensional natural frequency (O)

n ¼ 0 n ¼ 1

Symmetric mode Antisymmetric mode Symmetric mode Antisymmetric mode

O1 O2 O1 O2 O1 O2 O1 O2

2 2.31685 2.87882 1.71649 2.61639 0.81449 2.52369 1.61305 2.14522

3 2.31385 2.86753 1.70361 2.56643 0.81349 2.52927 1.60685 2.13406

4 2.31308 2.87672 1.69997 2.56324 0.81522 2.52736 1.60993 2.13254

5 2.31280 2.87664 1.69796 2.56179 0.81516 2.52732 1.60975 2.13137

6 2.31264 2.87867 1.69701 2.56155 0.81549 2.52912 1.61051 2.13092

7 2.31257 2.87867 1.69642 2.56128 0.81546 2.52913 1.61049 2.13056

8 2.31251 2.87938 1.69606 2.56121 0.81556 2.52978 1.61076 2.13037

9 2.31248 2.87935 1.69582 2.56109 0.81553 2.52977 1.61075 2.13022

10 2.31245 2.87966 1.69564 2.56106 0.81557 2.53006 1.61087 2.13013

11 2.31243 2.87962 1.69553 2.56099 0.81555 2.53005 1.61085 2.13005

12 2.31241 2.87978 1.69543 2.56097 0.81557 2.53021 1.61091 2.12999

13 2.31240 2.87975 1.69536 2.56093 0.81555 2.53019 1.61089 2.12995

14 2.31239 2.87984 1.69529 2.56091 0.81555 2.53028 1.61093 2.12991

15 2.31238 2.87981 1.69525 2.56088 0.81554 2.53027 1.61092 2.12988

16 2.31237 2.87986 1.69521 2.56087 0.81554 2.53033 1.61093 2.12985
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Fig. 8. The error percentage of uz along the boundaries at z ¼ �l and l for H ¼ 1, L ¼ 2 and n ¼ 1 in the fixed-end case (y, 15 terms in

series; —, 35 terms in series).
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vibration of finite circular cylinders with the free-end and the fixed-end boundary conditions are evaluated by
the present method. Although the entire boundary conditions cannot be exactly satisfied and using the
orthogonalization technique leads to the acceptable results. To evaluate the precision of the present method
the natural frequencies are calculated for different geometries and compared with those reported in the
pervious studies. The results are in good agreement with the reported results in the literatures. Satisfactory
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convergence is also obtained with only a moderate number of terms in both series. It is shown that, the
obtained errors of the approximately satisfied boundary conditions for the fixed-end case are less than those
obtained for the free-end case. It may be because low-order Bessel functions are used in the displacement
components related to the end boundary conditions for the fixed-end cylinder. The advantages of the
proposed approach are its generality, accuracy and good convergence of the solution with a relatively small-
sized coefficient matrix.
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Fig. 11. The fixed-end cylinder mode shapes of the first natural frequencies for n ¼ 0, 1 and 2, (a) symmetric mode (b) antisymmetric

mode.

Table 4

Comparison between the results of the present method with those obtained by Zhou et al. [19] for the fixed-end hollow cylinder with

H ¼ 2/3.

L n Non-dimensional natural frequency (O)

Symmetric mode Antisymmetric mode

Present [19] Present [19]

2.3123 2.3123 1.6949 1.6949

2.8798 2.8798 2.5607 2.5607

0 3.6515 3.6514 3.5883 3.5883

4.4161 4.4161 5.2166 5.2166

0.8155 0.8155 1.6109 1.6109

2.5304 2.5304 2.1297 2.1297

4 1 2.8947 2.8947 3.3630 3.3630

3.4641 3.4640 3.4760 3.4760

1.2396 1.2396 1.8288 1.8288

2.6408 2.6409 3.0645 3.0645

2 3.7995 3.7995 3.5644 3.5645

4.5121 4.5121 4.4681 4.4679

1.6432 1.6432 0.8509 0.8508

0 2.2846 2.2847 2.0944 2.1214

2.4041 2.4041 2.3953 2.3954

2.5794 2.5794 2.7290 2.7288

0.3395 0.3395 0.7053 0.7054

1.3338 1.1338 1.5343 1.5343

8 1.9880 1.9880 1.6318 1.6318

1 2.0930 2.0930 2.4485 2.4485

1.0288 1.0288 1.1746 1.1747

1.4285 1.4286 1.7648 1.7648

2 2.1562 2.1562 2.5796 2.5797

2.9909 2.9908 2.7846 2.7846
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Appendix A

The stress components of symmetric and antisymmetric modes are as
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Appendix B

The coefficients Kki and L�ki (k ¼ 1,2,3,4,5) of the expression of A5i and B5i versus A4i, B4i, A6i, B6i as

K1i ¼ G1i að ÞC2i bð Þ � G1i bð ÞC2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.1)

K2i ¼ C1i að ÞC2i bð Þ �C1i bð ÞC2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.2)

K3i ¼ G3i að ÞC2i bð Þ � G3i bð ÞC2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.3)

K4i ¼ C3i að ÞC2i bð Þ �C3i bð ÞC2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.4)

L1i ¼ G1i að ÞG2i bð Þ þ G1i bð ÞG2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.5)

L2i ¼ C1i að ÞG2i bð Þ þC1i bð ÞG2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.6)

L3i ¼ G3i að ÞG2i bð Þ þ G3i bð ÞG2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.7)
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L4i ¼ C3i að ÞG2i bð Þ þC3i bð ÞG2i að Þð Þ= C2i að ÞG2i bð Þ � G2i að ÞC2i bð Þð Þ, (B.8)

where

G1i rð Þ ¼ 2d̄i �
n

r
Jnðā1irÞ þ ā1iJnþ1ðā1irÞ

� �
;

C1i rð Þ ¼ 2d̄i �
n

r
Y nðā1irÞ þ ā1iY nþ1ðā1irÞ

� �
,

G2i rð Þ ¼ �
nā2i

r
Jnðā2irÞ þ d̄

2

i � ā22i

� �
Jnþ1ðā2irÞ

� 

;

C2i rð Þ ¼ �
nā2i

r
Y nðā2irÞ þ d̄

2

i � ā22i

� �
Y nþ1ðā2irÞ

� 

,

G3i rð Þ ¼ �
nd̄i

r
Jnðā2irÞ,

C3i rð Þ ¼ �
nd̄i

r
Y nðā2irÞ ðB:9Þ

and

d̄
2

i þ ā21i ¼
o2

i

C2
1

 !
;

d̄
2

i þ ā22i ¼
o2

i

C2
2

 !
:

(B.10)
Appendix C

The components of Mst for the first form solution of the Free-end circular cylinder:

M11;ij ¼
ða2j � d22jÞ

2

2
cosðd1j lÞ þ 2d1jd2ja2j sinðd1j lÞ cotðd2j lÞ

" #
; i ¼ 1; 2; 3:::N2,

�
1

2
ðb2
� a2Þ þ

n2ðP2
nðajaÞ � P2

nðajbÞÞ

a2j

" #
; j ¼ 1; 2; 3:::N1, ðC:1Þ

M12;ij ¼
XN2

i¼1

ð�1Þi�1 ā21i �
d̄
2

i þ ā22i

2

 !
PJðaj ; ā1iÞ � K1iā2id̄iPJðaj ; ā2iÞ � L1iā2id̄iPY ðaj ; ā2iÞ

" #
, (C.2)

M13;ij ¼
XN2

i¼1

ð�1Þi�1 ā21i �
d̄
2

i þ ā22i

2

 !
PY ðaj ; ā1iÞ � K2iā2id̄iPJðaj ; ā2iÞ � L2iā2id̄iPY ðaj ; ā2iÞ

" #
, (C.3)

M14;ij ¼
XN2

i¼1

ð�1Þi�1 �K3iā2id̄iPJðaj ; ā2iÞ � L3iā2id̄iPY ðaj ; ā2iÞ
� �

, (C.4)

M15;ij ¼
XN2

i¼1

ð�1Þi�1 �K4iā2id̄iPJðaj ; ā2iÞ � L4iā2id̄iPY ðaj ; ā2iÞ
� �

, (C.5)
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where

PJða;bÞ ¼ b
bJ 0nðbbÞPnðabÞ � aJ 0nðbaÞPnðaaÞ

a2 � b2

� 

;

PY ða;bÞ ¼ b
bY 0nðbbÞPnðabÞ � aY 0ðbaÞPnðaaÞ

a2 � b2

� 

;

(C.6)

M21;ij ¼
XN1

j¼1

ða2j � d22jÞ
nðn� 1Þ

a2
þ d21j �

a2j þ d22j

2

 !
PnðajaÞ þ

aj

a
QnðajaÞ

 !"

�
sinððd̄i � d1jÞlÞ

2ðd̄i � d1jÞ
þ

sinððd̄i þ d1jÞlÞ

2ðd̄i þ d1jÞ

 !
þ 2d1jd2j

sinðd1j lÞ

sinðd2j lÞ

nðn� 1Þ

a2
� a2j

� 

PnðajaÞ

�

þ
aj

a
QnðajaÞ

�
�

sinððd̄i � d2jÞlÞ

2ðd̄i � d2jÞ
þ

sinððd̄i þ d2jÞlÞ

2ðd̄i þ d2jÞ

 !#
, ðC:7Þ

where

QnðajrÞ ¼ Y 0nðajbÞJnþ1ðajrÞ � J 0nðajbÞY nþ1ðajrÞ, (C.8)

M22;ij ¼
nðn� 1Þ

a2
þ

d̄
2

i � ā22i

2

 !
Jnðā1iaÞ þ

ā1i

a
Jnþ1ðā1iaÞ

"
,

þ K1id̄i ā2iJnðā2iaÞ �
ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 

; e ¼ 1 for aia0,

þL1id̄i ā2iY nðā2iaÞ �
ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
#
el

2

� 

; e ¼ 2 for ai ¼ 0, ðC:9Þ

M23;ij ¼
nðn� 1Þ

r2
þ

d̄
2

i � ā22i

2

 !
Y nðā1iaÞ þ

ā1i

a
Y nþ1ðā1iaÞ

"

þ K2id̄i ā2iJnðā2iaÞ �
ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL2id̄i ā2iY nðā2iaÞ �
ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
#
el

2

� 

ðC:10Þ

M24;ij ¼
nðn� 1Þ

a2
Jnðā2iaÞ �

nā2i

r
Jnþ1ðā2iaÞ

�

þ K3id̄i ā2iJnðā2iaÞ �
ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL3id̄i ā2iJnðā2iaÞ �
ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 
	
el

2

� 

ðC:11Þ

M25;ij ¼
nðn� 1Þ

a2
Y nðā2iaÞ �

nā2i

a
Y nþ1ðā2iaÞ

�

þ K4id̄i ā2iJnðā2iaÞ �
ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL4id̄i ā2iY nðā2iaÞ �
ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
	
el

2

� 

, ðC:12Þ
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M31;ij ¼
XN1

j¼1

�2n

a

ðn� 1Þ

a
PnðajaÞ � ajQnðajaÞ

� 
�

ða2j � d22jÞ
sinððd̄i � d1jÞlÞ

2ðd̄i � d1jÞ
þ

sinððd̄i þ d1jÞlÞ

2ðd̄i þ d1jÞ

 ! 

þ 2d1jd2j

sinðd1j lÞ

sinðd2j lÞ

sinððd̄i � d2jÞlÞ

2ðd̄i � d2jÞ
þ

sinððd̄i þ d2jÞlÞ

2ðd̄i þ d2jÞ

 !!#
, ðC:13Þ

M32;ij ¼
�2n

a

ðn� 1Þ

a
JnðdiaÞ � diJnþ1ðdiaÞ

� 
�

þ K1id̄i ā2iJnðā2iaÞ �
2ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL1id̄i ā2iY nðā2iaÞ �
2ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
	
el

2

� 

, ðC:14Þ

M33;ij ¼
�2n

a

ðn� 1Þ

a
Y nðā1iaÞ � ā1iY nþ1ðā1iaÞ

� 
�

þ K2id̄i ā2iJnðā2iaÞ �
2ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL2id̄i ā2iY nðā2iaÞ �
2ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
	
el

2

� 

, ðC:15Þ

M34;ij ¼ ā22i �
2nðn� 1Þ

a2

� 

Jnðā2irÞ �

2ā2i

a
Jnþ1ðā2iaÞ

�

þ K3id̄i ā2iJnðā2iaÞ �
2ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL3id̄i ā2iY nðā2iaÞ �
2ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
	
el

2

� 

, ðC:16Þ

M35;ij ¼ ā22i �
2nðn� 1Þ

a2

� 

Y nðā2iaÞ �

2ā2i

a
Y nþ1ðā2iaÞ

�

þ K4id̄i ā2iJnðā2iaÞ �
2ðnþ 1Þ

a
Jnþ1ðā2iaÞ

� 


þL4id̄i ā2iY nðā2iaÞ �
2ðnþ 1Þ

a
Y nþ1ðā2iaÞ

� 
	
el

2

� 

, ðC:17Þ

M4k,ij and M5k,ij (k ¼ 1,2,3,4,5) can be calculated by replacing a with b in M2k,ij and M3k,ij, respectively.
Appendix D

The components of Mst for the first form solution of the Fixed-end circular cylinder are as follows:

M11;ij ¼
a2j
d2j

cosðd1j lÞtanðd2j lÞ þ d1jsinðd1j lÞ

 !
; i ¼ 1; 2; 3:::N2,

�
1

2
ðb2
� a2Þ þ

n2ðP2
nðajaÞ � P2

nðajbÞÞ

a2j

 !
; j ¼ 1; 2; 3:::N1, ðD:1Þ
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M12;ij ¼
XN2

i¼1

ð�1Þi�1 d̄iPJðaj ; ā1iÞ þ K1iā2iPJðaj ; ā2iÞ þ L1iā2iPY ðaj ; ā2iÞ
� �

(D.2)

M13;ij ¼
XN2

i¼1

ð�1Þi�1 d̄iPY ðaj ; ā1iÞ þ K2iā2iPJðaj ; ā2iÞ þ L2iā2iPY ðaj ; ā2iÞ
� �

, (D.3)

M14;ij ¼
XN2

i¼1

ð�1Þi�1 K3iā2iPJ ðaj ; ā2iÞþ
�

L3iā2iPY ðaj ; ā2iÞ
�
, (D.4)

M15;ij ¼
XN2

i¼1

ð�1Þi�1 K4iā2iPJ ðaj ; ā2iÞ
�

þ L4iā2iPY ðaj ; ā2iÞ
�
, (D.5)

M21;ij ¼
XN1

j¼1

nðn� 1Þ

r2
þ d21j �

a2j þ d22j

2

 !
PnðajaÞ þ

aj

r
QnðajaÞ

 !"

�
sinððd̄i � d1jÞlÞ

2ðd̄i � d1jÞ
þ

sinððd̄i þ d1jÞlÞ

2ðd̄i þ d1jÞ

 !
þ

cosðd1j lÞ

cosðd2j lÞ
a2j �

nðn� 1Þ

r2

� 

PnðajaÞ

�

�
aj

r
QnðajaÞ

�
�

sinððd̄i � d2jÞlÞ

2ðd̄i � d2jÞ
þ

sinðd̄i þ d2jÞlÞ

2ðd̄i þ d2jÞ

 !#
, ðD:6Þ

M31;ij ¼
XN1

j¼1

�2n

a

ðn� 1Þ

a
PnðajaÞ � ajQnðajaÞ

� 
"
sinððd̄i � d1jÞlÞ

2ðd̄i � d1jÞ

  

þ
sinððd̄i þ d1jÞlÞ

2ðd̄i þ d1jÞ

!
�

cosðd1j lÞ

cosðd2j lÞ

sinððd̄i � d2jÞlÞ

2ðd̄i � d2jÞ
þ

sinððd̄i þ d2jÞlÞ

2ðd̄i þ d2jÞ

 !!#
. ðD:7Þ

M2k,ij and M3k,ij (k ¼ 2,3,4,5) can be calculated the same as given in Appendix C.
M4k,ij and M5k,ij (k ¼ 2,3,4,5) can be calculated by replacing a with b in M2k,ij and M3k,ij, respectively.
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