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Abstract

In this paper, we propose a novel genetic algorithm (GA) with a multi-crossover fashion to estimate the associated

coefficients for a class of nonlinear discrete-time multivariable dynamical systems. Unlike the traditional crossover method

of using two chromosomes, the proposed method uses three chromosomes to achieve a crossover. According to the

adjusting direction by crossing three chromosomes, more excellent offspring can be produced. To solve the identification

problem of multivariable nonlinear discrete-time systems, each of estimated system coefficients represents a gene, and a

collection of genes is referred to as a chromosome in the view of GA. The chromosomes in the population are then evolved

using the proposed multi-crossover method. An illustrative example of multivariable nonlinear systems is given to

demonstrate the effectiveness, as compared with the traditional crossover method, of the proposed method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is rather important and essential to previously establish a mathematical representation for some real plant
for the control system engineering. In accordance with this estimated mathematical model, the controller can
be then designed by using a variety of control strategies of interest so that the prospective control purpose is
achieved. Applying artificial intelligence techniques to systems modeling have been successively proposed in
recent years such as based on using neural networks [1,2], fuzzy logic systems [3,4], or neuro-fuzzy systems
[5,6]. In these publications, they put emphases on the system modeling that the architecture of the controlled
plant is assumed to be unknown. In addition, if the plant structure is assumed to be known in advance, the
remainder problem is how to accurately estimate the associated system coefficients under this kind of
structure. Usually, the least-squares scheme is used for solving this. In Ref. [7], the least-squares method has
been successfully used to estimate the coefficients in the static and dynamical systems respectively, and
mathematical analyses and discussions have been developed. The recursive schemes are in essence local search
techniques that search for the optimum by using gradient method. They often fail in the search for global
optimum if the search space is not differentiable or linear in the coefficients [8].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Based on simulating the natural evolutionary model, genetic algorithm (GA) that is one of artificial
intelligence is a powerful tool to search for global solutions for an optimization problem over the search
domain [9,10]. The algorithms provide a superior performance over the traditional optimal techniques, e.g.,
the steepest descent method. This is due to searching for solution from only one single direction on the search
space [11]. However, GA method can be regarded as a search method from multiple directions, because they
inherently have crossover and mutation operations during searching procedures. This implies that it is easier
to escape from a local minimum.

In the conventional GA, all the variables of interest must first be encoded as binary digits (genes)
and then forming a string (chromosome). It follows that three standard genetic operations, i.e.,
reproduction, crossover, and mutation are performed to produce a new generation. Such procedures
are repeated until the pre-specified number of generations is achieved, or the required accuracy is
satisfied. Based on this kind of GA, a great number of researches have been proposed for system
coefficients estimation and control. In Ref. [8], they applied the binary-coding GA into estimating
the locations of poles and zeros of a transfer function and used this estimated model to design a
discrete time pole placement adaptive controller. Jiang and Wang [12] proposed a searching
method for parameters estimation of nonlinear systems based on using the binary-coding GA.
Furthermore, Yao and Sethares [13] demonstrated a modified binary GA for the nonlinear
digital filters design and also for weights tuning in feedforward and recurrent neural networks. All of them,
the evaluated parameters of filters were first encoded as binary alphabets in order to be suitably computed in
the traditional way. After a series of manipulations, the resulting final binary alphabets are then returned as
real numbers.

Another kind of genetic operation called the real-coded GA has been also introduced to a wide variety of
real applications in recent years as stated in Refs. [14–17]. All genes in a chromosome used in real-coded GA
are real numbers. It is more suitable to represent genes directly as real values for most of real optimization
problems during genetic operations. Because exchange processes from a real value to a binary digit may
suffer from the loss of precision relying on number of used bits. Expectably, this will be very complicated
and difficult works if the numerical values are large and even have the decimal. For a real-coded GA the
length of chromosomes becomes much shorter than one by using the binary-coded way. This implies
that the computer programming for such algorithms can be easily run. On the basis of using this kind of real-
coded GA and the proposed novel modified crossover, the key topic of this article is to mainly focus on
coefficients estimation of nonlinear discrete-time multivariable dynamical systems. A number of algorithms
about the subject of linear and nonlinear multivariable identifications such as subspace-based algorithms [18],
RBF neural net model algorithms [19], and recursive relaxation computations [20] have been successively
proposed. Besides, differently from the traditional crossover which is to use only two chromosomes in parents
generation to cross by each other, the modified crossover approach proposed in this paper is based on the style
of a multiple crossover, and this can provide a more precise adjusting direction for problem solutions and
enhance the evolutionary convergence speed. All evaluated coefficients of nonlinear multivariable systems are
directly referred to as genes and form a chromosome, which will be manipulated by using the multiple
crossover GA.

2. Problem statement

To represent a class of nonlinear dynamical systems, two types of nonlinear models are generally available
including a nonlinear polynomial expression and a nonlinear rational expression. Basically, a polynomial
model is defined by linear in parameters and nonlinear in the regression terms, and can represent a wide range
of linear and nonlinear systems. For a single-input and single-output nonlinear system, a general nonlinear
discrete-time expression is mathematically defined by

y kð Þ ¼ f u k � 1ð Þ; u k � 2ð Þ; . . . ; u k �Nuð Þ; y k � 1ð Þ; y k � 2ð Þ; . . . ; y k �Ny

� �� �
þ w kð Þ (1)

where u is an external input, y is the output of the system, w represents the measurement noise, Nu and Ny are
the numbers of past inputs and outputs required, respectively. The nonlinear function f �ð Þ generally contains
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past inputs and outputs of system, and can be expressed in terms of polynomials

f kð Þ ¼
Xnum

j¼1

yjpj kð Þ, (2)

where num represents number of regression terms of the nonlinear model, pj kð Þ is assumed to be known and is
the product of past inputs and outputs such as u k � 2ð Þ, u2 k � 1ð Þy k � 1ð Þ, or y k � 1ð Þy k � 2ð Þ, and yj is
referred to as the associated coefficient of the nonlinear model and will be evaluated. Expanding this kind of
nonlinear discrete-time polynomial expression to multivariable architectures, we have

y1 kð Þ ¼
Xnum1

j¼1

y1jp1j kð Þ þ w1 kð Þ; y2 kð Þ ¼
Xnum2

j¼1

y2jp2j kð Þ þ w2 kð Þ; . . . ,

yn kð Þ ¼
Xnumn

j¼1

ynjpnj kð Þ þ wn kð Þ, ð3Þ

where the case n is the number of system outputs and pij, for i 2 n and n ¼ 1; 2; � � � ; nf g, is the products of
different kinds of past inputs and outputs such as u1 k � 2ð Þu2 k � 1ð Þ, u2

2 k � 1ð Þy1 k � 1ð Þ, or y1 k � 1ð Þy2 k � 2ð Þ.
Moreover, it is assumed that all outputs yi, for i 2 n, in Eq. (3) must be measurable and finite in each sampling
step when the external inputs are applied.

For a given nonlinear multivariable systems as demonstrated in Eq. (3), the work of estimation is to
evaluate the associated coefficients from a series of input and output observations. Suppose that an
undetermined nonlinear discrete-time multivariable polynomial model which will match the actual plant of
Eq. (3) is given by

ŷ1 kð Þ ¼
Xnum1

j¼1

ŷ1j p̂1j kð Þ; ŷ2 kð Þ ¼
Xnum2

j¼1

ŷ2j p̂2j kð Þ; . . . ; ŷn kð Þ ¼
Xnumn

j¼1

ŷnj p̂nj kð Þ, (4)

where ŷi, ŷij kð Þ, and p̂ij kð Þ are the outputs, the associated coefficients, and the product terms of past inputs and
outputs of this estimated model, respectively, for i 2 n and j 2 num1; num2; . . . ; numnf g. For simplification, let

Y ¼ ŷ1; ŷ2; . . . ; ŷm

j k
¼ ŷ11; ŷ12; . . . ; ŷ1num1

; ŷ21; ŷ22; . . . ; ŷ2num2
; . . . ; ŷn1; ŷn2; . . . ; ŷnnumn

j k
be a new

undetermined coefficients vector and where m ¼ num1+num2+y+numn is the total number of the
associated coefficients of multivariable systems. From the evolutionary point of view, Y is also called a

chromosome and all ŷi, for i 2 m, in Y stand for genes.

3. A modified multiple crossover computation

A proper performance index or an objective function should be first defined for estimation problems.
Usually, the GA method only requires computing the objective function to guide its search. There is no
requirement for derivatives that are often used in solving for the traditional optimization problems. To derive
the coefficients estimation algorithm, the objective function J to be minimized is the total sum of squared
errors between the actual outputs in Eq. (3) and estimated outputs in Eq. (4) over a period of T discrete-time
intervals as follows:

J ¼
XT

k¼1

y1 kð Þ � ŷ1 kð Þ
� �2

þ y2 kð Þ � ŷ2 kð Þ
� �2

þ � � � þ yn kð Þ � ŷn kð Þ
� �2n o

¼
XT

k¼1

e21 kð Þ þ e22 kð Þ þ � � � þ e2n kð Þ
� �

¼
XT

k¼1

Xn

i¼1

e2i kð Þ. ð5Þ

The task of estimation is to determine a set of proper model coefficients in Eq. (4) so that the objective
function J in Eq. (5) is minimized. Under the appearances of measurable noises, Fig. 1 represents the block
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Fig. 1. Block diagram of multivariable systems coefficient estimation using the multi-crossover GA.
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diagrams for this kind of coefficients estimation based on using the proposed modified multi-crossover real-
coded GA that will be explained in the following.
3.1. Search space for Y

The genetic operations start with a given population including some chromosomes that are randomly
generated. Every chromosome in the population represents a set of possible solution to the optimization
problem of coefficients estimation, and these chromosomes are then evolved to generate better offspring
according to the objective function J by applying three genetic operators. A search space for model coefficients
Y must be previously given as

OY ¼ Y 2 <m ŷ1minpŷ1pŷ1max; ŷ2minpŷ2pŷ2max; . . . ; ŷm minpŷmpŷm max

���
n o

. (6)

All genes ŷi, for i 2 m, in a chromosome will be evolved within this constrained space OY during the genetic
operations. Once a produced chromosome goes beyond OY, then the original is retained. Moreover, let N

represent the number of chromosomes in the population, i.e., the size of population, and parameters pr, pc, and
pm are referred to as probabilities of reproduction, crossover, and mutation, respectively.
3.2. Reproduction

There are two well-known selection mechanisms, roulette wheel and tournament selections, used for
reproduction operation. The roulette wheel selection can be visualized by imagining a wheel where each
chromosome occupies an area that is related to its value of objective function. When a spinning wheel
stops, a fixed marker determines which chromosome will be selected to reproduce into the mating
pool [15]. This kind of selection mechanism needs more numerical computations. For the tournament
selection, however, it is quite simple and suitable for checking whether a chromosome can reproduce
or not according to the corresponding objective function. The selection formula is that pr�N chromosomes
with minimum objective functions are more added into the population, and pr�N chromosomes
with maximum ones are then discarded from the population. This implies that the size of resulted population
is the same as the original. After the selection, all chromosomes are completely put in the mating pool. The
next step is to generate new offspring by applying the following proposed multiple crossover and mutation
operations on chromosomes in the mating pool.
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3.3. Crossover

3.3.1. Traditional crossover

The fashion of the traditional crossover that uses only two chromosomes to cross is first introduced. Let N

chromosomes in the mating pool be randomly divided into N=2 pairs, which serve as parents and will be
crossed by each other. Suppose that both Y1 and Y2 are selected and c is a random number chosen from 0; 1½ �.
If cXpc, then the following crossover operations for Y1 and Y2 are performed

if J Y1ð ÞoJ Y2ð Þ,

Y01 ¼ Y1 þ r Y1 �Y2ð Þ,

Y02 ¼ Y2 þ r Y1 �Y2ð Þ,

else

Y01 ¼ Y1 þ r Y2 �Y1ð Þ,

Y02 ¼ Y2 þ r Y2 �Y1ð Þ, ð7Þ

where J Y1ð Þ and J Y2ð Þ represent corresponding objective functions due to chromosomes Y1 and Y2,
respectively, and r 2 0; 1½ � is a random number determining the crossover grade of these two. Figs. 2 and 3
schematically show the changes of both Y1 and Y2 vectors after running the crossover operation, respectively.
If copc, no crossover operation is performed.
3.3.2. Proposed multiple crossover

Unlike the technique of traditional crossover using two chromosomes, a novel multiple crossover is
proposed. Suppose that three chromosomes Y1, Y2, and Y3 are randomly picked in the mating pool and
�1

�1

�1

′

�2

�2

�2

′

−

Fig. 2. J Y1ð ÞoJ Y2ð Þ.

�1 �2 �1

�2

�1
′

�2
′

−

Fig. 3. J Y1ð Þ4J Y2ð Þ.
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Fig. 4. A new adjusting direction by crossing three chromosomes.
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crossed by one another, and that the objective function J Y1ð Þ is the smallest among three. The diagram of the
proposed multi-crossover model is schematically sketched in Fig. 4. It is easily seen from Fig. 4 that a modified
adjusting direction of 2Y1 �Y2 �Y3ð Þ that combines Y1 �Y2 and Y1 �Y3 vectors is produced for updating
Y1, Y2, and Y3. All three chromosomes in such a way are changed simultaneously along this adjusting
direction. Also, let c be a random number selected from 0; 1½ �. If cXpc, then the following multiple crossover
formulas are performed

Y01 ¼ Y1 þ r 2Y1 �Y2 �Y3ð Þ;

Y02 ¼ Y2 þ r 2Y1 �Y2 �Y3ð Þ;

Y03 ¼ Y3 þ r 2Y1 �Y2 �Y3ð Þ;

(8)

where r 2 0; 1½ � is a random value determining the crossover grade of these three. If copc, no crossover
operation is performed.
3.4. Mutation

The mutation operation follows the multiple crossover and provides a possible mutation on some selected
chromosomes Y. Only pm�N random chromosomes in the current population are chosen to be mutated. The
formula of mutation operation for a selected Y is given by

Y0 ¼ Yþ s� F, (9)

where s is a small positive constant and F 2 <m is a random perturbation vector to produce small
disturbances on Y.

The procedure that has completely run above three genetic operators, i.e., reproduction, crossover, and
mutation, is called a generation. The algorithms stop if the designed objective function is satisfied or the pre-
specified number of generation G is achieved. Notice again that if a generated chromosome during genetic
operations is outside the search space OY, then the original will be retained. The complete design steps for
coefficients estimation of nonlinear discrete-time multivariable systems using a multi-crossover real-coded GA
can be summarized as follows.

Data: An unknown nonlinear discrete-time multivariable systems in Eq. (3), sampling interval T in Eq. (5),
searching boundary parameters ŷ1min, ŷ1 max, ŷ2 min, ŷ2 max; . . . ; ŷm min; and ŷm max in Eq. (6) for OY,
population size N, probabilities of reproduction pr, crossover pc, and mutation pm, parameter s in Eq. (9), and
number of generations G (or the objective function J is less than a tolerance e).

Goal: Search for the associated coefficients of nonlinear discrete-time multivariable polynomial model in
Eq. (4) such that the value of J in Eq. (5) is minimized.
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Create a population with the size of N chromosomes, in which all genes (model coefficients) are randomly
generated from OY.
2.
 Evaluate the objective function J of Eq. (5) for each chromosome in the population.

3.
 If the pre-specified number of generations G is reached or there is a chromosome with objective function J

less than e, then stop.

4.
 Carry out operators of reproduction, proposed multiple crossover in Eq. (8), and mutation in Eq. (9). If any

resulted chromosome during the operations is outside the OY, then the original is kept.

5.
 Go back to Step 2.

4. Case study

Consider a multivariable nonlinear discrete-time system with two inputs and two outputs
given by [21]

y1 kð Þ ¼ 0:8y1 k � 1ð Þ þ u1 k � 2ð Þ � 1:2u1 k � 1ð Þu2 k � 2ð Þ þ 0:4u2
1 k � 2ð Þ � 0:1y2 k � 1ð Þ þ w1 kð Þ,

y2 kð Þ ¼ 0:5y2 k � 1ð Þ þ u2 k � 2ð Þ þ u2
1 k � 1ð Þ þ 0:5y2 k � 2ð Þu2

2 k � 1ð Þ þ w2 kð Þ. ð10Þ

Comparing Eq. (10) with Eq. (3), the corresponding coefficients and functions can be easily observed; for
example, y1 ¼ 0:8, p11 kð Þ ¼ y1 k � 1ð Þ; y2 ¼ 1:0, p12 kð Þ ¼ u1 k � 2ð Þ and so forth. In the simulation, the inputs u1
and u2 are set to be uniformly distributed between the range 0; 1ð Þ, the measurement noises w1 and w2 are also
independent random variables uniformly distributed in the range �0:001; 0:001ð Þ. Additionally, the related
variables employed in GA are given by

T ¼ 50; N ¼ 30; pr ¼ 0:2; pc ¼ 0:3; pm ¼ 0:2; s ¼ 0:005; G ¼ 5000,

ŷimin ¼ �2:0; ŷimax ¼ 2:0; i 2 9 .

Tables 1 and 2 list the final estimation results. All of multivariable nonlinear system coefficients are
accurately solved. Furthermore, to verify the effectiveness of the proposed method than that of the
traditional crossover, Fig. 5 also shows a comparison of convergence speed. The optimal objective
function among the population of N ¼ 30 chromosomes is plotted with respect to the number of
generations. It is obvious that the proposed method gives a quicker convergence than the traditional
crossover method.
ble 1

omparison of coefficients y1 to y5 to between the actual and estimated values by the proposed method

efficient y1 y2 y3 y4 y5

tual value 0.8 1.0 �1.2 0.4 �0.1

imated value 0.7993 1.0017 �1.1993 0.3976 �0.0998

ble 2

omparison of coefficients y6 to y9 between the actual and estimated values by the proposed method

efficient y6 y7 y8 y9

tual value 0.5 1.0 1.0 0.5

imated value 0.5003 1.0003 0.9997 0.4992
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5. Conclusions

This paper has successfully applied the multi-crossover GA to solve the system identification problem for
multivariable nonlinear discrete-time polynomial systems. The proposed method utilizes three parent
chromosomes to achieve a crossover and a new adjusting direction is then obtained. Based on the adjusting
direction, the excellent offspring with better performance can be generated. We also define the suitable
objective function for such the multivariable systems. All of chromosomes within the population undergo
three evolutionary operations: reproduction, multiple crossover, and mutation such that the given objective
function is minimized and then the accurate coefficient estimations are derived. Simulation results have shown
that the validity of the proposed multiple crossover is verified and its convergence speed is quicker than that of
the traditional crossover.
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