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Abstract

In this paper, the application of the dual reciprocity boundary element method (DRBEM) to the Cauchy problem for

Helmholtz-type equations with variable coefficients is investigated. The resulting system of linear algebraic equations is ill-

conditioned and therefore its solution is regularized by employing the zeroth-order Tikhonov functional, while the choice

of the regularization parameter is based on the L-curve method. Numerical results are presented for Cauchy problems in

smooth and piecewise smooth geometries, as well as simply and doubly connected domains. The accuracy, convergence

and stability of the proposed numerical method with respect to various approximating functions, various DRBEM

discretizations and various levels of noise added in the boundary data, respectively, are also analysed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The Helmholtz equation arises naturally in many physical applications related to wave propagation and
vibration phenomena. It is often used to describe the vibration of a structure [1], the acoustic cavity problem
[2], the radiation wave [3] and the scattering of a wave [4]. Another important application of the Helmholtz
equation is the problem of heat conduction in fins [5–7]. The knowledge of the Dirichlet, Neumann or mixed
boundary conditions on the entire boundary of the solution domain gives rise to direct problems for
Helmholtz-type equations which have been extensively studied in the literature, see for example Refs. [8–10].
The well-posedness of the direct problems for the Helmholtz equation by the removal of the eigenvalues of the
Laplacian operator is well established, see e.g. Ref. [11].

In many engineering problems the boundary conditions are often incomplete, either in the form of under-
specified and over-specified boundary conditions on different parts of the boundary or the solution is
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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prescribed at some internal points in the domain. These are inverse problems and it is well known that they are
generally ill-posed, i.e. the existence, uniqueness and stability of their solutions are not always guaranteed, see
e.g. Ref. [12]. A classical example of an inverse problem for Helmholtz-type equations is the Cauchy problem
in which boundary conditions for both the solution and its normal derivative are prescribed only on a part of
the boundary of the solution domain, whilst no information is available on the remaining part of the
boundary. Unlike in direct problems, the uniqueness of the Cauchy problem is guaranteed without the
necessity of removing the eigenvalues for the Laplacian. However, the Cauchy problem suffers from the global
non-existence and instability of the solution.

A boundary element method (BEM)-based acoustic holography technique using the singular value
decomposition (SVD) for the reconstruction of sound fields generated by irregularly shaped sources has been
developed by Bai [13]. The vibrational velocity, sound pressure and acoustic power on the vibrating boundary
comprising an enclosed space have been reconstructed by Kim and Ih [14] who have used the SVD in order to
obtain the inverse solution in the least-squares sense and to express the acoustic modal expansion between the
measurement and source field. Wang and Wu [15] have developed a method employing the spherical wave
expansion theory and a least-squares minimization to reconstruct the acoustic pressure field from a vibrating
object and their method has been extended to the reconstruction of acoustic pressure fields inside the cavity of
a vibrating object by Wu and Yu [16]. DeLillo et al. [17] have detected the source of acoustical noise inside the
cabin of a midsize aircraft from measurements of the acoustical pressure field inside the cabin by solving a
linear Fredholm integral equation of the first kind in two-dimensions and they have extended this study to
three-dimensional problems, see Ref. [18]. Marin et al. [19,20] have solved the Cauchy problem associated to
the Helmholtz equation using the BEM in conjunction with an alternating iterative procedure consisting of
obtaining successive solutions to well-posed mixed boundary value problems and with the conjugate gradient
method (CGM), respectively. Recently, these methods have been compared with the Tikhonov regularization
method and SVD by Marin et al. [21], whilst the same authors have proposed an iterative algorithm based on
the Landweber method in combination with the BEM [22].

To our knowledge, the Cauchy problem associated with Helmholtz-type equations with variable coefficients
has not been investigated as yet. In this paper, we present and analyse a numerical technique based on the dual
reciprocity BEM (DRBEM), in conjunction with the Tikhonov regularization method, in order to solve the
Cauchy problem for Helmholtz-type equations with spacewise dependent coefficients in open bounded
domains, i.e. interior domains of finite size. The problem is regularized by choosing the optimal regularization
parameter according to the L-curve criterion, see e.g. Ref. [23]. Four examples associated with smooth and
piecewise smooth geometries, as well as simply and doubly connected domains, are presented. In addition, the
accuracy, convergence and stability of the proposed numerical method with respect to various approximating
functions, various DRBEM meshes and various levels of noise added in the input boundary data, respectively,
are also analysed.
2. Mathematical formulation

Consider an open bounded domain O � R2, i.e. interior domain of finite size, and assume that O is bounded
by a piecewise smooth boundary G � @O, such that G ¼ G1 [ G2, where G1;G2a; and G1 \ G2 ¼ ;. Referring
to acoustics for the sake of the physical explanation, we assume that the acoustical field uðxÞ satisfies the
Helmholtz-type equation in the domain O, namely

Lðx; uðxÞÞ � ðD� kðxÞÞuðxÞ ¼ b0ðxÞ; x 2 O, (1)

where kðxÞ40, x 2 O, is the spacewise dependent frequency of the acoustical field u and b0ðxÞ, x 2 O, is the
source term. Let nðxÞ be the outward unit normal vector at G and fðxÞ � ru � nð ÞðxÞ be the normal velocity of
the sound at a point x 2 G. In the direct problem formulation, the knowledge of the acoustical field and/or
normal velocity of the sound on the whole boundary G gives the corresponding Dirichlet, Neumann, or mixed
boundary conditions which enables us to determine the acoustical field in the domain O. If it is possible to
measure both the acoustical field and the normal velocity of the sound on a part of the boundary G,
say G1, then this leads to the mathematical formulation of an inverse problem consisting of Eq. (1) and the
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boundary conditions

uðxÞ ¼ euðxÞ; fðxÞ ¼ efðxÞ; x 2 G1, (2)

where eu and eF are prescribed functions and G1 � G, measðG1Þ40. In the above formulation of the boundary
conditions (2), it can be seen that the boundary G1 is over-specified by prescribing both the acoustical field ujG1
and the normal velocity of the sound fjG1 , whilst the boundary G2 ¼ GnG1 is under-specified since both the
acoustical field ujG2 and the normal velocity of the sound fjG2 are unknown and have to be determined.

This problem, termed the Cauchy problem, is much more difficult to solve both analytically and numerically
than the direct problem, since the solution does not satisfy the general conditions of well-posedness. Whilst the
Dirichlet, Neumann or mixed direct problems associated to Eq. (1) do not always have a unique solution due
to the eigensolutions, see Ref. [11], the solution of the Cauchy problem given by Eqs. (1) and (2) is unique
based on the analytical continuation property. However, it is well known that if this solution exists
then it is unstable with respect to small perturbations in the data on G2, see e.g. Ref. [12]. Thus the
problem under investigation is ill-posed and we cannot use a direct approach, such as the Gauss elimination
method, in order to solve the system of linear equations which arises from the discretization of the partial
differential equations (1) and thee boundary conditions (2). Therefore, regularization methods are required
in order to solve accurately the Cauchy problem associated with Helmholtz-type equations with variable
coefficients.
3. Dual reciprocity boundary element method

The DRBEM, which was originally introduced by Nardini and Brebbia [24], has become a widely used
method for solving inhomogeneous and nonlinear boundary value problems for partial differential equations
as an extension of the BEM. The main idea of this method consists of employing the fundamental solution
corresponding to a simpler equation and considering the remaining terms of the original equation via a
procedure which involves a series expansion using global approximating functions and the reciprocity
principles. For the sake of completeness, in this section we describe the DRBEM applied to Helmholtz-type
equations. For further details of the DRBEM, we refer the reader to Ref. [25].

In the view of the DRBEM, the Helmholtz-type equation (1) is rewritten as

DuðxÞ ¼ bðx; uðxÞÞ; x 2 O, (3)

where

bðx; uðxÞÞ ¼ b0ðxÞ � kðxÞuðxÞ. (4)

As a consequence, the left-hand side of Eq. (3) is dealt with by employing the fundamental solution for the
Laplace equation, whilst the integrals corresponding to the right-hand side, bðx; uðxÞÞ, are taken to the
boundary using the following approximation:

bðx; uðxÞÞ �
XNþL

j¼1

aj f jðxÞ; x 2 O, (5)

where aj, j ¼ 1; . . . ; ðN þ LÞ, are initially unknown coefficients and f jðxÞ, j ¼ 1; . . . ; ðN þ LÞ, are specified
approximating functions. The approximation is performed at N boundary nodes, xi, i ¼ 1; . . . ;N, and L

internal nodes, xi, i ¼ ðN þ 1Þ; . . . ; ðN þ LÞ, which are called the DRBEM collocation nodes. The
approximating functions used in this study are the so-called radial basis functions (RBFs),
f jðxÞ � f jðrÞ ¼ 1þ rþ � � � þ r2k�1, k ¼ 1; 2; 3, and the thin plate spline (TPS), f jðxÞ � f jðrÞ ¼ r2 ln r, where
r is the distance function used in the definition of the fundamental solution. The DRBEM employs a series
of particular solutions, buj, j ¼ 1; . . . ; ðN þ LÞ, which are related to the approximating functions, f j,
j ¼ 1; . . . ; ðN þ LÞ, through the following expression:

DbujðxÞ ¼ f jðxÞ; j ¼ 1; . . . ; ðN þ LÞ; x 2 O. (6)



ARTICLE IN PRESS
L. Marin et al. / Journal of Sound and Vibration 297 (2006) 89–10592
On substituting Eq. (6) into relation (5), we obtain the following approximation for the original right-hand
side of the Helmholtz-type equation (3):

bðx; uðxÞÞ �
XNþL

j¼1

aj DbujðxÞ; x 2 O. (7)

Next, the standard BEM procedure is applied. More precisely, Eq. (7) is multiplied by the fundamental
solution for the Laplace equation, namely

u�ðx; yÞ ¼ �
1

2p
ln rðx; yÞ (8)

and integrated over the domain O:Z
O

u�ðx; yÞDuðyÞdOðyÞ ¼
XNþL

j¼1

aj

Z
O

u�ðx; yÞDbujðyÞdOðyÞ; x 2 O. (9)

By applying Green’s formula to Eq. (9), the boundary integral equation is obtained as

cðxÞuðxÞ þ

Z
G
f�ðx; yÞ uðyÞdGðyÞ �

Z
G

u�ðx; yÞfðyÞdGðyÞ

¼
XNþL

j¼1

aj cðxÞbujðxÞ þ

Z
G
f�ðx; yÞ bujðyÞGðyÞ �

Z
G

u�ðx; yÞ bfjðyÞdGðyÞ
� �

; x 2 O, ð10Þ

where f�ðx; yÞ � ru�ðx; yÞ � nðyÞ, fðyÞ � ðru � nÞðyÞ and bfjðyÞ � ðrbuj � nÞðyÞ, j ¼ 1; . . . ; ðN þ LÞ, for x 2 O and
y 2 G, while cðxÞ ¼ 1 for x 2 O and cðxÞ ¼ 0:5 for x 2 G smooth.

A BEM with piecewise constant boundary elements is used in order to discretize the boundary integral
equation (10). Consequently, the boundary G of the solution domain O is approximated by N straight line
segments, Gk, k ¼ 1; . . . ;N, in a counterclockwise sense, whilst the acoustical field, u, the normal velocity of
the sound, f, the particular solutions, buj, j ¼ 1; . . . ; ðN þ LÞ, and its normal derivative, bfj, j ¼ 1; . . . ; ðN þ LÞ,
are considered to be constant and take their values at the midpoint, xk 2 Gk, k ¼ 1; . . . ;N, i.e. collocation
point, also known as the node, of each element. Hence the discretized boundary integral equation may be
recast as

cðxÞuðxÞ þ
XN

k¼1

Z
Gk

f�ðx; yÞdGðyÞ

 !
uðxkÞ �

XN

k¼1

Z
Gk

u�ðx; yÞdGðyÞ

 !
fðxkÞ

¼
XNþL

j¼1

aj cðxÞbujðxÞ þ
XN

k¼1

Z
Gk

f� x; yð ÞdGðyÞ

 !bujðx
kÞ �

XN

k¼1

Z
Gk

u�ðx; yÞdGðyÞ

 !bfjðx
kÞ

( )
,

x 2 O. ð11Þ

By applying the discretized boundary integral equation (11) at each boundary and internal collocation point
xi, i ¼ 1; . . . ; ðN þ LÞ, we arrive at the DRBEM system of linear algebraic equations

Hu�G/ ¼ HbU�GbU� �
a, (12)

where H;G 2 RðNþLÞ	ðNþLÞ are the BEM matrices corresponding to the Laplace equation, bU; bU 2 RðNþLÞ	ðNþLÞ

are the DRBEM matrices, u;/ 2 RNþL are vectors containing the values of the acoustical field and the normal
velocity of the sound, respectively, at the collocation points and a 2 RNþL is a vector containing the unknowns
aj, j ¼ 1; . . . ; ðN þ LÞ. More specifically, the components of the above matrices and vectors are given by

Hik ¼

1
2
dik þ

R
Gk

f�ðxi; yÞdGðyÞ; 1pipN; 1pkpN ;

0; 1pipN; N þ 1pkpN þ L;R
Gk

f�ðxi; yÞdGðyÞ; N þ 1pipN þ L; 1pkpN;

dik; N þ 1pipN þ L; N þ 1pkpN þ L;

8>>>><>>>>: (13)
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Gik ¼

R
Gk

u�ðxi; yÞdGðyÞ; 1pipN; 1pkpN;

0; 1pipN; N þ 1pkpN þ L;R
Gk

u�ðxi; yÞdGðyÞ; N þ 1pipN þ L; 1pkpN;

0; N þ 1pipN þ L; N þ 1pkpN þ L;

8>>>><>>>>: (14)

bUkj ¼ bujðx
kÞ ¼ buðrðxk;xjÞÞ; 1pkpN þ L; 1pjpN þ L, (15)

bFkj ¼
bfjðx

kÞ ¼ bfðrðxk;xjÞÞ; 1pkpN; 1pjpN þ L;

0; N þ 1pkpN þ L; 1pjpN þ L;

(
(16)

uk ¼ uðxkÞ; fk ¼ fðxkÞ; 1pkpN,

uk ¼ uðxkÞ; fk ¼ 0; N þ 1pkpN þ L. ð17Þ

The vector a 2 RNþL in Eq. (12) can be calculated by collocating Eq. (5) at the DRBEM collocation points
xi, i ¼ 1; . . . ; ðN þ LÞ, i.e.

a ¼ eF�1b. (18)

Here components of the matrix eF 2 RðNþLÞ	ðNþLÞ are given byeF ij ¼ f jðx
iÞ ¼ f ðrðxj ;xiÞÞ; 1pi; jpN þ L, (19)

whilst, in the case of Helmholtz-type equations the components of the vector b 2 RNþL are calculated as

bi ¼ b0ðx
iÞ � kðxiÞuðxiÞ; 1pipN þ L, (20)

or in matrix form as

b ¼ b0 þ Ku; b0j ¼ b0ðx
jÞ; Kij ¼ �dij kðxjÞ; 1pi; jpN þ L. (21)

On substituting Eq. (21) into Eq. (18), we obtain

a ¼ eF�1ðb0 þ KuÞ (22)

and hence the DRBEM system of linear algebraic equations (12) associated with the Helmholtz-type equation
(1) may be recast as

Hu�G/ ¼ d, (23)

where

H ¼ H� SK; S ¼ ðHbU�GbUÞeF�1; d ¼ Sb0. (24)

4. Regularization

If the boundaries G1 and G2 of the solution domain O are discretized into N1 and N2 boundary elements,
respectively, such that N1 þN2 ¼ N then the DRBEM system of linear algebraic equations (23) associated
with the Helmholtz-type equation (1) may be recast as a system of ðN þ LÞ linear algebraic equations with
ð2N2 þ LÞ unknowns which can be generically written as

CX ¼ F, (25)

where the system matrix C 2 RðNþLÞ	ð2N2þLÞ, the unknown vector X 2 R2N2þL and the right-hand side vector
F 2 RNþL are given by

Ci j�N1
¼ �Gi j ; 1pipN þ L; N1 þ 1pjpN;

Ci jþN2�N1
¼ Si j ; 1pipN þ L; N1 þ 1pjpN þ L;

(
(26)
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X j�N1
¼ fj ; N1 þ 1pjpN ;

X jþN2�N1
¼ uj ; N1 þ 1pjpN þ L;

(
(27)

Fi ¼
XN1

j¼1

ð�Sij
efj þ GijeujÞ; 1pipN þ L, (28)

where efj ¼
efðxjÞ; euj ¼ euðxjÞ; 1pjpN1. (29)

4.1. Tikhonov regularization method

It should be noted that the system of linear algebraic equations (25) is ill-conditioned and cannot be solved
by direct methods, such as the least-squares method, since such an approach would produce a highly unstable
solution due to the large value of the condition number of the matrix C which increases dramatically as the
number of DRBEM collocation points increases. Several regularization procedures have been developed to
solve such ill-conditioned systems, see for example Ref. [23]. However, we only consider the Tikhonov
regularization method, see Ref. [26], in our study since it is simple, non-iterative and it provides an explicit
solution, see Eq. (33) below. Furthermore, the Tikhonov regularization method is feasible to apply for large
systems of equations unlike the SVD which may become prohibitive for such large problems, see Ref. [27].

The Tikhonov regularized solution to the system of linear algebraic equations (25) is sought as

Xl :TlðXlÞ ¼ min
X2R2N2þL

TlðXÞ, (30)

where Tl represents the sth order Tikhonov functional given by

Tlð�Þ : R
2N2þL�!½0;1Þ; TlðXÞ ¼ kCX� Fk22 þ lkRðsÞXk22, (31)

the matrix RðsÞ 2 Rð2N2þL�sÞ	ð2N2þLÞ induces a Cs-constraint on the solution X and l40 is the regularization
parameter to be chosen. For example, in the case of the zeroth-, first- and second-order Tikhonov
regularization method the matrix RðsÞ, i.e. s ¼ 0; 1; 2, is given by, see e.g. Ref. [28]:

Rð0Þ ¼

1 0 . . . 0

0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1

2666664

3777775 2 Rð2N2þLÞ	ð2N2þLÞ,

Rð1Þ ¼

�1 1 0 . . . 0

0 �1 1 . . . 0

..

. ..
. . .

. . .
. ..

.

0 0 . . . �1 1

2666664

3777775 2 Rð2N2þL�1Þ	ð2N2þLÞ,

Rð2Þ ¼

1 �2 1 0 . . . 0

0 1 �2 1 . . . 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 . . . 1 �2 1

2666664

3777775 2 Rð2N2þL�2Þ	ð2N2þLÞ. ð32Þ

Formally, the Tikhonov regularized solution Xl of the problem (30) is given as the solution of the regularized
equation

ðCTCþ lRðsÞ
T
RðsÞÞX ¼ CTF. (33)
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Regularization is necessary when solving ill-conditioned systems of linear equations because the simple least-
squares solution, i.e. l ¼ 0, is completely dominated by contributions from data errors and rounding errors.
By adding regularization we are able to damp out these contributions and maintain the norm kRðsÞXk2 to be of
reasonable size.
4.2. Choice of the regularization parameter

The choice of the regularization parameter in Eq. (33) is crucial for obtaining a stable solution and this is
discussed next. If too much regularization, or damping, i.e. l40 is large, is imposed on the solution then it will
not fit the given data F properly and the residual norm kCX� Fk2 will be too large. If too little regularization
is imposed on the solution, i.e. l40 is small, then the fit will be good, but the solution will be dominated by the
contributions from the data errors, and hence kRðsÞXk2 will be too large. It is quite natural to plot the norm of
the solution as a function of the norm of the residual parametrized by the regularization parameter l, i.e.
fkCXl � Fk2; kR

ðsÞXlk2; l40g. Hence, the L-curve is really a trade-off curve between two quantities that both
should be controlled and, according to the L-curve criterion, the optimal value lopt of the regularization
parameter l is chosen at the ‘‘corner’’ of the L-curve, see Ref. [23,27]. To summarize, the Tikhonov
regularization method solves a minimization problem using different smoothness constraints, e.g. see
expressions (32) for the matrix RðsÞ, in order to provide a stable solution which fits the data and also has a
minimum structure.

As with every practical method, the L-curve has its advantages and disadvantages. There are two main
disadvantages or limitations of the L-curve criterion. The first disadvantage is concerned with the
reconstruction of very smooth exact solutions, see Ref. [29]. For such solutions, Hanke [30] showed that
the L-curve criterion will fail, and the smoother the solution, the worse the regularization parameter l
computed by the L-curve criterion. However, it is not clear how often very smooth solutions arise in
applications. The second limitation of the L-curve criterion is related to its asymptotic behaviour as the
problem size ð2N2 þ LÞ increases. As pointed out by Vogel [31], the regularization parameter l computed by
the L-curve criterion may not behave consistently with the optimal parameter lopt as ð2N2 þ LÞ increases.
However, this ideal situation in which the same problem is discretized for increasing ð2N2 þ LÞ may not arise
so often in practice. Often the problem size ð2N2 þ LÞ is fixed by the particular measurement setup given by N

and L, and if a larger ð2N2 þ LÞ is required then a new experiment must be undertaken. Apart from these two
limitations, the advantages of the L-curve criterion are its robustness and ability to treat perturbations
consisting of correlated noise, see for more details Ref. [27].
5. Numerical results and discussion

In this section, we illustrate the numerical results obtained using the DRBEM described in Section 3
combined with the zeroth-order Tikhonov regularization method, i.e. s ¼ 0 in Eqs. (30) and (33), presented in
Section 4 for solving the two-dimensional Cauchy problem given by Eqs. (1) and (2) corresponding to both
the modified Helmholtz equation, i.e. L x; uðxÞð Þ � D� kðxÞð ÞuðxÞ, and the Helmholtz equation, i.e.
L x; uðxÞð Þ � Dþ kðxÞð ÞuðxÞ, in smooth and piecewise smooth geometries, as well as simply and doubly
connected domains.
5.1. Examples

In order to present the performance of the numerical method proposed, we consider the following analytical
solutions for the acoustical field uðanÞðxÞ and the normal velocity of the sound fðanÞðxÞ, as well as the
corresponding values for the space-dependent coefficient kðxÞ and the free term b0ðxÞ:
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Example 1 (Modified Helmholtz equation).

uðanÞðxÞ ¼ expða1x
2
1 þ a2x2Þ; x ¼ ðx1;x2Þ 2 O;

fðanÞðxÞ ¼ �½2a1x1n1ðxÞ þ a2n2ðxÞ
 exp a1x
2
1 þ a2x2

� �
; x ¼ ðx1;x2Þ 2 G;

kðxÞ ¼ 2a1 þ 4a2
1x2

1 þ a2
240; x ¼ ðx1;x2Þ 2 O;

b0ðxÞ ¼ 0; x ¼ ðx1;x2Þ 2 O;

(34)

where a1 ¼ 1:0 and a2 ¼ �1:0.

Example 2 (Helmholtz equation).

uðanÞðxÞ ¼ cosða1x2
1 þ a2x2Þ; x ¼ ðx1;x2Þ 2 O;

fðanÞðxÞ ¼ �½2a1x1n1ðxÞ þ a2n2ðxÞ
 sin a1x
2
1 þ a2x2

� �
; x ¼ ðx1;x2Þ 2 G;

kðxÞ ¼ 4a2
1x

2
1 þ a2

240; x ¼ ðx1;x2Þ 2 O;

b0ðxÞ ¼ �2a1 sin a1x2
1 þ a2x2

� �
; x ¼ ðx1;x2Þ 2 O;

(35)

where a1 ¼ 1:0 and a2 ¼ 2:0.

The examples defined by relations (34) and (35) are analysed in the following geometries:

Domain 1 (Disk: Simply connected domain, smooth boundary).

O ¼ fx ¼ ðx1;x2Þjx
2
1 þ x2

2oR2g,

G ¼ fx ¼ ðx1;x2Þjx
2
1 þ x2

2 ¼ R2g,

G1 ¼ fx ¼ ðx1; x2Þ 2 Gj0oyðxÞo3p=2g,

G2 ¼ fx ¼ ðx1;x2Þ 2 Gj3p=2oyðxÞo2pg, (36)

where R ¼ 1:0 and yðxÞ is the angular polar coordinate of x.

Domain 2 (Square: Simply connected domain, piecewise smooth boundary).

O ¼ fx ¼ ðx1;x2Þj � Rox1;x2oRg,

G ¼ fx ¼ ðx1;x2Þj � Rpx1pR; x2 ¼ �Rg [ fx ¼ ðx1;x2Þjx1 ¼ �R;�Rpx2pRg,

G1 ¼ fx ¼ ðx1; x2Þ 2 Gj � Rpx1pR;x2 ¼ �Rg

[ fx ¼ ðx1;x2Þ 2 Gjx1 ¼ R;�Rpx2pRg,

G2 ¼ fx ¼ ðx1;x2Þ 2 Gjx1 ¼ �R;�Rox2oRg, (37)

where R ¼ 0:5.

Domain 3 (Annulus: Doubly connected domain, smooth boundary).

O ¼ fx ¼ ðx1;x2ÞjR
2
i ox2

1 þ x2
2oR2

og,

G ¼ fx ¼ ðx1; x2Þjx
2
1 þ x2

2 ¼ R2
i g [ fx ¼ ðx1;x2Þjx

2
1 þ x2

2 ¼ R2
og,

G1 ¼ fx ¼ ðx1; x2Þ 2 Gjx2
1 þ x2

2 ¼ R2
i g,

G2 ¼ fx ¼ ðx1; x2Þ 2 Gjx2
1 þ x2

2 ¼ R2
og, (38)

where Ri ¼ 0:25 and Ro ¼ 1:0.
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Domain 4 (Square with a circular hole: Doubly connected domain, piecewise smooth boundary).

O ¼ fx ¼ ðx1; x2Þj � Roox1;x2oRognfx ¼ ðx1; x2Þjx
2
1 þ x2

2pR2
i g,

G ¼ fx ¼ ðx1;x2Þj � Ropx1pRo; x2 ¼ �Rog

[ fx ¼ ðx1;x2Þjx1 ¼ �Ro;�Ropx2pRog

[ fx ¼ ðx1;x2Þjx
2
1 þ x2

2 ¼ R2
i g,

G1 ¼ fx ¼ ðx1;x2Þ 2 Gj � Ropx1pRo;x2 ¼ �Rog

[ fx ¼ ðx1; x2Þ 2 Gjx1 ¼ �Ro;�Ropx2pRog,

G2 ¼ fx ¼ ðx1; x2Þ 2 Gjx2
1 þ x2

2 ¼ R2
i g, (39)

where Ri ¼ 0:25 and Ro ¼ 0:5.

The following DRBEM discretizations are used to solve the Cauchy problem given by Eqs. (1) and (2) for
examples (34) and (35) in the geometries described above:
(i)
 Domain 1: N ¼ 40; 60; 80 boundary collocation points (N1=3 ¼ N2 ¼ N=4) and L ¼ 20; 40; 60 internal
collocation points, respectively, uniformly distributed on l internal circles with radii rn ¼ ½n=ðl þ 1Þ
R,
n ¼ 1; . . . ; l, where l ¼ 2; 4; 6.
(ii)
 Domain 2: N ¼ 40; 60; 80 boundary collocation points (N1=3 ¼ N2 ¼ N=4) and L ¼ 16; 36; 64 internal
collocation points, respectively, uniformly distributed on a square grid.
(iii)
 Domain 3: N ¼ 40; 60; 80 boundary collocation points (N1 ¼ N2 ¼ N=2) and L ¼ 20; 30; 40 internal
collocation points, respectively, uniformly distributed on l internal circles with radii
rn ¼ Ri þ ½n=ðl þ 1Þ
ðRo � RiÞ, n ¼ 1; . . . ; l, where l ¼ 2; 3; 4.
(iv)
 Domain 4: N ¼ 40; 80; 160 boundary collocation points (N1 ¼ N2 ¼ N=2) and L ¼ 16; 28; 60 internal
collocation points, respectively, uniformly distributed on a square grid excluding the hole.
5.2. Accuracy of the method

In order to investigate the accuracy of the numerical method proposed, for every regularization parameter,
l, we evaluate the root mean square (RMS) error for the acoustical field, u, and the normal velocity of the
sound, f, on the under-specified boundary G1 defined as

euðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN

k¼N1þ1

ðu
ðlÞ
k � u

ðanÞ
k Þ

2

vuut ; efðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN

k¼N1þ1

ðfðlÞk � fðanÞk Þ
2

vuut , (40)

where u
ðlÞ
k and fðlÞk are the acoustical field and the normal velocity of the sound calculated at the boundary

collocation point xk 2 G2 using the regularization parameter l, respectively, and u
ðanÞ
k and fðanÞk are the

analytical values for the acoustical field and the normal velocity of the sound at the boundary collocation
point xk 2 G2, respectively. The RMS error in predicting the acoustical field, u, inside the solution domain O
may also be evaluated by using the expression

eOu ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

l¼1

ðu
ðlÞ
l � u

ðanÞ
l Þ

2

vuut , (41)

where u
ðlÞ
l and u

ðanÞ
l are the numerical and the analytical values for the acoustical field at the internal

collocation point xl 2 O, respectively. However, this is not pursued here since eOu ðlÞ has an evolution similar to
that of the RMS errors euðlÞ and efðlÞ.
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The acoustical field ujG1 ¼ uðanÞjG1 has been perturbed as eu ¼ uþ du, where du is a Gaussian random
variable with mean zero and standard deviation s ¼ maxG1 juj 	 ðpu=100Þ, generated by the NAG subroutine
G05DDF, and pu% is the percentage of additive noise included in the input data ujG1 in order to simulate the
inherent measurement errors. Figs. 1(a) and (b) show the RMS errors eu and ef, respectively, as functions of
the regularization parameter, l, obtained for the Cauchy problem given by Example 1 in the Domain 1 using
N ¼ 80 boundary collocation points, L ¼ 60 internal collocation points, pu ¼ 1% noise added into the input
data ujG1 and various approximating functions, namely the RBFs f ðrÞ ¼ 1þ r, f ðrÞ ¼ 1þ rþ r3 and
f ðrÞ ¼ 1þ rþ r3 þ r5, and the TPS f ðrÞ ¼ r2 ln r. It can be seen from these figures that both RMS errors eu

and ef attain the minimum for an optimal value of the regularization parameter, l, of about lopt ¼ 1:0	 10�6

for all the approximating functions, f, used. In addition, for all the values of the regularization parameter, l,
and the approximating functions, f, as expected, euoef, i.e. the numerical acoustical field, uðlÞ, is more
accurate than the numerical normal velocity of the sound, fðlÞ. Although not presented here, it is reported that
the same conclusions have been obtained for the Cauchy problems given by Example 1 in the Domains 2–4, as
well as for Example 2 in the Domains 1–4.

With respect to the accuracy achieved, it can be seen from Figs. 1(a) and (b) that the best numerical results
for the acoustical field and normal velocity of the sound in the case of Example 1 in the Domain 1 have been
obtained for the RBF f ðrÞ ¼ 1þ r, followed by the RBF f ðrÞ ¼ 1þ rþ r3 and the TPS f ðrÞ ¼ r2 ln r, whilst the
RBF f ðrÞ ¼ 1þ rþ r3 þ r5 has provided the most inaccurate numerical results. Similar conclusions have been
drawn in the case of Example 1 in the Domain 2 (also a simply connected domain but with a piecewise smooth
boundary). Although not presented herein, it is reported that, in the case of both examples considered in the
Domains 3 and 4, i.e. doubly connected domains with smooth and piecewise smooth boundaries, respectively,
from the accuracy viewpoint the TPS f ðrÞ ¼ r2 ln r has provided the best numerical results for the acoustical
field and normal velocity of the sound, followed by the RBFs f ðrÞ ¼ 1þ rþ r3 þ r5 and f ðrÞ ¼ 1þ r, whilst the
numerical results obtained using the RBF f ðrÞ ¼ 1þ rþ r3 have been found the most inaccurate.

The analytical and numerical solutions for the acoustical field ujG2 and the normal velocity of the sound
fjG2 , obtained using the regularization parameter, l, given by the L-curve criterion and various approximating
functions, namely f ðrÞ ¼ 1þ r, f ðrÞ ¼ 1þ rþ r3, f ðrÞ ¼ 1þ rþ r3 þ r5 and f ðrÞ ¼ r2 ln r, for Example 1 in the
Domain 1 and Example 2 in the Domain 3 are presented in Figs. 2 and 3, respectively. From these figures, it
can be seen that the numerical results for the acoustical field and the normal velocity of the sound on the
boundary G2 are in good agreement with their analytical values for Example 1 in the Domain 1 and Example 2
in the Domain 3 when using the approximating functions f ðrÞ ¼ 1þ r and f ðrÞ ¼ r2 ln r, respectively. It should
be noted that the numerical method proposed in this study provides more accurate approximates for the
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Fig. 1. The accuracy errors (a) eu, and (b) ef as functions of the regularization parameter, l, obtained with N ¼ 80 boundary collocation

points, L ¼ 60 internal collocation points, pu ¼ 1% noise added into the input data ujG1 and various approximating functions, namely

f ðrÞ ¼ 1þ r ð�&�Þ, f ðrÞ ¼ 1þ rþ r3 ð���Þ, f ðrÞ ¼ 1þ rþ r3 þ r5ð�n�Þ and f ðrÞ ¼ r2 ln r ð� � �Þ, for Example 1 in the Domain 1.
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Fig. 2. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with N ¼ 80 boundary collocation points, L ¼ 40 internal collocation points, pu ¼ 1% noise added into the input

data ujG1 and various approximating functions, namely f ðrÞ ¼ 1þ r ð� � �& � � �Þ, f ðrÞ ¼ 1þ rþ r3 ð� � � � � � �Þ, f ðrÞ ¼ 1þ rþ r3 þ

r5 ð� � �n � � �Þ and f ðrÞ ¼ r2 ln r ð� � � � � � �Þ, for Example 1 in the Domain 1.
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Fig. 3. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with N ¼ 80 boundary collocation points, L ¼ 40 internal collocation points, pu ¼ 1% noise added into the input

data ujG1 and various approximating functions, namely f ðrÞ ¼ 1þ r ð� � �& � � �Þ, f ðrÞ ¼ 1þ rþ r3 ð� � � � � � �Þ, f ðrÞ ¼ 1þ rþ r3 þ

r5 ð� � �n � � �Þ and f ðrÞ ¼ r2 ln r ð� � � � � � �Þ, for Example 2 in the Domain 3.
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acoustical field and the normal velocity of the sound in the case of a doubly connected domain (Domain 3)
than in the case of a simply connected domain (Domain 1). Similar results have been obtained for the Cauchy
problem corresponding to Examples 1 and 2 in the Domains 2 and 4 and hence they are not presented here.

5.3. Stability of the method

In this section, we investigate the stability of the numerical method proposed in this study. To do so, we
consider the Cauchy problem (1) and (2) for Example 1 in the Domain 2 and Example 2 in the Domain 4, and
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various levels of noise added into the input acoustical field data on the overspecified boundary G1, namely
pu ¼ 1; 2; 3, for a given approximating function. More precisely, we set f ðrÞ ¼ 1þ r and f ðrÞ ¼ r2 ln r for
Example 1 in the Domain 2 and Example 2 in the Domain 4, respectively.

Figs. 4(a) and (b) illustrate the behaviour of the RMS errors eu and ef, respectively, for the Cauchy problem
given by Example 1 in the Domain 2. From these figures it can be seen that both errors eu and ef decrease with
respect to decreasing the amount of noise, pu, added into the input data ujG1 for all the values of the
regularization parameter, l. In addition, for a fixed value of the regularization parameter and a fixed level of
noise added into the input acoustical field data, euoef. Similar results have been obtained for the Cauchy
problem corresponding to Example 2 in the Domain 4 and these are shown in Figs. 5(a) and (b). Furthermore,
from Figs. 4 and 5 it can be noticed that, for the all the levels of noise considered, the minimum in the RMS
errors eu and ef is attained for an optimal value of the regularization parameter of about lopt ¼ 1:0	 10�4 in
the case of Example 1 in the Domain 2 and lopt ¼ 1:0	 10�5 in the case of Example 2 in the Domain 4. This
optimal value for the regularization parameter is the same as that obtained by employing the L-curve criterion,
i.e. by chosing the regularization parameter at the ‘‘corner’’ of the L-curves corresponding to Example 1 in the
Domain 2 and Example 2 in the Domain 4 which are presented in Figs. 6(a) and (b), respectively.

The numerical solutions for the acoustical field and the normal velocity of the sound obtained for Example
1 in the Domain 2 and Example 2 in the Domain 4 in comparison with their corresponding analytical values
are illustrated in Figs. 7 and 8, respectively. It can be seen from these figures that numerical solutions retrieved
on the under-specified boundary G2 using the DRBEM combined with the zeroth-order Tikhonov
regularization method are stable with respect to decreasing the noise added into the input acoustical field
for both examples considered. From Figs. 7(a) and (b) it can be observed that in the case of Example 1 in the
Domain 2, i.e. simply connected domain with piecewise smooth boundary, the numerical results for the
acoustical field are very accurate, while those obtained for the normal velocity of the sound, although they are
not that accurate, they do provide a reasonable approximation to the analytical solution. However, the values
for both the acoustical field and the normal velocity of the sound numerically retrieved on the boundary G2 in
the case of Example 2 in the Domain 4, i.e. doubly connected domain with piecewise smooth boundary, are
very accurate and represent very good approximations to their analytical values. Although not presented, it is
reported that similar results have been obtained for the other examples presented in this study, as well as for
perturbed input normal velocity of the sound on the over-specified boundary G1.
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Fig. 4. The accuracy errors (a) eu, and (b) ef as functions of the regularization parameter, l, obtained with N ¼ 80 boundary collocation

points, L ¼ 64 internal collocation points, the approximating function f ðrÞ ¼ 1þ r and various levels of noise added into the input data

ujG1 , namely pu ¼ 1% ð�&�Þ, pu ¼ 2% ð���Þ and pu ¼ 3% ð�n�Þ, for Example 1 in the Domain 2.
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Fig. 5. The accuracy errors (a) eu, and (b) ef as functions of the regularization parameter, l, obtained with N ¼ 80 boundary collocation
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ujG1 , namely pu ¼ 1% ð�&�Þ, pu ¼ 2% ð���Þ and pu ¼ 3% ð�n�Þ, for Example 2 in the Domain 4.
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Fig. 6. (a) The L-curves obtained with N ¼ 80 boundary collocation points, L ¼ 64 internal collocation points, the approximating

function f ðrÞ ¼ 1þ r and various levels of noise added into the input data ujG1 , namely pu ¼ 1% ð�&�Þ, pu ¼ 2% ð���Þ and

pu ¼ 3% ð�n�Þ, for Example 1 in the Domain 2. (b) The L-curves obtained with N ¼ 80 boundary collocation points, L ¼ 28 internal

collocation points, the approximating function f ðrÞ ¼ r2 ln r and various levels of noise added into the input data ujG1 , namely

pu ¼ 1% ð�&�Þ, pu ¼ 2% ð���Þ and pu ¼ 3% ð�n�Þ, for Example 2 in the Domain 4.
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5.4. Convergence of the method

The convergence of the numerical method described in this paper is analysed by considering the Cauchy
problems given by Example 1 in the Domains 3 and 4, and various DRBEM discretizations for a given
approximating function and a given level of noise added into the input data. More precisely, we set f ðrÞ ¼

r2 ln r and pu ¼ 1%, and consider N ¼ 40; 60; 80 boundary collocation points (N1 ¼ N2 ¼ N=2) and
L ¼ 20; 30; 40 internal collocation points uniformly distributed on l internal circles with radii
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Fig. 7. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with N ¼ 80 boundary collocation points, L ¼ 60 internal collocation points, l ¼ lopt, the approximating function

f ðrÞ ¼ 1þ r and various levels of noise added into the input data ujG1 , namely pu ¼ 1% ð� � �& � � �Þ, pu ¼ 2% ð� � � � � � �Þ and

pu ¼ 3% ð� � �n � � �Þ, for Example 1 in the Domain 2.
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Fig. 8. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with N ¼ 80 boundary collocation points, L ¼ 60 internal collocation points, l ¼ lopt, the approximating function

f ðrÞ ¼ r2 ln r and various levels of noise added into the input data ujG1 , namely pu ¼ 1% ð� � �& � � �Þ, pu ¼ 2% ð� � � � � � �Þ and

pu ¼ 3% ð� � �n � � �Þ, for Example 2 in the Domain 4.
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rn ¼ Ri þ ½n=ðl þ 1Þ
ðRo � RiÞ, n ¼ 1; . . . ; l, where l ¼ 2; 3; 4, and N ¼ 40; 80; 160 boundary collocation points
(N1 ¼ N2 ¼ N=2) and L ¼ 16; 28; 60 internal collocation points uniformly distributed on a square grid
excluding the hole for Example 1 in the Domains 3 and 4, respectively.

Figs. 9(a) and (b) show the RMS error eu defined by relation (40) as a function of the regularization
parameter, l, obtained using the aforementioned DRBEM discretizations for the Cauchy problems given by
Example 1 in the Domains 3 and 4, respectively. It can be seen from these figures that the RMS error eu attains
the minimum for an optimal value of the regularization parameter, l, of about lopt ¼ 1:0	 10�5 in the case of
Example 1 in the Domain 3 and lopt ¼ 1:0	 10�4 in the case of Example 1 in the Domain 4 for all the
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Fig. 9. (a) The accuracy error eu as a function of the regularization parameter, l, obtained with pu ¼ 1% noise added into the input data

ujG1 , the approximating function f ðrÞ ¼ r2 ln r and various DRBEM discretizations, namely N ¼ 40 and L ¼ 20 ð�&�Þ, N ¼ 60 and

L ¼ 30 ð���Þ, and N ¼ 80 and L ¼ 40 ð�n�Þ, for Example 1 in the Domain 3. (b) The accuracy error eu as a function of the

regularization parameter, l, obtained with pu ¼ 1% noise added into the input data ujG1 , the approximating function f ðrÞ ¼ r2 ln r and

various DRBEM discretizations, namely N ¼ 40 and L ¼ 16 ð�&�Þ, N ¼ 80 and L ¼ 28 ð���Þ, and N ¼ 160 and L ¼ 60 ð�n�Þ, for

Example 1 in the Domain 4.
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Fig. 10. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with pu ¼ 1% noise added into the input data ujG1 , the approximating function f ðrÞ ¼ r2 ln r and various DRBEM

discretizations, namely N ¼ 40 and L ¼ 20 ð� � �& � � �Þ, N ¼ 60 and L ¼ 30 ð� � � � � � �Þ, and N ¼ 80 and L ¼ 40 ð� � �n � � �Þ, for Example 1

in the Domain 3.
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DRBEM meshes considered. Moreover, for all the values of the regularization parameter, l, the RMS error eu

decreases with respect to refining the DRBEM mesh. Although not presented here, it is reported that the RMS
error ef corresponding to Example 1 in the Domains 3 and 4 has a similar behaviour.

The analytical and the numerical results for the acoustical field ujG2 and the normal velocity of the sound
fjG2 , retrieved using the regularization parameter, l, given by the L-curve criterion, the approximating
function f ðrÞ ¼ r2 ln r, pu ¼ 1%, and N ¼ 40; 60; 80 boundary collocation points and L ¼ 20; 30; 40 internal
collocation points are illustrated in Figs. 10(a) and (b), respectively. From these figures, it can be seen that the
numerical solutions for both the acoustical field and the normal velocity of the sound on the under-specified
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Fig. 11. (a) The analytical solution uðanÞ (—) and the numerical solution uðlÞ, and (b) the analytical solution fðanÞ (—) and the numerical

solution fðlÞ, obtained with pu ¼ 1% noise added into the input data ujG1 , the approximating function f ðrÞ ¼ r2 ln r and various DRBEM

discretizations, namely N ¼ 40 and L ¼ 16 ð� � �& � � �Þ, N ¼ 80 and L ¼ 28 ð� � � � � � �Þ, and N ¼ 160 and L ¼ 60 ð� � �n � � �Þ, for Example 1

in the Domain 4.
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boundary G2 converge towards their corresponding analytical solutions with respect to increasing the number
of boundary and internal DRBEM collocation points. A similar conclusion can be drawn from Figs. 11(a) and
(b) which present the numerical solutions for the acoustical field and the normal velocity of the sound obtained
using various DRBEM meshes in comparison to their analytical values corresponding to Example 1 in the
Domain 1.

From the numerical results presented in this section, it can be concluded that the L-curve criterion has a
regularizing effect and the numerical solution obtained by DRBEM-Tikhonov regularization method
described in this paper is convergent and stable with respect to decreasing the level of noise added into the
input data and increasing the number of DRBEM collocation points, respectively.
6. Conclusions

In this paper, we have investigated the Cauchy problem for Helmholtz-type equations with variable
coefficients in the two-dimensional case. In order to deal with the instabilities of the solution of this ill-posed
problem, a numerical technique based on the DRBEM combined with the zeroth-order Tikhonov
regularization method has been proposed. The resulting DRBEM system of linear algebraic equations which
is ill-conditioned was regularized by choosing the optimal regularization parameter according to the L-curve
criterion. The proposed numerical method has been analysed in terms of accuracy, convergence and stability
for four examples corresponding to the Cauchy problem in simply and doubly connected domains with
both smooth and piecewise smooth boundaries. The numerical results obtained for various DRBEM
discretizations, various amounts of noise added to the input data and various approximating functions
showed that the method produces an accurate, convergent and stable numerical solution with respect to
increasing the number of boundary and internal DRBEM collocation points and decreasing the amount of
noise. It was found that the numerical solutions for the acoustical field and the normal velocity of the sound in
the case of simply connected domains with smooth and piecewise smooth boundaries, e.g. disk and square, are
more sensitive to the perturbed input data than the corresponding numerical solutions obtained in the case of
doubly connected domains with smooth and piecewise smooth boundaries, e.g. annulus and square with a
circular hole. Also, the numerical solutions retrieved for noisy input data using the DRBEM and the zeroth-
order Tikhonov regularization method depend on the geometry of the solution domain, as well as on the type
of approximating function employed in the DRBEM.
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