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Abstract

The problem of reliability analysis of randomly driven, stochastically parametered, vibrating structures is considered.

The excitation components are assumed to be jointly stationary, Gaussian random processes. The randomness in

structural parameters is modelled through a vector of mutually correlated, non-Gaussian random variables. The

structure is defined to be safe if a set of response quantities remain within prescribed thresholds over a given

duration of time. An approximation for the failure probability, conditioned on structure randomness, is first

formulated in terms of recently developed multivariate extreme value distributions. An estimate of the unconditional

failure probability is subsequently obtained using a method based on Taylor series expansion. This has involved the

evaluation of gradients of the multivariate extreme value distribution, conditioned on structure random variables,

with respect to the basic variables. Analytical and numerical techniques for computing these gradients have been

discussed. Issues related to the accuracy of the proposed method have been examined. The proposed method has

applications in reliability analysis of vibrating structural series systems, where different failure modes are mutually

dependent. Illustrative examples presented include the seismic fragility analysis of a piping network in a nuclear

power plant.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of reliability analysis of randomly parametered vibrating systems is of central importance
in the safety assessment of structures, under environmental loads, such as earthquakes, wind or ocean waves.
The limit state functions for discrete multi-degree vibrating systems can, in general, be represented as
gi½X;YðtÞ;K; t� ¼ 0, ði ¼ 1; . . . ; nÞ. Here, X is the vector of random variables that model physical or aleatory
uncertainties, K is the vector of random variables that represent modelling or epistemic uncertainties, YðtÞ is
the vector of random processes that represent time-varying load effects on the structure and t denotes time.
The performance functions, in general, are nonlinear functions of their arguments and components of X and K
which are, in general, mutually dependent and non-Gaussian in nature [1]. The probability of failure, Pf i
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respect to the ith performance function gið�Þ, is given by

Pf i
¼ 1� P½gifX;YðtÞ;K; tg40 8t 2 ðt0; t0 þ TÞ�, (1)

where, gið�Þ40 denotes safe configuration, T is the time duration of interest and t0 is initial time. For the
structural system considered as a whole, the definition of structural failure requires attention to configuration
of the failure modes, i ¼ 1; . . . ; n. The simplest of these configurations is perhaps the series system, in which,
the system failure is given by

Pf ¼ 1� P
\n
i¼1

fgiðX;YðtÞ;K; tÞ40 8t 2 ðt0; t0 þ TÞg

" #
. (2)

The treatment of more general configuration of failure modes is more complicated. The difficulties, here, are due
to the time-varying nature of the performance functions, identification of important failure modes, treatment of
mutual dependencies between failure modes and modelling of load effect redistribution upon violation of
individual failure modes. In the present study, we restrict our attention to evaluation of Pf , as given by Eq. (2),
with reference to reliability of randomly excited, stochastically parametered, dynamical systems.

2. Background literature

Defining the performance function of vibrating structures in terms of extreme values of the structure response
processes, enables treatment of such time-varying reliability problems (as in Eq. (2)) in a time-invariant format
[2,3]. One of the commonly used approaches is to study the first passage failures based on the assumption that the
number of times a specified level is crossed can be modelled as a Poisson counting process. The application of this
theory leads to the well-known Rice’s formula [4] for estimating the mean out-crossing rate and requires the joint
probability density functions (pdf) of the constituent response processes and their instantaneous time derivatives.
This knowledge is, however, presently available only for a limited class of problems. For Gaussian random
processes, these assumptions lead to exponential models for the first passage times and Gumbel models for the
extremes over a specified duration. Results based on this assumption and further refinements are available in
literature [5–7]. For scalar non-Gaussian processes, linearization schemes have been applied to determine bounds
on their exceedance probabilities [8–10]. Approximate estimates of the mean outcrossing rates of translation non-
Gaussian processes have been obtained by studying the outcrossing characteristics of corresponding Gaussian
processes, obtained from Nataf’s transformations [11,12]. Several studies on extreme value distributions for non-
Gaussian processes, obtained as quadratic transformations of Gaussian processes, such as the Von Mises stress
process, are available in the literature. Geometric approaches based on transforming the problem into the polar
coordinate space have been used for developing analytical expressions for the mean outcrossing rate of Von Mises
stress in Gaussian excited linear structures [13] and for constructing the pdf of the Von Mises stress in plates and
shells [14]. Studies on second-order stochastic Volterra series have been carried out and expressions for their
outcrossing rates have been derived in terms of the joint characteristic function of the process and its instantaneous
time derivative [15–17]. The use of the maximum entropy method in constructing the joint pdf for the Von Mises
stress and its instantaneous time derivative, in linear structures under Gaussian excitations, has been explored
recently [18]. Computational algorithms, such as the response surface method, has also been used to study the
extremes of Von Mises stress in nonlinear structures under Gaussian excitations [19].

Outcrossing rates of vector random processes have been studied in the context of problems in load
combinations [20] and in structural reliability [21–25]. The focus of many of these studies has been in
determining the exceedance probability of the sum of component processes, and the outcrossing event has
been formulated as a scalar process outcrossing. Some of these results have been used in the geometric
approach considered by Leira [26,27] in the studies on development of multivariate extreme value distributions
for vector Gaussian/non-Gaussian random processes. In some recent studies, approximations have been
developed for multivariate extreme value distributions for vectors of Gaussian processes [28,29] and non-
Gaussian processes obtained as nonlinear transformations of vector Gaussian processes [30]. The crux of these
approximations are based on the principle that multipoint random processes can be used to model the level
crossing statistics of vector Gaussian/non-Gaussian processes.
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These studies, however, do not take into account the effect of structure randomness and modelling
uncertainties that invariably exist in real-life engineering structures [31,32]. Studies on the importance of
considering the effect of structure randomness in reliability analysis of highly reliable structures under random
dynamic loads, has been reported in the literature [33–35]. Chreng and Wen [36] estimated the probability of
first excursion across specified barriers of randomly parametered, nonlinear vibrating trusses, by employing an
equivalent linearization scheme in conjunction with a second-order reliability method. Zhang and Der
Kiureghian [37] studied first passage failure probabilities of random structures under deterministic excitations.
The limit surfaces of these structures were found to be highly nonlinear and consisted of multiple design
points. These authors used first-order reliability method and concepts of series system reliability, to obtain
bounds for the first excursion probabilities. Brenner and Bucher [38] used stochastic finite-element method to
discretize structure property random fields in nonlinear multi-degree of freedom systems. They, first, fitted a
response surface in the space spanned by a subset of structure random variables which were found to have
significant effect on the structure reliability. Subsequently, an adaptive importance sampling was carried out
to estimate first passage failure probabilities. Mahadevan and Mehta [39] discussed matrix condensation
techniques for stochastic finite-element methods, for reliability analyses of stochastically parametered frame
structures. The present authors, in an earlier study [40], obtained estimates of first passage failure probabilities
of stochastically parametered skeletal structures under random excitations. The structure property random
fields, assumed to be non-Gaussian, were discretized using the optimal linear expansion scheme. Extreme
value theory was used to obtain the first passage probabilities, conditioned on the structure random variables.
The unconditional failure probabilities were computed by carrying out adaptive importance sampling in the
space spanned by the vector of non-Gaussian random variables, representing structural uncertainties.

The present study focusses on the evaluation of reliability of randomly parametered structural systems,
subjected to stationary, vector Gaussian random excitations. The uncertainties in the problem are grouped
into the following three categories:
(a)
 Dynamic loads: These are modelled as a vector of stationary, Gaussian random processes,

(b)
 Structural capacities (such as permissible stresses): These are modelled, in general, as a vector of mutually

dependent, non-Gaussian random variables Z�, and

(c)
 Structural properties that influence the structural matrices, such as, the elastic constants, mass density and

damping properties: these are, again, modelled as a vector of mutually dependent, non-Gaussian random
variables X.
The study assumes that the influence of uncertainties in loads and structural capacities, Z�, on structural
reliability is much stronger than the influence of X. Accordingly, we first determine the structural failure
probability, conditioned on X, by using results from theory of extremes of vector Gaussian/non-Gaussian
random processes. The associated unconditional failure probability is subsequently approximated by
developing a Taylor series expansion for the conditional failure probability, in the X-space. The study
discusses computational and analytical procedures for implementing the procedure. A set of illustrative
examples are presented where the response quantities of interest constitute vectors of Gaussian/non-Gaussian
processes. The accuracy of the theoretical predictions are examined using limited Monte Carlo simulations.
Subsequently, the applicability of the method is illustrated in the context of seismic fragility analysis of a
piping network in a nuclear power plant.
3. Problem statement

3.1. Conditional extreme value distribution

A structure under random dynamic loads is considered. The governing equations of motion, when
discretized using finite elements and expressed in a general form, is given by

M €YðtÞ þ C _YðtÞ þ KYðtÞ ¼ FðtÞ. (3)
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Here, M, C and K are, respectively, the mass, damping and stiffness matrices; €Y; _Y and Y are, respectively, the
unknown vectors of nodal acceleration, velocity and displacements and FðtÞ denotes a vector of jointly
stationary, zero-mean, Gaussian random forces. If geometric and/or material nonlinear behavior of the
structure is considered, K is a nonlinear function of YðtÞ and _YðtÞ. Let X be the vector of random variables
representing the uncertainties in the elastic, mass and damping properties. These random variables are, in
general, non-Gaussian and mutually dependent. The structural matrices M, C and K are, thus, functions of X.
In case of earthquake base motions, the specification of FðtÞ, also, becomes dependent on X. Response
quantities of interest, such as displacements, stress resultants, stress components or reactions, are denoted by a
n-dimensional vector of random processes, ZðtÞ, which are, in general, expressed as

ZðtÞ ¼ Q̂½ €Yðt;XÞ; _Yðt;XÞ;Yðt;XÞ;X; t�

¼ Q½FðtÞ;MðXÞ;CðXÞ;KðXÞ;X; t�. ð4Þ

Depending on the problem, Q½�� could be linear or nonlinear and could be explicitly dependent on X. In this
study, we assume that structural failure occurs if one or more components of ZðtÞ, exceeds the corresponding
permissible thresholds, Z�i , ði ¼ 1; . . . ; nÞ, during the time interval ðt0; t0 þ TÞ. These permissible thresholds, are
also modelled as a vector of random variables, which are, in general, taken to be mutually dependent and non-
Gaussian. We define the performance function gi ¼ Z�i � Ziðt;XÞ, ði ¼ 1; . . . ; nÞ, and consider that these
associated failure modes are in series. This would mean that we deem the structure to have failed if any one of
the associated limit states are violated. Consequently, the structural failure is given by

Pf ¼ 1� P
\n
i¼1

Ziðt;XÞpZ�i 8t 2 ðt0; t0 þ TÞ

" #
. (5)

Here, P½�� denotes probability measure and Ziðt;XÞ and Z�i , respectively, denote the ith component of the n-
dimensional vectors Zðt;XÞ and Z�. Note that for stationary random processes, t0!1. The evaluation of
this probability constitutes a problem in time variant reliability analysis. Introducing the random variable
Zim ¼ maxt0ptpt0þT Ziðt;XÞ and noting that Pf ¼ 1� P½

Tn
i¼1ZimpZ�i �, the problem can be formulated in a

time invariant format. The response vector conditioned on X, ZðtjXÞ, is a vector of mutually correlated,
random processes. We define NiðZ

�
i ; t0; t0 þ TÞ to be the number of times level Z�i is crossed in the interval

ðt0; t0 þ TÞ for each ZiðtjXÞ. For sufficiently high thresholds Z�i , the crossings may be assumed to be rare with
zero memory. We assume that N ¼ fNiðZ

�
i ; t0; t0 þ TÞgni¼1 constitutes a vector of mutually correlated Poisson

random variables [28]. The correlation between the components of N can be expressed explicitly by
introducing a transformation, whereby N is expressed in terms of a vector of a set of mutually independent
Poisson random variables [41,42]. If nðnþ 1Þ=2 mutually independent, Poisson random variables, with
parameters flig

nðnþ1Þ=2
i¼1 , are introduced for n-dimensional vector N, the multivariate extreme value distribution

is shown [28] to be given by

PZm1 ...Zmn jX
ðZ�1; . . . ;Z

�
njXÞ ¼ exp �

Xnðnþ1Þ=2

i¼1

li

" #
. (6)

Expressions for determining the parameters flig
nðnþ1Þ=2
i¼1 , which, in turn, depend on the covariance matrix of

ZðtjXÞ, have been recently developed for vector Gaussian processes [28] and for vector non-Gaussian processes
obtained as nonlinear transformations of Gaussian processes [30]. For vector Gaussian processes, it has also
been shown that the marginal distribution PZmi jX

ðZ�i jXÞ for Zmi
obtained from Eq. (6) follows a Gumbel

model, given by

PZmi jX
ðZ�i jXÞ ¼ exp �

T

2p

g2i

g0i

exp �
1

2

Z�i � mi

g0i

 !2
8<
:

9=
;

2
4

3
5, (7)

which conforms to the existing models in the literature for extreme value distributions of scalar, Gaussian
random processes. Here, g2i

and g0i
are the spectral moments given by gji

¼ ½
R1
�1

ojSiiðojXÞdo�0:5, ðj ¼ 0; 2Þ,
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o is the frequency, mi is the mean of the process ZiðtjXÞ, with SiiðojXÞ being its corresponding power spectral
density (PSD) function, conditioned on X.

3.2. Unconditional failure probability

Introducing the notation CðXÞ to represent the multivariate/univariate extreme value distribution,
conditioned on X, the unconditional failure probability is given by

Pf ¼ 1�

Z 1
�1

CðXÞpXðxÞdx ¼ 1� hCðXÞiX. (8)

Here, pXð�Þ is the joint pdf of X and h�iX represents the mathematical expectation with respect to X. For the
sake of simplicity, we omit writing the subscript X in the remaining part of the paper. The problem of
evaluation of Pf , thus, reduces to the problem of finding hCðXÞi. For a m-dimensional vector X, the evaluation
of hCðXÞi requires a m-dimensional integration. However, since the functional dependence of CðXÞ on X

would, in most real-life situations, be available only implicitly through structural analysis codes, closed form
solutions for hCðXÞi is seldom possible. Traditional methods of numerical integration of Eq. (8) could require,
depending on the step size, a large number of CðXÞ evaluations. In most situations, evaluation of CðXÞ is
through a complex code. This would make numerical integrations computationally intensive. On the other
hand, an approximation for hCðXÞi can be obtained by expanding hCðXÞi in a Taylor series, around the mean
vector X0 and is of the form

hCðXÞi ¼ CðX0Þ þ
Xm

i¼1

hðX i � X 0i
Þi
qC
qX i

ðX0Þ

� �
þ

1

2!

Xm

i¼1

Xm

j¼1

hðX i � X 0i
ÞðX j � X 0j

Þi
q2C

qX i qX j

ðX0Þ

� �
þ � � � .

(9)

Here, X0 ¼ hXi, and consequently, the second term in the above equation is identically equal to zero. Further
simplification in evaluation of hCðXÞi is possible, if X is transformed into the standard normal space U. If a
complete knowledge of joint pdf of X is available, one can use the well-known Rosenblatt transformation to
achieve this. On the other hand, when X is only partially specified, which is most often the case in practice, one
can use the theory of Nataf’s transformations [11,43] for this purpose. In the present study, we adopt the latter
approach. We specifically assume that knowledge of X is restricted to its first-order marginal pdf and its
covariance matrix. The transformation of X, into the standard normal space U, involves two steps. We first
apply Nataf’s memoryless transformation given by X i ¼ z�1i ½FiðV iÞ�, where, zið�Þ and Fið�Þ are, respectively,
the marginal pdf of X i and V i, to transform the vector of correlated, non-Gaussian random variables X to a
vector of correlated Gaussian random variables V. The joint pdf of the normal variates, pVð�Þ, is characterized
by the unknown correlation coefficient matrix CV. The correlation coefficients CVij

are expressed in terms of
the known correlation coefficients CXij

through an integral equation, which is solved by applying a search
algorithm, to obtain CV [40]. The vector of correlated Gaussian random variables V are related to the standard
normal variates U, through the expression V ¼ LU. Here, L is the lower triangular matrix, such that
CV ¼ LLt. L is determined by Cholesky decomposition of CV. The m-dimensional extreme value distribution
CðXÞ, is now expressed as YðUÞ, in the U-space. Estimates of the unconditional extreme value distribution, is
now expressed as

hYðUÞi ¼ YðU0Þ þ
Xm

i¼1

hðUi �U0i
Þi

qY
qUi

ðU0Þ

� �
þ

1

2!

Xm

i¼1

hðUi �U0i
Þ
2
i
q2Y
qU2

i

ðU0Þ

( )
þ � � � . (10)

Here U0i
¼ hUii ¼ 0, ði ¼ 1; . . . ;mÞ. From Eqs. (9) and (10), it can be seen that transformation of the problem

to the U-space leads to the following advantages:
1.
 All moment terms hU
p
i i, in Eq. (10), are identically equal to zero, when p is an odd integer.
2.
 Since hU
p
i U

q
j i ¼ 0 for iaj, where Ui and Uj are components of U and p, q are integers, one need not

compute the cross-derivative terms such as qpYðUÞ=Plþp
i¼l qUi in Eq. (10).
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3.
 If the gradients of YðUÞ, with respect to Ui, are proposed to be evaluated numerically, Eq. (10) offers a few
advantages; see Section 4.2.
4.
 Computation of higher-order expectations, hU
2p
i i, ðp ¼ 1; 2; . . .Þ, is easily achieved as Ui are standard

normal random variables and it is well known that hU
2p
i i ¼ ð1Þð3Þ � � � ð2p� 1Þs2p, where s ¼ 1 is the

standard deviation of Ui.

5.
 Also, since hUk

i i=k!! 0 as k!1, it ensures that the Taylors expansion is a convergent series if YðUÞ has
continuous, finite derivatives up to the ðk þ 1Þth order in the interval under consideration.

In this context, it must be mentioned that the criterion for expanding CðXÞ as a Taylor series of k terms
is that CðXÞ should have continuous finite derivatives up to the ðk þ 1Þth order in the interval under
consideration [44].

4. Computing unconditional failure probability

In this section, we discuss techniques for computing Pf . Estimates of Pf , obtained from Eqs. (9) or (10), are
subject to
(a)
 truncation errors, as finite number of terms are considered in the Taylor series expansion, and

(b)
 errors in computing the gradients appearing in Eqs. (9)–(10).
Thee accuracy of estimates of Pf can be improved by reducing these errors. With this in view, we discuss the
following three methods for computing Pf .

4.1. Analytical approach

Errors in gradient calculations can be eliminated if closed-form expressions are obtained analytically for the
gradients. For univariate/multivariate extreme value distributions, CðXÞ is a function of the PSD matrix of Z.
When Z is Gaussian, it can be shown that by applying the chain rule of differentiation, the computation of
gradients of CðXÞ, reduces to computing the gradients of the PSD matrix with respect to X. Expressing in the
frequency domain, the vector of response quantities of interest, we get from Eqs. (3)–(4),

DðoÞZðoÞ ¼ FðoÞ. (11)

Here, DðoÞ ¼ DðoÞHðoÞ, DðoÞ ¼ ½�o2Mþ ioCþ K� and HðoÞ ¼ ½�o2Pþ ioQþ R��1 are functions of X.
ZðoÞ and FðoÞ are, respectively, the Fourier transforms of Z0ðtÞ and F0ðtÞ, where Z0ðtÞ ¼ ZðtÞ, F0ðtÞ ¼ FðtÞ for
0otoT0 and Z0ðtÞ ¼ 0, F0ðtÞ ¼ 0 for t4T0; where T0!1. Consequently, the PSDs of excitation and
response are related through the equation

SFFðoÞ ¼ DðoÞSZZðoÞD�ðoÞ, (12)

where the superscript, �, denotes complex conjugation. It must be noted that, for support motion problems,
SFFðoÞ ¼MCSggðoÞCtM and hence, is a function of X. Here, SggðoÞ denotes the PSD of the ground
acceleration and C is the vector of influence factors. Differentiating both sides of Eq. (12) with respect to the
components of X, and taking qSZZ=qX i on the left-hand side, it can be shown that

S0ZZ ¼ H½M0CSggC
tM� þMCSggC

tM�
0
�D0SZZD

� �DSZZD
0��H�. (13)

Here H ¼ Dðo;XÞ�1 and the operator ð0Þ denotes partial derivative with respect to X i. Assuming damping to
be viscous and proportional, we express C ¼ aMþ bK, where a and b are, respectively, the mass and stiffness
proportionality constants. Thus, from Eq. (13), it is observed that the first-order gradients of SZZ, with respect
to X i, are expressible in terms of the first-order gradients of the mass and stiffness matrices, with respect to X i.
Similarly, by differentiating Eq. (12) with respect to X i and X j , analytical expressions for the second-order
gradients of SZZ are obtained in terms of qM=qX, qK=qX, q2M=fqX iqX jg and q2K=fqX i qX jg. Expressions for
these quantities are obtained by analytical differentiation of the matrices M and K, which are taken to be
known explicitly. Following the chain rule of differentiation, expressions for higher-order gradients are
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similarly determined. It must be noted that it is simpler to obtain analytical expressions for gradients of the
conditional multivariate extreme value distributions, in the X-space than in U-space, and hence, Eq. (9) is used
in computing estimates of the unconditional extreme value distribution. Analytical expressions for the
gradients when structure nonlinear behavior is considered and/or when the transformation function Q½�� is
nonlinear (in either case this implies that Z is non-Gaussian) are, ingeneral, difficult to determine.

4.2. Numerical approach

Deriving analytical expressions for gradients of conditional multivariate extreme value distributions,
involve tedious algebra and can be a cumbersome process, especially for large structures and when the
dimension of X is high. This difficulty can be circumvented, if numerical schemes are adopted for computing
gradients. The problem of numerical evaluation of gradients have been widely studied, for example, in
problems of computational fluid mechanics [45–47] and in problems of response surface-based structural
reliability analyses [48–51]. We employ some of these techniques, in our studies, and explore their relative
performance. In implementing these methods, it is found advantageous to work in the standard normal space
and use the expression for Pf as given by Eq. (10), rather than Eq. (9). In the following sections, we discuss
two techniques and these are applied later in the numerical examples, for computing gradients.

4.2.1. Central difference scheme

Most techniques, applied for gradient computations, are based on finite-difference approximations. Finite-
difference equations for evaluating gradients of any order, up to a desired order of approximation, can be
generated by evaluating the function to be differentiated, at sufficient number of points [46]. The order of
approximation indicates how fast the error reduces as the grid is refined and does not indicate the absolute
magnitude of error. Of the several finite-difference schemes available, the central difference scheme is preferred
as, with a specified number of function evaluations, the order of approximation achieved is highest. Using the
central difference scheme, the formulae for the first four derivatives of a function, zðUÞ, with a fourth-order
approximation, can be shown to be given by [46]

zI ¼ ðzi�2 � 8zi�1 þ 8ziþ1 � zi�2Þ=12hþOðh4
Þ,

zII ¼ ð�zi�2 þ 16zi�1 � 30zi þ 16ziþ1 � zi�2Þ=12h2
þOðh4

Þ,

zIII ¼ ðzi�3 � 8zi�2 þ 13zi�1 � 13ziþ1 þ 8zi�2 � zi�3Þ=8h3
þOðh4

Þ,

zIV ¼ ðzi�3 þ 12zi�2 � 39zi�1 þ 56zi � 39ziþ1 þ 12ziþ2 � ziþ3Þ=6h4
þOðh4

Þ. (14)

Here the superscripts, in roman numerals, indicate the order of the gradient of z with respect to U, h represents
the distance between successive grid points and ziþp, p ¼ �3; . . . ;þ3, represents the numerical values of z,
evaluated at U þ ph. Thus, the use of Eqs. (14) for gradient computations, involves, the evaluation of zðUÞ at
six other points, apart from the origin. In our studies, U is an m-dimensional vector and using Eq. (10) for
estimating the unconditional failure probability requires that Taylor series expansion be carried out along
each of the m-components of U. If terms only up to the fourth order are included in the Taylor series
expansions, and, if Eqs. (14) are used to compute the gradients, 6mþ 1 evaluations of YðUÞ are required.
It must be noted that in the limit h! 0, Eqs. (14) lead to exact estimates for the gradients. However, in
numerical calculations, too small values of h cause numerical instabilities, leading to erroneous estimates for
the gradients. Thus, a judicious choice of h needs to be made for obtaining accurate estimates for the
gradients. A procedure for choosing h has been discussed later in this paper.

4.2.2. Polynomial fitting

An alternative procedure of computing gradients, and which has been used in response surface-based
reliability analyses [48–51], is to fit a polynomial for the function whose gradients we seek and subsequently,
differentiate the polynomial at the desired location. It has been suggested [47] that the degree of the
polynomial that is to be fitted, should be at least two orders more than the highest order derivative one wishes
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to evaluate. In general, the order of truncation error of the approximation is the degree of the polynomial
minus one, when the spacings of the grid are non-uniform and is equal to the degree of the polynomial,
otherwise. A kth order polynomial can be fitted by evaluating the function at k locations, defined by the grid.

In our studies, we rewrite Eq. (10), as

hYðUÞi ¼ YðU0Þ þ 1=2!
Xn

i¼0

s2Ui
wII

i þ 3=4!
Xn

i¼0

s4Ui
wIV

i þ � � � þ 2k þ 1th term. (15)

Here, wi ¼
P2k

j¼0 aij U
j
i is the projection of hYðUÞi on the ith axis, and the superscripts denote the derivative of

wi with respect to Ui. The unknown coefficients aij , ði ¼ 0; . . . ; nÞ, ðj ¼ 1; . . . ; 2kÞ are obtained from the relation
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where, Yij are evaluated by running the structural analysis code when Uij is the jth grid point for the ith
component of U, with all other components being situated at the mean. In the standard normal space, the
mean U0 ¼ 0, represents its origin. Once the coefficients are determined, the gradients of xi at U0 are estimated
by differentiating the polynomial

P2k
j¼0 aij U

j
i appropriate number of times at U0. It must be noted that if the

Taylor series expansions are truncated after the fourth-order terms, the degree of polynomial that needs to be
fitted is at least 6. This would require a grid containing seven points along each of the independent axis Ui,
ði ¼ 1; . . . ;mÞ. Since the central point is the origin, the total number of function evaluations required, for a
fourth-order accuracy, is 6mþ 1.
5. Numerical examples and discussions

The accuracy of the procedures described in the previous section are first examined through two numerical
examples where the vector processes are Gaussian and one example where the response vector is non-
Gaussian. In the first example, we consider a linear, randomly parametered, 11-storey building, under seismic
excitations. The structure is assumed to fail if the top storey displacement exceeds a specified threshold, in a
given interval of time. In the second example, we study a linear, randomly parametered, two-span bridge,
subjected to differential seismic support motions. Here, the bridge is assumed to fail if the midpoint
displacements, in either of the two spans, exceed specified threshold levels. Thus, this is a problem in series
system reliability. In both these examples, function Q½�� (see Eq. (4)) relating the excitations and the response
quantities of interest, Z, is linear. The third example illustrates the applicability of the proposed framework
when Q½�� is nonlinear. Here, we consider the stresses at a particular location in a linear structure under
stationary, Gaussian excitations. Consequently, the stress components turn out to be stationary, Gaussian
processes. The performance function is defined in terms of the Von Mises stress and the major principal stress,
which are obtained as nonlinear functions of the stress components. A structural failure is defined to occur if
the Von Mises stress or the major principal stress, exceeds specified threshold levels. Thus, this is a problem in
series system reliability, where the response vector constitutes non-Gaussian random processes. In all these
three examples, the failure probability estimates, obtained by the proposed method, are compared with those
obtained from Monte Carlo simulations. In this study, we validate the applicability of the proposed method
for estimating the unconditional failure probabilities and hence, Monte Carlo simulations are carried out on
the conditional extreme value distributions. Only the random variables representing structure randomness, are
digitally generated and conditional multivariate extreme value distributions are computed from extreme value
theory. The ensemble mean is then determined to compute estimates for the unconditional failure probability.
The approximations for the extreme value distributions have been examined earlier with respect to full-scale
Monte Carlo simulations and have not been repeated here. Finally, we illustrate the applicability of the
proposed method in estimating the seismic fragility of a piping network in a nuclear power plant.
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5.1. Eleven-storey building under seismic excitation

In this example, we study the reliability of a 11-storey building under seismic excitations. Modelled
as a shear building, the 11-storey building is assumed to have floor masses mi and storey stiffnesses ki,
ði ¼ 1; . . . ; 11Þ. It has been assumed that all the floors are identical with the mean values of mi and ki

being respectively, 8:5790� 104 kg and 2:1� 108 N=m. A free vibration analysis of the 11-storey building,
with the structure properties being assumed to be deterministic at their mean values, reveals that the
first two natural frequencies of the structure are, respectively, 6:69 and 19:95 rad=s and the highest natural
frequency is 97:12 rad=s. The structure damping is assumed to be viscous and proportional. The mass and
stiffness proportionality constants, a and b, are assumed to have mean values 0:1428 s�1 and 0.0027 s,
respectively. This corresponds to modal damping ratio of 1:97% in the first mode and 13:18% in the last
mode, for the structure with mean properties. The structure parameters m1; . . . ;m11; k1; . . . ; k11; a and b are
considered to be lognormally distributed random variables. For the sake of simplicity, it has been assumed
that these random variables are mutually independent. Thus, X constitutes a vector of 24 random variables.
The seismic acceleration is assumed to be a stationary, Gaussian random process, with a PSD function,
defined as

SaaðoÞ ¼ S0o2
gðo

2
g þ 4Z2go

2Þ=fðo2
g � o2Þ

2
þ ð2ZgoogÞ

2
g. (17)

Here, og ¼ 12:82 rad=s, Zg ¼ 0:3, o is frequency and S0 is a parameter that denotes the intensity of the
excitations. The safety of the structure is defined in terms of the maximum displacement for the topmost
storey, Dm, observed for a period of T ¼ 10 s in the steady state. The structure is assumed to have failed if Dm

exceeds the allowable top storey displacement, taken to be 0.125m. Since linear structure behavior is assumed,
the top storey displacement, conditioned on X, in the steady state is a stationary, Gaussian random process.
Estimates of the probability distribution of Dm, conditioned on X, are obtained from extreme value theory of
scalar Gaussian processes. Subsequently, the methods proposed in Section 4 are applied to obtain estimates
for the unconditional failure probabilities.

As has been discussed earlier, estimates of Pf obtained by the proposed methods, are subject to errors
due to series truncation and gradient computations. Guidelines to reduce these errors need to be evolved
for accurate reliability estimates. With this in view, we first carry out a parametric study on the
various computational aspects of the proposed method. For the sake of simplicity, we first assume
that all 24 structure random variables exhibit identical coefficient of variation (cov). It is expected
that if X exhibits large variations, we need to consider higher number of terms in the Taylor series expansions,
in order to reduce errors due to truncation. This, in turn, would mean that higher-order gradients
need to be computed. The numerical errors associated with computing gradients, however, are greater for
higher-order gradients and can potentially, outweigh the advantage of including higher-order terms in
the Taylor series. In order to study these aspects, we consider, three-, five- and seven-term Taylor series
expansions. The gradients are computed by the three methods discussed earlier, namely, (a) analytically,
(b) central difference scheme and (c) polynomial fitting approach. Estimates of Pf are obtained for
various levels of coefficient of variation of X. These predictions are compared with those obtained from
limited Monte Carlo simulations carried out on 1000 samples and are illustrated in Fig. 1. Fig. 2 illustrates the
absolute error of the estimates, expressed as a percentage of the Monte Carlo simulation predictions.
It is seen from this figure, that the error in estimates of Pf , when the gradients are computed analytically,
increases monotonically as coefficient of variation of X increase. This can be attributed to the fact
that analytical computation of gradients are exact and the error has contributions only from trunca-
tion errors, which increases as coefficient of variation of X increases, when a fixed number of terms are
considered in the Taylor series. On the other hand, when gradients are evaluated numerically, the
error term has additional contributions from gradient computation errors, which, in turn, depend on
the grid spacings. Too coarse or too fine grid spacings lead to unacceptable gradients. Table 1 illustrates
how Pf estimates vary as the grid is made finer. It is obvious that a primary problem in the numerical
approaches is to determine an acceptable grid. In this study, we adopt the following strategy to address
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Fig. 1. Estimates of failure probability using proposed methods; example 1; note that, here, Pf jX¼X0
¼ 0:1544.
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Fig. 2. Percentage error in prediction of Pf by the proposed methods, considering second-, fourth- and sixth-order gradients; example 1.
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this problem:
(1)
 In the X-space, select the random variables which exhibit the highest coefficient of variation among the
components of X. Transform only these random variables into the standard normal space. Assume the
remaining structure properties to be deterministic at their mean levels.
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Table 1

Variation of estimates of Pf with grid spacing

Grid spacing h Pf

N2 N4 R2 R4 R6

0.5 0.2285 0.0106 0.2337 0.0157 0.3257

0.6 0.2144 0.0919 0.2187 0.0962 0.2211

0.7 0.2038 0.1349 0.2071 0.1382 0.1897

0.8 0.1956 0.1570 0.1979 0.1594 0.1811

0.9 0.1893 0.1671 0.1910 0.1688 0.1785

1.0 0.1846 0.1711 0.1859 0.1724 0.1771

1.1 0.1813 0.1726 0.1823 0.1736 0.1761

1.2 0.1789 0.1732 0.1797 0.1740 0.1754

1.3 0.1774 0.1735 0.1781 0.1741 0.1749

1.4 0.1766 0.1735 0.1772 0.1741 0.1746

1.5 0.1761 0.1735 0.1767 0.1741 0.1745

N2, second-order Taylor’s expansion, gradients computed using central difference scheme; N4, fourth-order Taylor’s expansion, gradients

computed using central difference scheme; R2, second-order Taylor’s expansion, gradients computed by fitting sixth-order polynomial; R4,

fourth-order Taylor’s expansion, gradients computed by fitting sixth-order polynomial; R6, sixth-order Taylor’s expansion, gradients

computed by fitting sixth-order polynomial; example 1; note that coefficient of variation of X ¼ 0:15, Monte Carlo simulations on 1000

samples yield Pf ¼ 0:1773.

Table 2

Variation of converged grid spacing, for the proposed methods, with coefficient of variation of X

Coefficient of variation h

N2 N4 R2 R4 R6

0.05 0.6 0.7 0.6 0.8 0.8

0.10 1.3 1.1 1.3 1.1 0.9

0.15 1.3 1.1 1.3 1.1 1.0

0.20 1.5 1.2 1.5 1.2 1.0

0.25 1.5 1.2 1.6 1.2 1.0

N2, second-order Taylor’s expansion, gradients computed using central difference scheme; N4, fourth-order Taylor’s expansion, gradients

computed using central difference scheme; R2, second-order Taylor’s expansion, gradients computed by fitting sixth-order polynomial; R4,

fourth-order Taylor’s expansion, gradients computed by fitting sixth-order polynomial; R6, sixth-order Taylor’s expansion, gradients

computed by fitting sixth-order polynomial; example 1.
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(2)
 Choose aninitial grid spacing h and compute Pf i
. The gradients may be computed using any of the

numerical approaches discussed in this paper.

(3)
 Consider a new grid spacing hþ d, where d is a small number. Compute Pf iþ1

corresponding to the new
grid.
(4)
 If the difference between Pf i
and Pf iþ1

exceed a prescribed tolerance �, repeat steps (3–4) till convergence is
achieved.
(5)
 For the converged grid, apply the proposed method by considering the effect of all the structure random
variables, and estimate Pf .
It must be noted that estimates of Pf , listed in Table 1, have been computed when all 24 random variables exhibit
identical coefficient of variation of 0:15 and hence, dimensional reduction was not possible in the pilot runs. In
determining the grid size h, the tolerance �, was taken to be 0:1Pf i

. Table 2 lists the values of h when this criterion
was satisfied, for various levels of coefficient of variation of X and when different methods were used in
numerical computation of gradients. It is observed from this table, that the grid spacings depend as much on the
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coefficient of variation of the random variables as on the method of computing the gradients. The criterion of
choosing h does not take into account the rates of convergence and the direction of approach to the correct
estimate and this accounts for the non-monotonous nature of the error plots, in Fig. 2, for the different
numerical approaches. However, in general, it is observed that the accuracy of Pf estimates decrease as
coefficient of variation increases. Based on the studies carried out, so far, the following remarks can be made:
(1)
 For higher coefficient of variation of X, inclusion of higher-order terms in the Taylor series, so as to reduce
truncation errors, do not necessarily lead to more accurate results. In most situations, reasonably accurate
estimates are obtained when only second-order terms are considered in Taylor series expansions. This,
however, implies that the coefficient of variation of X be within 25%.
(2)
 Though analytical computation of gradients are exact, in most applications, it is difficult to obtain
analytical expressions for the gradients, thereby, limiting the scope of this approach.
(3)
 For grids involving the same number of points, estimates of Pf obtained when gradients are computed
using the central difference scheme are of the same order of accuracy, as when polynomial fitting approach
is used in computing derivatives.
(4)
 The coefficients for the polynomial to be fitted, are obtained by inverting a matrix in Eq. (16). The
accuracy with which a matrix is inverted depends on its condition number. The inverse of the condition
number has values ranging from 0:0 to 1:0, with a value closer to 1:0 representing a well-conditioned
matrix, whose computed inverse can be assumed to have less numerical inaccuracies. Since the numerical
differentiations are carried out in the U-space, the mean vector U0 denotes the origin in the U-space.
This implies that the first row of the matrix in the right-hand side of Eq. (16) has zeros except for the first
column. Moreover, due to the unique nature of the form of the matrix, and the location of the sampling
points being defined symmetrically about the origin, the inverse of the condition number of the matrix, is
maximum, when the grid spacing is equal to unity. From the pilot runs carried out in this study, to
determine the grid spacings, we observe that indeed, the grid spacings are in the neighborhood of unity.
In this context, it is worth mentioning that in structural reliability based response surface literature,
similar problems are faced in fitting polynomials around the design point. In most studies existing in the
literature, the authors propose that considering the grid spacing to be between 1 and 3, lead to fairly accurate
estimates [48–51].

5.2. Two span bridge under seismic excitations

In this example, we consider the reliability analysis of a randomly parametered two span bridge under
seismic excitations. The two span bridge is idealized as a two span Euler–Bernoulli beam, with m being the
mass per unit length and EI the flexural rigidity of the beam. The spans are assumed to be of length 55 and
45m, respectively. Using the finite-element method, the structure is discretized into 40, 2-noded beam
elements, with one translational and one rotational degrees of freedom per node. A free vibration analysis,
when the structure properties are assumed to be deterministic at their mean values, revealed that the first five
natural frequencies are 3:79, 6:70, 14:68, 22:37 and 32.49Hz, respectively. The bridge, having three supports
situated at large distances from each other, is assumed to be subjected to spatially varying earthquake
accelerations with zero mean. Only the transverse components of the earthquake accelerations at the three
supports are considered in the analysis and are specified through a 6� 6 PSD matrix. The auto-PSD functions
for the accelerations at the ith support, Sii, is assumed to be of the form given in Eq. (17). Here, og and Zg are
assumed to be parameters that vary for each support depending on the local soil conditions. The seismic
accelerations at the supports are assumed to have the same measure of intensity S0. The information on the
parameters ogi

, Zgi
and S0i

, ði ¼ 1; 2; 3Þ, are, however, assumed to be uncertain and are treated as random
variables. The coherency function of the ground accelerations between any two supports j; l, jal, ðj; l ¼ 1; 2; 3Þ
is of the form

gjlðoÞ ¼ jgjlðoÞj exp½iFjlðoÞ�. (18)
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Models for jgjlðoÞj and FjlðoÞ are taken from the literature [52] and are given, respectively, by

jgjlðoÞj ¼ tanhfCða1 þ a2DjlÞ½expfCðb1 þ b2DjlÞf g þ 1=3f c
� þ 0:35g,

FjlðoÞ ¼ �i logfhjlðoÞ exp½ifjlðoÞ� þ ½1� hjlðoÞ� exp½iyðoÞ�g, (19)

where, fjlðoÞ ¼ oDjl=V ; hjlðoÞ ¼ f1þ ðf =19Þ
4
g�1, a1 ¼ 2:535, a2 ¼ �0:0118; b1 ¼ �0:115; b2 ¼ �8:37� 10�4,

c ¼ �0:878;V ¼ 500m=s, f is the frequency in Hz and Djl is the distance between supports j and l.
The structure is analyzed separately for the dynamic and pseudo-static components of the midpoint

displacements at the two spans. The safety of the bridge structure is assumed to be defined through the
dynamic components of the midspan displacements D1ðtÞ and D2ðtÞ, respectively. For the dynamic analysis,
damping is assumed to be viscous and proportional. The mass and stiffness proportionality constants, a and b,
are adjusted such that, for the structure with mean properties, the damping in the first two modes, Z1 and Z2, is
5% and are respectively taken to have values 0:4939S�1 and 2:9960� 10�5 s. Since the excitations at the
supports are stationary, Gaussian random processes and linear behavior is assumed, D1ðtÞ and D2ðtÞ, for large
t, are also stationary, Gaussian random processes whose auto-PSD functions ½SD1D1

ðoÞ and SD2D2
ðoÞ� and

cross-PSD function ½SD1D2
ðoÞ� are obtained as linear combinations of SiiðoÞ, ði ¼ 1; 2; 3Þ. The coherence

spectrum for D1 and D2 is expressed as jgðoÞj ¼ jSD1D2
ðoÞj=½SD1D1

ðoÞSD2D2
ðoÞ�0:5.

The randomness in the system is expressed through a vector of 15 mutually uncorrelated lognormally
distributed random variables, the details of which are listed in Table 3. The theory of multivariate
extreme value distributions is used to obtain estimates of failure probability, conditioned on the system
random variables, CðXÞ, for a time period of observation T ¼ 15 s. Estimates of unconditional failure
probabilities are computed by considering three- and five-term Taylor series expansions for YðUÞ. The
derivatives of YðUÞ, with respect to U, are computed numerically, using the polynomial fit approach discussed
earlier. These estimates are compared with those obtained from Monte Carlo simulations on the multivariate
extreme value distributions, with an ensemble of 250 samples. As has been pointed out already, the Monte
Carlo simulations are implemented on evaluation of hCðXÞi, assuming the expression for Pf jX to be valid. The
acceptability of models for Pf jX, via Monte Carlo simulations, has been examined in another of our recent
paper [28] and these details are not repeated here. In the earlier paper, the effect of structure randomness in
reliability calculations had been ignored. In this example, we have considered the same parameters to facilitate
a comparison on the reliability estimates due to the effect of considering uncertainties in the system
parameters. A comparison of the failure probability estimates obtained as a function of the threshold
displacements, have been tabulated in Table 4. It is observed that the estimates obtained by the proposed
method are in good agreement with those obtained from Monte Carlo simulations. The estimates
Table 3

Distributional details of the system property random variables in example 2

Property Probability distribution Mean Coefficient of variation

EI Lognormal 2:025� 109 Nm2 0.05

m Lognormal 50 kg/m 0.03

Z1 Lognormal 0.05 0.10

Z2 Lognormal 0.05 0.10

og1 Lognormal 10:81 rad=s 0.05

og2 Lognormal 9:99 rad=s 0.05

og3 Lognormal 9:55 rad=s 0.05

Zg1
Lognormal 0.60 0.10

Zg2
Lognormal 0.55 0.10

Zg3
Lognormal 0.50 0.10

S01 Lognormal 0:014m2=s2=rad 0.10

S02 Lognormal 0:014m2=s2=rad 0.10

S03 Lognormal 0:014m2=s2=rad 0.10
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Table 4

Estimates of failure probability for various threshold levels a1 and a2 for example 2

Threshold (mm) Method a1 ¼ 8:4 a1 ¼ 11:2 a1 ¼ 14:0 a1 ¼ 16:8

a2 ¼ 4:8 D 0:7566 0:4440 0:4318 0:4317
N 0.7011 0.5004 0.4851 0.4848

R 0.6953 0.4988 0.4844 0.4842

M 0.6992 0.4938 0.4807 0.4845

a2 ¼ 6:4 D 0.5074 0.0345 0.0164 0.0162

N 0.5566 0.0962 0.0564 0.0557

R 0.5540 0.0956 0.0559 0.0552

M 0.5551 0.0979 0.0590 0.0561

a2 ¼ 8:0 D 0.4974 0.0187 0.0004 0.0002

N 0.5435 0.0504 0.0029 0.0018

R 0.5418 0.0501 0.0030 0.0019

M 0.5454 0.0510 0.0032 0.0025

a2 ¼ 9:6 D 0.4973 0.0185 0:0002 1:2850� 10�6

N 0.5433 0.0492 0.0012 1:8107� 10�5

R 0.5416 0.0489 0.0012 2:6860� 10�5

M 0.5445 0.0423 0.0015 1:8870� 10�5

D, deterministic system; N, fourth-order Taylor’s expansion, derivatives computed using central difference scheme; R, fourth-order

Taylor’s expansion, derivatives computed by fitting a sixth-order polynomial; M, Monte Carlo simulations.
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corresponding to the five-term expansion are observed to be in better agreement, though marginally, with
those obtained from Monte Carlo simulations.
5.3. Non-Gaussian response quantities in a linear structure under Gaussian excitations

In this example, we examine the applicability of the proposed method when Q½�� in Eq. (4) is nonlinear. We
consider a linear structure under zero-mean, stationary, Gaussian excitations. The structure is modelled as a
plane-stress problem. Consequently, at a particular location of the structure, the stress components, fY jðtÞg

3
j¼1,

which when conditioned on system randomness, constitute a vector of mutually correlated, stationary
Gaussian processes. Here, Y 1ðtÞ and Y 2ðtÞ denote the normal stress components and Y 3ðtÞ is the shear stress
component. The auto- and cross-PSD of fY jðtÞg

3
j¼1 can be determined from a random vibration analysis of the

linear structure. However, for the sake of illustration of the proposed method, in this example we omit details
regarding the random vibration analysis of the structure. Instead, we assume that the auto- and cross-PSDs of
fY jðtÞg

3
j¼1 are respectively, of the form

SjjðoÞ ¼
s2jffiffiffiffiffiffiffipaj
p exp �

o2

4aj

� �
; j ¼ 1; 2; 3, (20)

and

SjkðoÞ ¼ cjkðoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SjjðoÞSkkðoÞ

p
exp½�igjkðoÞ�; jak. (21)

Here, sj, ðj ¼ 1; 2; 3Þ denote the measure of the intensity of the random processes Y jðtÞ, ðj ¼ 1; 2; 3Þ, gjkðoÞ ¼
o=cjk are the phase spectra with cjk being constants and cjk are the coherence spectra between processes Y jðtÞ

and Y kðtÞ. cjkðoÞ is assumed to be constant for all o. A failure is defined to occur if the square of the Von
Mises stress VðtÞ or the major principal stress UðtÞ exceeds their respective threshold levels, a1 and a2, in a
specified time duration T. Here,

VðtÞ ¼ Y 2
1ðtÞ þ Y 2

2ðtÞ þ 3Y 2
3ðtÞ � Y 1ðtÞY 2ðtÞ, (22)
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Table 5

Distributional details of the system property random variables in example 3

Property Probability distribution Mean Coefficient of variation

s1 Lognormal 3
ffiffiffi
2
p

0:10

s2 Lognormal 6
ffiffiffi
2
p

0:10

s3 Lognormal 3
ffiffiffi
2
p

0:10

c12 Lognormal 0.50 0:05
c13 Lognormal 0.15 0:05
c23 Lognormal 0.30 0:05
c12 Lognormal 4 0:10
c13 Lognormal 8 0:10
c23 Lognormal 6 0:10
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UðtÞ ¼
1

2
Y 1ðtÞ þ Y 2ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

1ðtÞ þ Y 2
2ðtÞ � 2Y 1ðtÞY 2ðtÞ þ 4Y 2

3ðtÞ

q� �
. (23)

VðtÞ and UðtÞ are obtained as nonlinear transformations of fY jðtÞg
3
j¼1 and are, thus, non-Gaussian processes.

The failure probability is given by

Pf ¼ 1� P½fVmha1g \ fUmha2g�, (24)

where Vm ¼ max0ptpT VðtÞ, Um ¼ max0ptpT UðtÞ and T ¼ 10 s. The system randomness is assumed to be
reflected through the parameters in Eqs. (20), (21). We consider X to constitute a nine-dimensional vector of
mutually uncorrelated, lognormal distributed random variables, the details of which are illustrated in Table 5.

In evaluating Pf from Eq. (24), we first approximate the joint extreme value distribution for VðtÞ and UðtÞ,
conditioned on X, using the recently developed theory of multivariate extreme value distributions for
nonlinear transformations of vector Gaussian processes [30]. Briefly stated, this theory is built on the
assumption that for high thresholds, the level crossings of non-Gaussian processes can be modelled as Poisson
point processes. The expressions relating the extreme value distributions for vector processes to their joint
mean out-crossing rate have been discussed earlier [28]. This implies that one needs to develop approximations
for hN1i, hN2i and hN1N2i, where N1 and N2 are the number of level crossings by U and V, across their
respective threshold levels, a1 and a2, in time ½0;T �. It is well known from Rice’s formula [4] that the mean rate
of level crossings are related to the joint pdf of the process and their instantaneous time derivative, which for
scalar and vector processes, are given respectively by,

hNii ¼

Z T

0

Z 1
0

_upZi
_Zi
ðai; _u; tÞd _udt; i ¼ 1; 2, (25)

and

hN1N2i ¼

Z T

0

Z T

0

Z 1
0

Z 1
0

_u_vpZ1
_Z1Z2

_Z2
ða1; a2; _u; _v; t1; t2Þd _ud_v

� �
dt1 dt2. (26)

In this example, Z1 and Z2 respectively represent U and V, at time t. The crux of the problem lies in
developing approximations for pZi

_Zi
ð�Þ and pZ1Z2

_Z1
_Z2
ð�Þ, which are in general, not known when Q½�� (see

Eq. (4)) is nonlinear. With reference to this example, it can be shown that

pZi
_Zi
ðai; _zÞ ¼

Z 1
�1

Z 1
�1

pY2Y3Zi
_Zi
ðy2; y3; ai; _zÞdy2 dy3

¼
Xk

j¼1

Z
Oj

� � �

Z
J�1j p _Zi jY1Y2Y3

ð_zjy1; y2; y3ÞpY1Y2Y3
ðy
ðjÞ
1 ; y2; y3Þdy2 dy3

( )
, ð27Þ

where, Jj ¼ jqQ=qY 1jj, pY2Y3Zi
_Zi
ðy2; y3; ai; _zÞ ¼

Pk
j¼1jqQ=qY 1j

�1
j pY1Y2Y3

_Zi
ðy
ðjÞ
1 ; y2; y3; _ziÞ and Oj denotes the

domain of integration determined by the permissible set of values y2; y3, for each solution of y
ðjÞ
1 corresponding
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to the nonlinear equation Zi ¼ Q½Y 1;Y 2;Y 3�, for Zi ¼ ai. Since YðtÞ is Gaussian, pY1Y2Y3
ð�Þ is a Gaussian

density function. It can be shown that _ZjYðtÞ is expressible as a linear sum of _YðtÞ. This implies that, for a given
t, p _Zi jY1Y2Y3

ð�Þ is Gaussian whose parameters can be easily determined. Numerical techniques for
approximating pZi

_Zi
ð�Þ from Eq. (27) have been discussed in Ref. [30]. Following similar principles of

transformation for the vector case, it can be shown that for a bivariate vector Z ¼ ½Z1;Z2�, we get

pZ1Z2
_Z1
_Z2
ða1; a2; _z1; _z2Þ ¼

Z 1
�1

pY3Z1Z2
_Z1
_Z2
ðy3; a1; a2; _z1; _z2Þdy3

¼
Xk

j¼1

Z
Oj

J�1j p _Z1
_Z2jY1Y2Y3

ð_z1; _z2jy1; y2; y3ÞpY1Y2Y3
ðy
ðjÞ
1 ; y

ðjÞ
2 ; y3Þdy3

( )
. ð28Þ

It is to be noted that J in Eq. (28) is a Jacobian matrix. Implicit in these transformations is the assumption that
pZ1Z2jY3

ð�Þ ? p _Z1
_Z2jY3
ð�Þ. The accuracy of the approximations for the extreme value distributions determined

from Eqs. (27)–(28), when system randomness is ignored, have been examined in Ref. [30] and is not repeated
here.

Estimates of the unconditional failure probabilities are computed by considering three-term Taylor series
expansions for YðUÞ. As in the previous example, the derivatives of YðUÞ, with respect to U, are computed
numerically, using the central difference scheme. These estimates are compared with those obtained from
Monte Carlo simulations, with an ensemble of 500 samples. A comparison of the failure probability estimates
have been tabulated in Table 6 and a fairly good agreement is observed with those from Monte Carlo
simulations.

It is to be noted that in this example, the stress components are Gaussian and the nonlinear transformation
Q½��, relating VðtÞ and UðtÞ with these components, is available explicitly. This has been possible since
structure is assumed to be linear. On the other hand, if structure nonlinear behavior is considered, Q½��, in
general, is not available in explicit form. In such situations, a response surface-based strategy may be used to
develop approximations for the nonlinear transformation Q½�� relating the response quantities of interest with
the Gaussian excitation components. This strategy, however, has not been explored in the present study.

5.4. Seismic fragility analysis of a pipeline in a nuclear power plant

The proposed method is now implemented to construct the fragility curves for a piping structure, in a
seismically loaded nuclear plant. The earthquake ground accelerations, specified at the reactor base level, are
Table 6

Estimates of failure probability for various threshold levels a1 and a2, for example 3

Threshold (N=mm2) Method a1 ¼ 755 a1 ¼ 1289 a1 ¼ 1644 a1 ¼ 2000

a2 ¼ 20:56 D 0:9997 0:8757 0:8330 0:8285
N 0:9332 0:6878 0:6779 0:6716
M 0:9304 0:6844 0:6822 0:6812

a2 ¼ 28:89 D 0:9052 0:1394 0:0393 0:0297
N 0:8960 0:1703 0:0528 0:0481
M 0:8922 0:1776 0:0592 0:0532

a2 ¼ 34:44 D 0:8963 0:1127 0:0125 0:0028
N 0:8916 0:1681 0:0240 0:0066
M 0:8911 0:1602 0:0244 0:0076

a2 ¼ 40 D 0:8956 0:1106 0:0103 6:9230� 10�4

N 0:8894 0:1548 0:0223 0:0026
M 0:8903 0:1586 0:0218 0:0030

D, deterministic system; N, second-order Taylor’s expansion, derivatives computed using central difference scheme; M, Monte Carlo

simulations.
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modelled as a vector of stationary, Gaussian random processes and are characterized through the PSD matrix,
defined along the principal components of the seismic excitations. The principal axes system is taken to be
inclined at an angle of 21� on the horizontal plane to the coordinate system in which the reactor structure is
modelled.

In the analysis procedure adopted, the reactor building and the piping structure are, respectively, assumed
to be the primary and secondary systems. Finite element (FE) method is used to model these structures. The
reactor building of the nuclear power plant is represented as a stick model; see Fig. 3. The FE stick model
consists of 705 degrees of freedom (dof). An eigenvalue analysis on the stick model reveals that the first 65
modes lie within the spectrum range of the excitations, which, in turn, is taken to be in the range ½0; 36�Hz.
A random vibration analysis of the stick model leads to the PSD matrix for the absolute accelerations along
the six components, at the node where the piping structure is connected. To compute the absolute acceleration
response, the dof corresponding to the reactor base along which the ground accelerations act, are released and
large masses are added along these dofs. The large mass is taken to be 1� 106 times the total mass of the
reactor. This mass, in turn, is subjected to an equivalent force equal to the large mass multiplied by the applied
seismic ground accelerations. A response analysis that includes the effect of rigid body modes leads to the
determination of the absolute acceleration response. The FE model of the piping structure, shown in Fig. 4,
consists of 2958 degrees of freedom. An eigenvalue analysis of the piping structure reveals that the first 74
natural frequencies lie in the frequency range of [0–36]Hz. The components of the PSD matrix of the seismic
ground accelerations, aligned along the structure axes system, have been computed from on field data analysis.
Here, the vertical component (along Y -axis) turns out to be independent of the other two components.
A random vibration analysis is carried out to determine the auto- and cross-PSD functions for the absolute
ground accelerations at the piping floor level. It must be noted that at the piping floor level, all the three
displacement components are mutually correlated.

The failure modes for the piping structure have been defined with respect to the failure of its supporting
structures. These supports are assumed to fail on initiation of yielding due to the bending stresses at the root of
the supports exceeding permissible limits. The piping system under study has 21 such supports. In the FE
model used for response analysis, these supports are represented as a set of discrete linear springs. The PSD of
the transverse forces imparted on the supports by the pipes due to earthquake loading are computed using
random vibration analysis on the piping structure FE model. These PSDs are used as inputs in the random
vibration analysis on the supports. The supports have been modelled as cantilever beams. Since the pipes are
Fig. 3. FE stick model for the reactor building of the nuclear plant; the arrow indicated in the figure represents the location of the piping

structure and the node for which the PSD matrix of absolute accelerations for the floor response are calculated.
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Support B

Support C

Support A

Fig. 4. FE model for the piping structure of the nuclear plant; the arrows indicated in the figure represent the location of the supports A, B

and C.

F1

F2
F1

F2

(a) (b)

Fig. 5. Typical supports for the fire water pipeline: (a) Type 1, pure axial stress due to F 1 and bending stress due to F 2 and (b) Type 2,

axial stress due to F1, bending stresses due to F1 and F2.
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not restrained axially, no forces acting along the axis of the pipe are imparted on the supports. Thus, the
supports are subjected to two in-plane forces, F 1 and F2 at their free ends. Depending on the configuration of
the supports, they can be classified, primarily, under two types, see Fig. 5. In type 1 supports, the stress
developed at the root of the supports have contributions from the axial stress due to F1 and bending stress due
to F2. In supports of type 2, owing to the eccentricity of F1, there is an additional bending stress due to F1.
Here, F1ðtÞ and F 2ðtÞ are correlated, stationary, random processes. Since linear structure behavior is assumed,
the excitations turn out to be stationary, Gaussian random processes and the stress developed at the root of
the ith support (i ¼ 1; . . . ; 21), siðtÞ, is also a stationary, Gaussian random process, when conditioned on X

and H. Here, H is the vector of random variables representing the epistemic uncertainties. For the sake of
illustration, it is assumed that the influence of uncertainties in loads and structural properties, on structural
reliability, is much stronger than H. Denoting by VMi

¼ max0ptpT siðtÞ, the performance function is written
as gi½f

€Ug;X;Hg� ¼ Ci � V mi
and Pf i jX;H ¼ 1� P½gi½f

€Ug;X;Hgp0 8t 2 ð0;TÞ�. Here, T is taken to be 20 s. The
available limit stress Ci ¼ sYi

� sDi
� sTi

, where, sY i
, sDi

and sTi
are, respectively, the permissible yield
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stress, stress due to dead loads and stress due to thermal loads. Estimates of Pf i jX;H can be obtained from the
well-known relation

Pf i jX;H ¼ 1� exp
T

2p
s _V

sV

exp �0:5
Ci

2sv

� �2
( )" #

. (29)

The structure uncertainties in the reactor building and the piping structure are modelled through a vector of
mutually independent, lognormally distributed random variables X. The guidelines provided in the JCSS
document [1] are used, to the extent possible, to quantify the parameters of these random variables. It has been
assumed that the dynamic characteristics of the reactor building and the supporting soil are prone to random
fluctuations, which, in turn, affect the definition of the response of floors on which the secondary systems are
connected. The damping model used for the reactor structure is as per the provisions stated in Ref. [53]. The
stick model for the reactor is made up of six materials as listed in Table 7. The material damping constants
associated with the materials are treated as a set of random variables with properties as given in Table 7. The
properties considered random in the piping structure and their probabilistic properties are listed in Table 8.
The coefficient of variation of the capacity of each structure is assumed to be 0:05. The mean capacity for each
support varies and is taken to be the available limit stress, Ci, ði ¼ 1; . . . ; 21Þ. Thus, in this study, the structure
uncertainties is represented through a 10-dimensional vector X. For the purpose of illustration, H is assumed
to constitute a 11-dimensional vector of mutually independent, lognormal random variables with unit mean.
The corresponding coefficient of variations for Yi is listed in Table 9. Due to the multiplicative regeneracy
property of lognormal random variables, these epistemic uncertainties lead to a lognormal model forY0, given
byY0 ¼ fP

nq

s¼nsþ1
Ysg=fP

ns
s¼1Ysg, where fYsg, s ¼ 1; . . . ; ns are the randomvariables that represent the epistemic

uncertainties in specifying the load effects and fYsg, s ¼ ns þ 1; . . . ; nq are the random variables that represent
the uncertainties in specifying structural capacities. In this example, Y0 is found to have mean 1:0 and
coefficient of variation (cov) equal to 0:15. Some of the data on the cov of the epistemic uncertainty variables,
listed in Table 9, have been taken from the literature [1]. Due to the lack of available data, the cov of the
remaining random variables, listed in Table 9, have been assigned suitably.

As a first step, the values of Pf jX;H, have been computed for all 21 supports when the peak ground
acceleration (pga) level corresponds to the maximum pga level which enables shutting down of a nuclear
plant safely. This is characterised by zg which is the measure of severity of ground excitations. For the safe
Table 7

Probabilistic properties of the damping ratios for the various materials in the reactor building model

Damping ratio of Probability distribution Mean Coefficient of variation

Concrete Type 1 Lognormal 0.07 0.25

Concrete Type 2 Lognormal 0.05 0.25

Steel Lognormal 0.03 0.25

Soil (translation in X direction) Lognormal 0.30 0.25

Soil (translation in Y direction) Lognormal 0.29 0.25

Soil (rotation) Lognormal 0.44 0.25

Table 8

Details of properties considered random in the piping structure

Property Probability distribution Mean Coefficient of variation

Young’s modulus, E Lognormal 2:018� 105 N=m3 0.03

Material density, r Lognormal 7:883� 103 kg=m3 0.07

Damping ratio Lognormal 0.02 0.30
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Table 9

Details of modelling uncertainties

Source of modelling uncertainty Coefficient of variation

Sampling fluctuations 0.05

Noise in measurements 0.05

Scaling effects from laboratory to field 0.05

Assumption on model for damping 0.10

Poisson approximation for determining extremes 0.05

Assumption on structure linear behavior 0.10

Assumptions on the orientation of the principal seismic excitations 0.05

Effects of primary–secondary structure interactions 0.05

Characterization of PSD matrix for principal seismic components 0.05

FE discretization 0.05

Modal truncation errors 0.02
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Fig. 6. Fragility curves for support A.
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shut down earthquake (SSE), zg ¼ 0:2g. It is observed that the estimated Pf jX;H for three supports, A, B and C
(see Fig. 4), are significantly higher than the rest at zg. We retain only these three failure modes in further
analysis. The mean values of the capacity for supports A, B and C are, respectively, 231:8, 210:0 and
235:1N=m2.

For the sake of clarity, we introduce a nomenclature for the fragility curves. We term Level 0 fragility curves
to be those conditioned on X, H and capacity. Level 1 and Level 2 fragility curves refer to the failure
probability curves Pf jX;H and Pf jH respectively, while the unconditional failure probability curves versus zg are
termed as the Level 3 fragility curves. The Level 0 and Level 1 fragility curves for supports A, B and C are
illustrated in Figs. 6–8. The excitation levels are represented in terms of pga, normalized with respect to the
pga at SSE and is designated as a ¼ pga=pgaSSE. It must be noted that the failure modes for supports A, B and
C are mutually correlated. We assume that the failure of the pipeline occurs if any of these three supports fail.
This implies a series system configuration for the failure modes. We employ the theory of multivariate extreme
value distribution [28] to estimate the joint failure probability. The Level 1 fragility curve for the piping
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structure, obtained using the theory of multivariate extremes, is illustrated in Fig. 9. These are compared with
the lower bound and upper bound level 1 fragility curves, given by [54]

max
1pipnk

½Pf i jX;H�pPf jX;Hp1�Pnk
i¼1½1� Pf i jX;H�, (30)
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where, nk ¼ 3 for this example. It is observed that at higher levels of excitations, the difference in the bounds
for the failure probability estimates of the structure, is about 10%. In estimating both the system and
component fragility curves, we make the assumption that the threshold crossings of the relevant random
processes can be modelled as Poisson point processes. It is well known that the accuracy of the Poisson’s
approximation depends on the spectral bandwidth of the random processes. Since the system fragility curve
obtained from the theory of multivariate extremes, lie within the bounds (see Fig. 9), it can be argued that
errors associated in modelling the multivariate extreme value distribution, are, at worst, commensurate with
those obtained from existing methods.

The Level 2 and Level 3 fragility curves are computed for the three supports and are illustrated in Figs. 6–8.
It is observed that the difference in Level 1 and Level 2 fragilities is significant for low intensities of excitation.
This seems to imply that structure randomness shows a stronger effect on the reliability of structures,
especially for lower intensity excitations. This stands to reason since for a structure to fail under low-intensity
excitations, the variability in the structural parameters becomes more important. On the other hand, the
difference between Level 2 and Level 3 fragilities are almost of the same order at all excitation levels. This
suggests that epistemic uncertainties induce a systematic error, which remains largely unaffected by the
excitation intensities and depends only on the nature of these uncertainties. The bounds for the Level 3
fragility curves for the piping structure are also shown in Fig. 9. Here too, we observe that the difference in
Level 3 and Level 1 fragilities to be large, in lower intensity excitations.

6. Conclusions

A framework for reliability analysis of randomly parametered vibrating structures, under random
excitations, has been developed. The uncertainties associated with the problem are classified into three
categories—those associated with the loadings, capacities and in structure properties, respectively. The
proposed method is built on the assumption that the uncertainties in the loadings and the capacities have a
predominant effect on the reliability of the structure. The loads are modelled as vectors of mutually correlated,
Gaussian random processes. The structure properties and the capacities are modelled as a vector of mutually
correlated, non-Gaussian random variables. The structural reliability, conditioned on the structure property
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randomness, is estimated first, using theories of random processes and recently developed approximations for
multivariate extreme value distributions. These approximations have been derived for vector Gaussian
processes and for vector non-Gaussian processes, which can be expressed as nonlinear functions of vector
Gaussian processes. Subsequently, the effect of structure randomness is incorporated into the reliability
calculations.

The treatment of structural uncertainties is based on Taylor’s expansion of expressions for failure
probability, conditioned on these variables. Analytical and numerical schemes have been developed for
computing the gradients in the Taylor series expansions. The analytical approach leads to exact estimates for
the gradients but is difficult to implement. On the other hand, the numerical approach is more generally
applicable. Here, the Taylor’s expansion is carried out in the standard normal space after suitable
transformations. This has the following advantages: (a) the proposed method requires fewer gradient
calculations for identical orders of expansion, and (b) the computation of higher-order moments of the
associated random variables are exact. Analytical and computational methods for implementing the proposed
procedure have been illustrated with reference to three examples. The accuracy of the solutions obtained has
been assessed by using limited amount of Monte Carlo simulations. It is found that the neglect of structural
uncertainties could lead to overestimation of structural reliability, especially when excitation intensity is
moderate to low. The numerical studies conducted reveal that a solution scheme that retain three terms in
Taylor’s expansion, provides acceptable solutions.

In the context of earthquake engineering applications, it has been illustrated that the proposed method
can be used in conjunction with probabilistic seismic hazard analysis to conduct probabilistic safety
assessment studies. The structural analysis has been carried out by incorporating the finite-element method
with random vibration principles and theories of extremes of random processes. This reduces the dependency
of the analyses on ad hoc assumptions, such as, linear structure behavior and independence between various
failure modes.

Limitations of the proposed method include the inaccuracies inherited from the assumptions made in
developing approximations for the extreme value distributions. These include the assumption that the level
crossings for Gaussian/non-Gaussian random processes can be modelled as Poisson point processes. The
assumption of the out crossings being Poisson distributed have been proved to be mathematically valid for
Gaussian processes when the threshold approaches infinity [55,56]. For threshold levels of practical interest
this assumption results in errors whose size and effect depends on the bandwidth of the processes [57].
However, it can be heuristically argued that for high thresholds, the out-crossings of Gaussian/non-Gaussian
processes can be viewed to be statistically independent and hence can be modelled as Poisson point processes.
The proposed framework is expected to inherit inaccuracies due to this assumption. An additional limitation,
with reference to non-Gaussian processes, lies in the assumption that the process and its time derivative
are conditionally independent. Notwithstanding these limitations, recent studies [28,30], show that the
approximations lead to fairly accurate reliability estimates. Difficulties arising due to the computational
intensiveness of the proposed framework can be easily handled with the cheap availability of fast computers in
recent times. Moreover, unlike Monte Carlo simulations, the computational effort does not increase for
reliability estimation of highly reliable structures.
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