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Abstract

A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and

quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state

of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level

earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures

for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology’s advantages include

the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties,

the tackling of the damage localization and quantification subproblems, the use of ‘‘small’’ size, simple and partial (in both

the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured

vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation

model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey’s stiffness

characteristics may be properly detected and assessed using noise-corrupted vibration signals.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of damage detection and assessment (the latter term signifying localization and quantification)
in civil and related infrastructure, such as highway or railway bridges, buildings, dams, and so on, has been
receiving increasing attention in recent years [1–4]. Vibration-based methods constitute a promising approach,
as they are ‘‘global’’, in the sense of being capable of monitoring the structure’s global characteristics,
relatively easy to implement, and also possible to ‘‘automate’’. Moreover, they tend to be time effective and
less expensive than most alternatives [5,6].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The fundamental principle upon which vibration-based methods are founded is that small changes (damage)
in a structure cause behavioral discrepancies in its vibration response. The goal thus is the reliable detection of
such discrepancies in a structure’s measured vibration response and their precise association with a specific
cause (damage localization and quantification). Broadly speaking, this may be achieved by ‘‘comparing’’ a
nominal structural model (representing the ‘‘healthy’’ structure) with a corresponding current model
(representing the structure in its current—unknown—condition). Thus the two most important elements of a
vibration-based method are (a) the structural model used (the term model presently used in its broadest sense),
and (b) the decision-making mechanism (which uses some of the model’s features) responsible for the
‘‘comparison’’.

1.1. Classification and overview of vibration-based damage detection and assessment methods

Depending upon the nature of the structural model used, the decision-making mechanism, the way of
operation, and so on, vibration-based methods may be classified in various ways. For instance, depending
upon the nature of the model, they may be classified as parametric (a parametric model is used) or non-

parametric (a non-parametric model is used). Furthermore, when the model is identified from available
vibration signals, the methods are characterized as time series based. Depending upon the nature of the
decision-making mechanism, they may be classified as stochastic (statistical decision making that takes
uncertainties into account is used) or deterministic (uncertainties are not taken into account). Depending upon
their way of operation, they may be classified as off-line (the decision is made off-line, following damage
occurrence and subsequent signal acquisition) and on-line (the decision is made on-line, as damage occurs).

In the following a brief overview of the main families of methods, classified according to the type of
structural model used, is presented.

One family of methods utilizes ‘‘large’’ size finite element models and examines changes incurred in the
structural model’s stiffness matrix by using model updating based upon dynamic and/or static test data [7–10].
An alternative family utilizes identified modal models, and damage detection is based upon the assessment of
changes in the characteristics of the nominal and current models [11–14]. The former methods often have the
advantage of tackling the damage-assessment problem as well; this is in general harder to do with the latter.
Nevertheless, both families are characterized by limitations such as the need for ‘‘large’’, detailed, structural
models, a large number of sensors, elaborate testing procedures, the frequent lack of accounting for random
effects and uncertainties, and so on (see, for instance, Refs. [15–17]).

Another family of methods is based upon state-space structural models, obtained via subspace identification
techniques, and statistical decision-making [18,19]. These methods have the advantage of being capable of
working on-line, and also coping with uncertainties and certain types of non-stationary excitation. This last
characteristic is important as the signals measured on a civil structure are often due to earthquake or ambient
(wind or traffic induced) excitation, and are known to be strongly non-stationary. Yet, the methods mainly
address the damage detection subproblem (not the damage assessment, that is localization and quantification)
and (unlike the present methodology) they are based upon proper model ‘‘residuals’’ for statistical fault
detection (no current model is used).

Another, yet, family of methods is based upon identified nonlinear structural models (including artificial
neural network models) and decision-making mechanisms that may use a comparison of the response error
between a nominal model and the actual structure [20–22]. These methods are useful in cases of structures
operating beyond their linear regime (for instance they may be experiencing damage—the on-line case). Yet,
they are mainly deterministic, the models used are complicated, of ‘‘large’’ sizes, and relatively difficult to
obtain, validate and physically interpret. These methods also tend to be ‘‘sensitive’’ to modelling errors.

An alternative family is based upon non-stationary vibration models, which are usually non-parametric
wavelet-based models, and decision-making mechanisms based upon the examination of changes incurred in
their characteristics [23–25]. The advantage of these methods is that they are suitable for the representation of
nonlinear and non-stationary vibration, and may be appropriate for on-line use. Yet, decision making is
mainly deterministic, not easy to ‘‘automate’’, and the focus usually is on the damage detection subproblem.

A final, but popular, family of methods is based upon non-parametric vibration models in the form of
damage indices and deterministic decision-making mechanisms. These use interstorey drifts in buildings,
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require measurements in every storey, and thus extensive instrumentation [26–29]. Furthermore, certain widely
used damage indices, which combine the maximum deformation and the absorbed hysteretic energy, require
the empirical selection of several critical values leading to methods that are not robust and without general
applicability [30,31].

For a survey and further discussion of the wide category of time series type methods for general vibration-
based structural damage detection and assessment the interested reader is also referred to the forthcoming
publication [32].

1.2. Scope and framework of the work

This paper focuses on the off-line damage detection and assessment problem and specifically on the use of
low-level earthquake excitations under which the structure stays within its linear operating regime. The
methodology developed is thus intended for periodically, or after a major event with potentially harming
consequences, assessing the state of a given structure.

The specific focal points and respective advantages of the methodology developed in this paper are: (i) The
proper and effective use of non-stationary earthquake excitation (see next paragraph for more on this). (ii) The
effective handling of uncertainties via stochastic techniques in both the structural modelling and the decision-
making mechanism. (iii) The tackling of the important damage assessment (localization and quantification)
subproblem alongside with the damage detection subproblem (that is solely treated by many alternative
methods). (iv) The utilization of simple and partial (in both the spatial and frequency bandwidth senses)
identified structural models of ‘‘small’’ size (small number of estimated parameters). This is in contrast to
complete or ‘‘large’’ size (detailed) models required by many methods. (v) The requirement for a minimal

number (even a single pair) of measured vibration signals (unlike the significant number of signals required
by many methods). This simplifies the experimental procedure and the measurement set up. Naturally,
an unavoidable consequence of the last two characteristics is that only gross (approximate) damage
localization is possible.

A few words on the intended use of low-level earthquake excitation are now in order. The use of this type of
excitation is motivated by the fact that the generation of artificial excitation may, especially for large
structures, be difficult or expensive. Thus, ‘‘natural’’ excitation due to earthquake events (also traffic, strong
wind, and so on) represents a useful alternative [2,23,33]. Earthquake excitation is particularly attractive in
earthquake prone areas, is rich in low-frequency content, and often leads to vibration responses of a sufficient
level. On the other hand, its characteristics introduce a number of technical difficulties and limitations which
may be summarized as follows: (a) Its transient nature, and resulting limited duration, which limits the
identification data record length. (b) Its limited frequency content, which narrows attention to the lower-
frequency modes. (c) Its non-stationarity, in terms of both amplitude and frequency, which renders methods
requiring stationary signals (like classical frequency domain methods) inappropriate (for instance see
Refs. [34,35]). Coping with these characteristics requires caution and proper selections, and this is a main issue
that is addressed by the present methodology.

1.3. Overview of the output error (OE) model-based methodology

The OE model-based damage detection and assessment methodology consists of the following main
elements:
(a)
 Stochastic OE structural modelling via proper identification techniques. OE models (see Refs. [36,
pp. 81–90; 37]) are selected as they are instrumental in overcoming the problems associated with
earthquake ground motion non-stationarity. This is due to the fact that no assumptions are made on the
noise corrupting the response measurements (see Section 3.2). Furthermore, their stochastic nature leads
to proper accounting of uncertainties, and their parametric nature warrants high achievable accuracy
and resolution even with earthquake events of limited time duration. The OE models employed
are discrete time, of ‘‘small’’ size (few model parameters) and partial (in the sense already described).
One OE model is used for representing the structure in its nominal (healthy) state, and one in its
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current (unknown) state. Within the context of damage assessment additional OE models are used for
representing the structure under different states of damage.
(b)
 Statistical hypothesis testing procedures for damage detection. These are based upon the identified
(nominal and current) OE model parameters, and are essential for properly detecting damage at a user-
specified probability level and effective decision making under experimental uncertainty.
(c)
 A geometric method (GM) for damage assessment (gross localization and quantification). This method has
been introduced by the second author and his co-worker [16,38] for general damage localization. In this
study it is, for the first time, applied to damage localization for structures under earthquake excitation, and
also extended to include damage quantification.
The OE model-based methodology is demonstrated, and its feasibility and effectiveness are examined, via
Monte Carlo experiments pertaining to damage detection and assessment in a simple, transversal, simulation
model of a 6 storey building subject to earthquake excitation. This simulation model should not be confused
with the OE models internally used by the methodology. It is a physics-based model, with its sole purpose
being simulation, serving as the study’s paradigm. It has been chosen to be simple for demonstrating the
principles and steps of the methodology, and yet sufficient for demonstrating its effectiveness with regard to
damage detection and (gross) localization.

The rest of the paper is organized as follows: The transversal simulation model of the building, along with
the damage cases and the seismic excitation are presented in Section 2. The stochastic OE model-based
damage detection and assessment methodology is introduced in Section 3. Monte Carlo damage detection and
assessment results are presented in Section 4, and the conclusions are summarized in Section 5.
2. The building simulation model, damage cases and the excitation

The simple transversal simulation model of the building, the damage cases, and the seismic excitation used
as the study’s paradigm are presented in the following subsections.
2.1. The transversal simulation model of the building

A schematic representation of the lumped-parameter physics-based simulation model describing the
transversal motion of a 6-storey building is shown in Fig. 1. Each storey, of dimensions 10m� 20m� 3m, is
modelled via a lumped-parameter representation of its inertial (mi ¼ 3� 105 kg), stiffness
(ki ¼ 9:696� 105 kN=m), and power dissipation (ci ¼ 17:11� 105 Ns=m) properties. The mass of each storey
is assumed to be concentrated in the storey’s upper region. The stiffnesses represent the complex construction
of the concrete, with parts of steel and other metals. The building’s transversal dynamics are thus described by
the differential equation (lower/upper case bold face symbols designate vector/matrix quantities, respectively):

M €xþ C _xþ Kx ¼ Qx0 (1)

with x ¼ ½x1 x2 x3 x4 x5 x6�
T designating the displacement vector (xi referring to the transversal displacement

of the ith storey; Fig. 1), x09½x0 _x0�
T the input vector (x0 referring to the transversal ground displacement),

Q an input shaping matrix, and M, K, C the mass, stiffness, and viscous damping matrices, respectively. These
quantities are of the following forms:

Q ¼
k1 0 0 0 0 0

c1 0 0 0 0 0

" #T
, (2)

M ¼ diag ðm1;m2; . . . ;m6Þ, (3)
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Fig. 1. Schematic diagram of the 6 storey building model.
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K ¼

k2 þ k1 �k2 0 0 0 0

�k2 k3 þ k2 �k3 0 0 0

0 �k3 k4 þ k3 �k4 0 0

0 0 �k4 k5 þ k4 �k5 0

0 0 0 �k5 k5 þ k6 �k6

0 0 0 0 �k6 k6

2
6666666664

3
7777777775
, (4)

C ¼

c2 þ c1 �c2 0 0 0 0

�c2 c3 þ c2 �c3 0 0 0

0 �c3 c4 þ c3 �c4 0 0

0 0 �c4 c5 þ c4 �c5 0

0 0 0 �c5 c5 þ c6 �c6

0 0 0 0 �c6 c6

2
6666666664

3
7777777775

(5)

with diag(�) designating diagonal matrix.
Within the context of the present paradigm, structural damage detection and assessment are to be

based upon a single pair of measurements (partial system information): That of the ground displacement (x0)
and the 6th storey acceleration ( €x6). The theoretical modal characteristics of the continuous-time transfer
function €X 6=X 0, which relates the two signals and represents the corresponding dynamics, are presented in
Table 1.
2.1.1. State-space formulation

The building dynamics are now set in state-space form, that is as a set of first-order differential equations.
This form is used in the simulations, as it is known to be characterized by improved numerical properties
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Table 1

Theoretical building characteristics ( €X 6=X 0 transfer function of the simulation model)

f n (Hz) z (%) Residue

2.18 1.21 1:0þ j0:0
6.41 3.56 7:647� j0:731
10.28 5.70 15:227þ j1:371
13.54 7.51 16:992� j2:995
16.02 8.88 11:732þ j1:818
17.57 9.74 3:698� j0:824
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(see, for instance, Ref. [39, p.477]). Furthermore, it avoids potential numerical inconsistencies in the
excitation, as, in contrast to the model of Eq. (1) where the vector x0 on the right-hand side includes both the
ground motion displacement and velocity, only the ground displacement is used as excitation in the state-space
form [see Eq. (10a)].

For converting the simulation model into state-space form the building equations of motion [Eq. (1)] may
be expressed as

€x1 þ
k1 þ k2

m1
� x1 �

k2

m1
� x2 þ

c2 þ c1

m1
� _x1 �

c2

m1
� _x2 ¼

k1

m1
� x0 þ

c1

m1
� _x0, (6a)

€xi þ
ki þ kiþ1

mi

� xi �
kiþ1

mi

� xiþ1 �
ki

mi

� xi�1 þ
ciþ1 þ c1

mi

� _xi �
ciþ1

mi

� _xiþ1

�
ci

mi

� _xi�1 ¼ 0 ði ¼ 2; . . . ; 5Þ, ð6bÞ

€x6 þ
k6

m6
� x6 �

k6

m6
� x5 þ

c6

m6
� _x6 �

c6

m6
� _x5 ¼ 0. (6c)

In order to express the equations of motion as functions of the ground displacement (x0) alone, the
following set of corresponding auxiliary equations is introduced:

€c1 þ
k1 þ k2

m1
� c1 �

k2

m1
� c2 þ

c2 þ c1

m1
� _c1 �

c2

m1
� _c2 ¼ x0, (7a)

€ci þ
ki þ kiþ1

mi

� ci �
kiþ1

mi

� ciþ1 �
ki

mi

� ci�1 þ
ciþ1 þ ci

mi

� _ci �
ciþ1

mi

� _ciþ1

�
ci

mi

� _ci�1 ¼ 0 ði ¼ 2; . . . ; 5Þ, ð7bÞ

€c6 þ
k6

m6
� c6 �

k6

m6
� c5 þ

c6

m6
� _c6 �

c6

m6
� _c5 ¼ 0. (7c)

Notice that the left-hand side of the above equations are of the same form as those of their counterparts
[Eq. (6)]. The difference is in the right-hand side of Eq. (7a), where only the ground motion displacement is
used as excitation (not its derivative). The ci’s may be thus interpreted as the fictitious transversal
displacements corresponding to the xi’s of the original equations of motion under this modified excitation.
This procedure is followed in order to define the simulation model’s state variables as (for i ¼ 1; 2; . . . ; 6):

zi ¼ cðiþ1Þ=2 ði oddÞ; zi ¼
_ci=2 ði evenÞ. (8)

Now, applying the principle of superposition [in doing so one has to compare, again, the right-hand side of
Eqs. (6a) and (7a)], the actual storey displacements and accelerations are given by the following linear
transformations of the auxiliary variables (the fictitious displacements) and their derivatives (the interested
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reader is referred to the appendix for derivation details):

xi ¼
k1

m1
� ci þ

c

m1
� _ci; €xi ¼

k1

m1
� €ci þ

c

m1
� ci

:::
ði ¼ 1; 2; . . . ; 6Þ. (9)

Note that the c
:::

i’s appearing in the second set of equations above may be obtained for every storey (except for
the first) through differentiation of Eqs. (7b), (7c). Finally, using Eqs. (7) and (9) under the definitions of
Eq. (8), the equations relating the ground displacement to the 6th storey acceleration may be written into the
state-space form as follows:

_z ¼ Azþ bx0, (10a)

€x6 ¼ cTz (10b)

with A, b, c designating proper matrix/vector quantities and z9½z1 z2 . . . z6�
T.

2.2. Damage cases

The damage cases considered correspond to reductions in the stiffness characteristics of the building storeys
in the simulation model. Therefore six fault modes (each fault mode comprising the continuum of damage of
all possible magnitudes incurred in a particular storey; also see Section 3.4), are considered (note that the
terms fault and damage are presently treated as interchangeable). Monte Carlo experiments, in each one of
which 0% (no damage), 5%, or 20% damage is introduced as reduction in the stiffness characteristics of each
storey, are performed (20 simulation runs per case). These faults are designated as F i

0, F i
0:05, or F i

0:20,
respectively, with the superscript i indicating the storey of damage occurrence, and the subscript the damage
level (stiffness reduction).

It is, at this point, interesting to examine the sensitivity of the theoretical frequency response function (frf)
of the building simulation model (transfer function €X 6=X 0) with respect to the considered damage cases. Fig. 2
depicts the theoretical Bode (frf) diagram for the nominal (healthy) structure (frequency range 0–10Hz; see
Section 2.3), as well as for the structure in the presence of damage incurred in the third storey at both the 5%
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Table 2

Effects of damage (5% and 20% stiffness reduction in the 3rd storey) on the simulation model’s first three natural frequencies

Natural Healthy 5% damage 20% damage

frequency (Hz) structure (F3
0:05) (F 3

0:20)

f n1 2.18 2.17 2.12

f n2 6.41 6.41 6.40

f n3 10.28 10.20 9.91
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and 20% levels. The effects of the first (5%) damage are essentially negligible in the diagram, while those of the
second (20%) are more pronounced (reduction in the third modal frequency). The differences in the
simulation model’s first three natural frequencies induced by the two damage levels are presented in Table 2 as
well (frequency range 0–10Hz). It should be nevertheless noted that the present damage detection and
assessment methodology utilizes the parameters of the identified OE model (see Section 3); these are functions
of all modal parameters, not just the natural frequencies.

2.3. Seismic excitation and model simulation

The prototype seismic ground displacement signal used in the study is obtained through integration (via a
specific procedure [40,41]) of an earthquake ground acceleration signal recorded during a 1993 event in Patras,
Greece (sampling frequency f s ¼ 200Hz; signal duration 37:04 s or 7408 samples; ‘‘strong’’ excitation duration
of 6:52 s; maximum recorded acceleration 0:109g).

The prototype displacement signal is modelled via the recursive autoregressive moving average
(RARMA)—recursive maximum likelihood (RML) adaptive filtering type approach [35]. This leads to a
RARMA representation of orders 3 and 8 [RARMA(3,8) representation], with forgetting factor l ¼ 0:975 and
non-parametrically estimated innovations variance (sliding window with K1 ¼ 2, K2 ¼ 4, l1 ¼ l2 ¼ 0:95; for
details on the approach used the interested reader is referred to Ref. [35]). Artificial earthquake ground
displacement signals for the Monte Carlo experiments are then generated by driving the obtained
RARMA(3,8) representation via innovations characterized by the estimated non-stationary variance.

As the energy content of the prototype and generated signals is limited to the 0–10Hz frequency range, at
most the first three of the building’s modes (see Table 1) may be excited. As a consequence, structural damage
detection and assessment have to be based upon partial information in both the spatial (only one response,
that of the 6th storey) and the frequency bandwidth (low-frequency content) senses.

The generated excitation (ground displacement) and resulting building response (6th storey acceleration)
are, in each case, low-pass filtered (via a 16th order Chebyshev II filter with cut-off at f c ¼ 10Hz) and re-
sampled at f s ¼ 25Hz. Each response acceleration signal is then corrupted by non-stationary uncorrelated
noise at the 5% noise-to-signal (N/S) local level (in the standard deviation sense). The constant sample means
are finally subtracted from the ground excitation and noise-corrupted building response signals (each being
N ¼ 926 samples long).

Typical constant sample mean-corrected ground excitation and noise-corrupted building (simulation model)
response (6th storey acceleration) signals are, along with non-parametric estimates of their time-dependent
power spectral densities (PSDs; Welch method employing a 128 sample long moving window; Hanning data
windowing [42]), depicted in Fig. 3. The non-stationarity of both signals is evident in terms of variance and
frequency (spectral) content. Furthermore, the acceleration response reveals higher-energy concentration in
the vicinities of 2, 6 and 9Hz; evidently, this is in gross agreement with the structure’s modal frequencies.

3. The stochastic OE model-based damage detection and assessment methodology

3.1. Principles

As previously indicated, the stochastic OE model-based damage detection and assessment methodology is
intended for periodically assessing the state of a structure, following potential damage occurrence. It is to be
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used with low-level earthquake excitations under which the structure operates within its linear regime. The
methodology assesses changes in the dynamics, as expressed in the identified model relating two (or more)
locations on which vibration measurements are taken.

The methodology is based upon:
(a)
 Stochastic OE identification of a ‘‘small’’ size (few estimated parameters) simple and partial structural
model in parametric form. This OE model is identified from measured excitation–response signals
(presently the ground displacement and the 6th storey acceleration), without any knowledge of the
‘‘larger’’ size simulation model of Section 2.1. The identified OE model is thus solely based upon the
measured signals and attempts to provide a partial representation of the structure in the:
� Spatial sense (only the ground excitation and the 6th storey response are measured),
� Frequency bandwidth sense (only the low-frequency range is used).
The interval estimate (point estimate and covariance) of the OE model parameter vector forms the
‘‘raw’’ feature vector utilized by the damage detection and assessment procedures.

(b) Statistical hypothesis testing for effective damage detection under uncertainty.
(c) A GM [16,38] for damage assessment, that is for damage gross localization and quantification.
3.2. Stochastic OE model identification

OE model identification aims at the estimation of a discrete-time structural model of the OE form. In the
simplest case of single excitation single response (two measured signals) this is

y½t� ¼
BðBÞ

AðBÞ
� x½t� þ e½t� (11)
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relating the sampled versions of the excitation x½t� and response y½t� signals (within the context of the present
paradigm the ground displacement x0½t� and the noise-corrupted 6th storey acceleration signals €x6½t�,
respectively; see Refs. [37,43] on the justification of using OE and related models for structural dynamics
identification). In this expression t designates normalized discrete time (t ¼ 0; 1; 2; . . . ; with the corresponding
absolute time being t � Ts and Ts standing for the sampling period) and e½t� a zero-mean model residual error
(or OE) representing the non-stationary noise corrupting the response. AðBÞ, BðBÞ are polynomials in the
backshift operator (B � x½t�9x½t� 1�) of the following respective forms:

AðBÞ91þ a1 �Bþ � � � þ ana
�Bna ; BðBÞ9b0 þ b1 �Bþ � � � þ bnb

�Bnb . (12)

Notice that AðBÞ, BðBÞ are referred to as the autoregressive (AR) and exogenous (X) polynomials,
respectively. Their degrees, na and nb, are referred to as the AR and X orders, while their parameters, ai and bi,
are referred to as the AR and X parameters.

A model of the form of Eq. (11) is referred to as an OE model of orders ðna; nbÞ [in short OE(na; nb) model]
[36, pp. 85–86; 37]. In the time domain it may be expressed as

y½t� þ
Xna

i¼1

ai � y½t� i� ¼
Xnb

i¼0

bi � x½t� i� þ e½t� þ
Xna

i¼1

ai � e½t� i�. (13)

A main advantage of the OE model is that it is capable of accounting for noise effects without resorting on
an explicit noise representation, thus overcoming some of the difficulties associated with noise non-
stationarity. Model estimation may be based upon minimization of a quadratic functional of the OE, that is:

ĥ9 argmin
h

JðhÞ9 argmin
h

1

N

XN�1
t¼0

e2½t�, (14)

where argmin stands for ‘‘argument minimizing’’, the hat designates estimator/estimate, N the signal length (in
samples), and h the model parameter vector consisting of the AR and X parameters:

h9½a1 a2 . . . ana

..

.
b0 b1 b2 . . . bnb

�T. (15)

Minimization of the JðhÞ criterion is achieved via nonlinear optimization based upon the Levenberg–Mar-
quardt scheme [36, p. 328]. Under mild conditions, the estimator is asymptotically (N !1) Gaussian
distributed with mean equal to the true parameter vector ho and covariance matrix P [36, pp. 240–242], that is:

ĥ�Nðho;PÞ (16)

with Nð�; �Þ designating Gaussian (normal) distribution with the indicated mean and covariance.
Model order selection is based upon the successive estimation of increasingly higher-order models and

examination of the achieved OE JðĥÞ, as well as model dispersion analysis (DA). The OE functional, although
generally decreasing with increasing model order, is expected to reach a ‘‘plateau’’ as soon as the adequate
model order is reached. The DA [37,43], on the other hand, provides the fraction of the vibration signal energy
associated with each estimated mode, and is indirectly used for model order determination, as unnecessary
(‘‘extraneous’’) modes (and thus unnecessarily high-order models) may be detected by their small dispersions.
Once an adequate model has been selected, complete modal information, in terms of natural frequencies,
damping ratios, modal residues, and modal dispersions, may be readily obtained [37,43].
3.3. Damage detection

Damage detection is based upon the comparison of the OE model parameter vector [Eq. (15)] (or a selected
part of it) for the identified nominal (healthy) structural model with that of the identified current structural
model (the structure being in an unknown state). The former is obtained in an initial (off-line) training stage,
while the latter is obtained during the testing (operational) stage. Notice that this approach is different from
residual-based methods in which no identification is performed in the testing stage.
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Let ĥ
h
and ĥ

u
designate the parameter vectors corresponding to the healthy and current (unknown) states of

the structure, respectively. Due to the estimator consistency and Gaussianity:

ĥ
h
�Nðhho;PhÞ and ĥ

u
�Nðhuo;PuÞ (17)

with hho, huo designating the respective true vectors and Ph, Pu the corresponding covariance matrices. The
vectors’ Gaussianity, coupled with their mutual independence, implies that their difference follows Gaussian
distribution as well, that is

dĥ ¼ ĥ
h
� ĥ

u
�Nðdho; dPÞ (18)

with dho designating the true difference vector and dP ¼ Ph þ Pu the corresponding covariance matrix.
Damage detection may be then based upon examination for changes in the parameter vector via the

hypothesis testing problem:

H0 : dho
¼ 0 (Healthy structure),

H1 : dhoa0 (Damaged structure).

Indeed, under the null (H0) hypothesis dĥ�Nð0; dP ¼ 2PhÞ and the following S statistic follows w2

distribution with d ¼ na þ nb þ 1 (parameter vector dimensionality) degrees of freedom (as it may be shown to
be the sum of squares of independent, standardized, Gaussian random variables [44]), that is

S ¼ dĥ
T
dP�1dĥ �w2ðdÞ. (19)

Since the covariance Ph corresponding to the healthy structure is unavailable, its sample (estimated) version P̂
h

is used in practice. Treating this sample covariance as a deterministic quantity, that is a quantity characterized
by negligible variability (which is reasonable for large N), leads to the following multivariate test at the a risk
level (probability of type I error, that is rejecting H0 although it is correct, equal to a):

Sow21�aðdÞ ¼) H0 is accepted

ðno damage is detectedÞ

Else ¼) H0 is rejected

ðdamage is detectedÞ

with w21�aðdÞ designating the w2 distribution’s 1� a critical point.
Alternatively (although suboptimally), individual statistical tests on the parameter vector’s components

could be considered. Indeed, under the null (H0) hypothesis, the ith component of dĥ, designated as dŷi,
follows Gaussian distribution:

dŷi�Nðdy
o
i ; dPi;iÞ.

Replacing the unknown variance dPi;i with its sample (estimated) version dP̂i;i leads to a t-distributed

dŷi=
ffiffiffiffiffiffiffiffiffi
dP̂i;i

q
random variable (ratio of a Gaussian over a w2 random variable [44]) with N � na � nb � 2 degrees

of freedom (na, nb, and N designating the AR order, X order, and the signal length in samples, respectively).
This leads to the following univariate test for damage detection at the a risk level:

ta=2

ffiffiffiffiffiffiffiffiffi
dP̂i;i

q
pdŷipt1�a=2

ffiffiffiffiffiffiffiffiffi
dP̂i;i

q
8i ¼) H0 is accepted

ðno damage is detectedÞ

Else ¼) H0 is rejected

ðdamage is detectedÞ

with ta designating the t distribution’s a critical point.
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3.4. Damage assessment

As already indicated, damage assessment includes both gross localization and quantification. Like damage
detection, it is based upon the identified OE model parameter vector.
3.4.1. Damage localization

Once damage has been detected, localization (also referred to as damage identification) is ac-
complished via a GM originally developed in a broader context by the second author and his co-worker
[16,38].

Toward this end, in the initial training stage the model parameter vector h (or a selected part of it) of the OE
model is used as an initial feature vector, which is subsequently linearly transformed via the Karhunen–Loeve
expansion (principal component analysis) [38; 45, p. 66] into a coordinate system in which information
compression (feature vector reduction) may be best achieved. Feature vector dimensionality reduction (to
dimensionality M) is then achieved by selecting the loss of information (expressed in terms of logarithmic
entropy) that is to be allowed. Following this selection, a stochastic feature space is defined as the space
spanned by the 2M-dimensional vector hK consisting of the mean values and variances of the elements of the
transformed and reduced feature vector.

A key idea in damage localization is the notion of fault mode and its geometric representation within the
defined stochastic feature space. Fault mode refers to the multitude of faults (damages), of all possible levels,
characterized by a common, specific, cause. For instance, in this study’s paradigm, a fault mode consists of all
possible levels of stiffness reduction in a particular storey. Evidently, an infinite number of damage levels is
included in each fault mode. Damage localization (identification) then refers to the identification of the
particular fault mode to which a detected damage belongs.

For exploiting this idea, a number of experiments in which p different levels of damage are, for each one of
the specified NF fault modes, injected into the simulation model (in general a finite-element model, or,
possibly, a laboratory scale model could be used) are performed (training stage). From each such experiment
an interval estimate of h is obtained, and a corresponding (transformed and reduced to dimensionality M)
feature vector estimate is computed. This leads to p estimates of hK per fault mode, which are used for the
construction of a geometric representation of each fault mode in the form of a (2M � 1)-dimensional
hyperplane. The ith fault mode hyperplane is represented as

giðhK Þ ¼ yK1
þ oi

1 � yK2
þ � � � þ oi

2M�1 � yK2M
� oi

2M ¼ 0 (20)

with yKj
indicating the jth element of hK and oi

j the hyperplane’s jth coefficient, which is estimated via linear
regression [38].

Once damage is detected (during the testing stage), the transformed and reduced feature vector hu
K

corresponding to the current state of the structure is obtained. Fault mode identification (damage localization)
is then achieved by computing the distances between the feature vector’s tip point and each fault mode
hyperplane. The structure is then identified as being in that fault mode with the hyperplane of which the
distance is minimal, that is

i% ¼ index min
i2½1;NF �

min
hK2Gi

DðhK ; h
u
K Þ

� �
(21)

with Dð�; �Þ designating Euclidean (or other proper distance), Gi9fhK jg
iðhK Þ ¼ 0g, and i ¼ 1; 2; . . . ;NF . The

reader is referred to Sadeghi and Fassois [16,38] for details.
3.4.2. Damage quantification (level estimation)

The approach presently introduced for damage quantification is based upon evaluation of
the distance between the tip of hu

K and the point corresponding to the nominal (healthy) structure.
Distances should have been properly pre-calibrated in the training stage in order to accurately reflect
damage level.
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4. Damage detection and assessment results

As already stated, damage detection and assessment is presently based upon a single pair of vibration
measurements, that of the ground displacement x0 and the 6th storey acceleration €x6. Moreover, due to the
nature of the excitation, only the 0–10Hz frequency range is employed.

4.1. Training stage

4.1.1. OE identification of the nominal (healthy) structure

For the OE identification of the nominal (healthy) structure, a sequence of OE(na; nb) models with na; nb 2

½6; 12� is fitted to the corresponding N ¼ 926 sample long ground excitation and noise-corrupted response
signals. The estimated OE(6,6) model (b0a0) is found to be adequate in terms of achieved OE and simulation
capability, and is also verified as such through DA [43]. This selection also is in obvious agreement with the
presence of three modes in the building’s simulation model of Section 2.1 within the excitation frequency range
(Table 1). A typical 6th storey response signal, along with its OE(6,6) model-based reconstruction (simulation)
and the corresponding output error, are presented in Fig. 4, from which the excellent performance of the
selected OE(6,6) model is confirmed.

Monte Carlo experiments, in which OE(6,6) models are fitted to pairs of excitation and noise-corrupted
response signals obtained from the nominal structure (simulation model), are subsequently conducted.
Identification results from these experiments are, in the form of estimated modal parameters for the modes of
interest (first three modes), presented in Table 3. Evidently, the agreement between the obtained estimates and
their theoretical counterparts is very good, and the attained standard deviations quite small. This applies to
mode 3 as well, even though it is in fact located slightly beyond the 10Hz cut-off frequency (in the range close
to 10Hz even the original excitation is relatively weak; see Fig. 3). The Bode (frf) diagrams of the estimated
models are also compared to their theoretical (simulation model) counterpart in Fig. 5, from which excellent
agreement is observed for both the spectral peaks and valleys. It is also worth observing that the variability of
the estimates is particularly low within the excitation frequency range of 0–10Hz.
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Fig. 4. Typical OE identification of the nominal structure: (a) 6th storey actual acceleration, (b) its OE(6,6) model-based counterpart, (c)

the corresponding output error.
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Table 3

OE-based identification of the modal characteristics of the seismically excited nominal structure [discrete €X 6=X 0 transfer function; 20

Monte Carlo runs; OE(6,6) model]

Mode Natural frequencya (Hz) Damping ratioa (%)

1 2.18 ð2:18� 3:12� 10�5Þ 1.21 ð1:21� 1:71� 10�3Þ

2 6.41 ð6:41� 1:55� 10�3Þ 3.56 ð3:56� 1:56� 10�2Þ

3 10.28 ð10:26� 4:37� 10�2Þ 5.70 ð4:60� 2:39� 10�1Þ

Mode Dispersiona (%) Residuea

1 6.03 ð5:91� 0:23Þ 1.0, j0.0 ð1:0; j0:0Þ
2 39.91 ð39:12� 1:62Þ 7.689, j0.306 ð7:538� 0:022; j1:457� 0:044Þ
3 54.06 ð54:97� 1:85Þ 15:349;�j0:577 ð13:532� 0:675;�j0:704� 0:095Þ

aTrue (estimated � standard deviation).
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Fig. 5. OE identification accuracy: Bode diagrams of estimated OE(6,6) models (—) and the theoretical structure (simulation model;- - -)

[ €X 6=X 0 transfer function; 20 Monte Carlo runs; nominal structure].
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4.1.2. Feature vector selection and fault mode representation

For damage localization the initial (‘‘raw’’) feature vector consists of the OE model parameters (n ¼ naþ

nb þ 1 ¼ 13 parameters) and coincides with the vector used for damage detection. This is subsequently linearly
transformed. The normalized entropy of several transformed feature vectors corresponding to the nominal
structure is computed, and preservation of 97% of the entropy leads to a dimensionality of M ¼ 3 (Fig. 6) for
the transformed and reduced (truncated) feature vector. The hK vector is thus six-dimensional, consisting of
the means and variances of the reduced feature vector elements. Following this, the six fault mode hyperplanes
(F1 . . .F6), each corresponding to damage incurred in the stiffness characteristics of each storey, are
constructed based upon signals obtained by injecting damage of various levels (1 . . . 30%) in the simulation
model.
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4.2. Testing (operational) stage

4.2.1. Damage detection

Damage detection is based upon the current OE model parameter vector. Typical results, obtained via the
multivariate test for the F3

0:05 and F3
0:20 damage cases (5% and 20%, respectively, reduction in the 3rd storey

stiffness characteristics; 20 Monte Carlo runs per fault case) are presented in Fig. 7. Evidently, all damage
cases are clearly detected as such, as the S statistic always exceeds the critical point w20:95ð13Þ ¼ 22:36 at the
selected a ¼ 0:05 risk level. Similar results are obtained via univariate tests, with each one applied on each
scalar parameter. Two indicative such results are, for an F3

0:05 damage case and an F 3
0:20 damage case,

presented in Fig. 8, from which detection is clearly achieved based upon the a1 and a3 parameter tests (F 3
0:05

damage) and the a1; . . . ; a5 parameter tests (F3
0:20 damage). Similar results are obtained for damage incurred in

other storeys of the building.

4.2.2. Damage assessment

Damage localization (identification): Two typical damage localization (identification) results, the first
corresponding to an F 3

0:05 damage case and the second to an F 3
0:20 damage case, are presented in Fig. 9. In these

plots the distances of the current (building in unknown state) hu
K vector’s tip point to each fault mode

hyperplane are depicted. As is readily verified, the distance to the correct (F3) hyperplane is, in both cases,
clearly minimal, and thus the methodology correctly identifies each damage as incurred in the building’s third
storey.

Damage quantification (level estimation): For damage quantification a distance versus fault magnitude
function is, for each fault mode, employed. This is pre-constructed during the training stage, by taking damage
cases from a specific fault mode but of various (known) levels and computing their distance from the point
corresponding to the nominal (healthy) structure. The distance function for the F 3 (3rd storey) mode is
depicted in Fig. 10. Using this function for damage level estimation with the two single damage cases (F 3

0:05

and F3
0:20) leads to very accurate estimates (5% and 20%, respectively; see Fig. 10).
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5. Concluding remarks and discussion

A stochastic OE model-based methodology for damage detection and assessment in structures under
earthquake excitation has been introduced. The methodology is intended for periodically assessing the state of
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a structure following potential damage occurrence by exploiting vibration measurements produced by low-
level earthquake excitations. It is based upon stochastic OE model identification, statistical hypothesis testing
procedures that utilize the properties of the OE estimator for effective damage detection, and a GM for
damage assessment (localization and quantification).

The methodology circumvents the problems associated with earthquake excitation non-stationarity and
limited duration, and is capable of operating under measurement uncertainty. It utilizes only ‘‘small’’ size,
simple and partial (in both the spatial and frequency bandwidth senses) identified structural models, and a
limited number of measured signals.

Its feasibility and effectiveness have been demonstrated via Monte Carlo experiments pertaining to damage
detection and assessment in a simple simulation model of a six storey building subject to earthquake
excitation. Damage detection, localization and quantification have been shown to be effective with damage
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levels of 5% and 20% reduction in a storey’s stiffness by using acceleration responses corrupted with 5% non-
stationary noise.

Just like any vibration-based method, the methodology’s performance (in particular the detectable level of
damage) is in practice affected by a number of factors, such as: (i) The earthquake excitation characteristics
(direction, strength, duration, and frequency content), which must be sufficient for successful identification.
(ii) The number and specific selection of the vibration measurement locations. Although vibration methods are
‘‘global’’, it is well known that relatively minor damages are more effectively detected from certain
measurement locations. (iii) Changes in the environmental effects between the training and operational stages
(for instance changes in temperature and humidity), but also the presence of additional excitations due, for
instance, to wind. This is a well known issue and is in the focus of a number of current investigations. (iv) The
level of noise on the measured vibration signals. (v) Excursions from the structure’s linear operating regime
(which may be due to stronger earthquake events). (vi) Finally, damage assessment (localization and level
estimation) accuracy depends upon the quality of the (finite element or other) model employed.

In addition, there are some limitations to the presented methodology. One such limitation is the gross
nature of the achieved damage assessment, which is inherited from the simple and partial models used.
Possibilities for more precise assessment could be considered in conjunction with expanded (‘‘larger’’ size)
structural models. Furthermore, although the method is fully capable of detecting multiple damage (damage
at several locations), assessment is currently limited to the single damage case.

An additional, ‘‘internal’’, limiting factor is the approximate, linear (hyperplane-type) representations
of the fault modes, which may (under certain conditions) lead to errors. Work has been under way for the
relaxation of this limitation, and the precise estimation of nonlinear fault mode representations from pertinent
vibration records. Progress on this, along with a detailed laboratory application, will be reported in a
forthcoming paper [46].
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Appendix

Using the differentiation operator D (Dx¼
n
_x), the equations of motion [Eqs. (6)] are rewritten as

D2 þ
ciþ1 þ ci

mi

�Dþ
kiþ1 þ ki

mi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ai

�xi �
ciþ1

mi

�Dþ
kiþ1

mi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bi

�xiþ1 ¼
ci

mi

�Dþ
ki

mi

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Ci

�xi�1

ði ¼ 1; . . . ; 5Þ ðA:1Þ

D2 þ
c6

m6
�Dþ

k6

m6

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G

�x6 �
c6

m6
�Dþ

k6

m6

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

H

�x5 ¼ 0. (A.2)

The corresponding set of auxiliary equations [Eqs. (7)] is rewritten as:

D2 þ
c2 þ c1

m1
�Dþ

k2 þ k1

m1

� �
� c1 �

c2

m1
�Dþ

k2

m1

� �
� c2 ¼ x0, (A.3)

D2 þ
ciþ1 þ ci

mi

�Dþ
kiþ1 þ ki

mi

� �
� ci �

ciþ1

mi

�Dþ
kiþ1

mi

� �
� ciþ1 ¼

ci

mi

�Dþ
ki

mi

� �
� ci�1

ði ¼ 2; . . . ; 5Þ, ðA:4Þ
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D2 þ
c6

m6
�Dþ

k6

m6

� �
� c6 �

c6

m6
�Dþ

k6

m6

� �
� c5 ¼ 0. (A.5)

By solving Eqs. (A.1), (A.2) for x6 as a function of x0 gives

x6 1�
A5G

B5H
þ

C5B4G

B5I4H

� �
¼ �

C5C4C3C2C1

B5I4I3ðA2A1 � C2B1Þ
x0 (A.6)

with

I3 ¼ A3 �
C3B2A1

A2A1 � C2B1
; I4 ¼ A4 �

C4B3

I3
. (A.7)

The proper manipulation of Eqs. (A.3)–(A.5) also gives

x0 ¼ �
B5I4I3ðA2A1 � C2B1Þ

C5C4C3C2
1�

A5G

B5H
þ

C5B4G

B5I4H

� �
c6. (A.8)

Substituting Eq. (A.8) into Eq. (A.6) leads to the desired result for the 6th storey, i.e.

x6 ¼ C1 � c6 ¼) x6 ¼
c1

m1

_c6 þ
k1

m1
c6. (A.9)

Corresponding results [in the form of Eq. (9)] are obtained for each one of the remaining storeys by following
the corresponding substitutions.
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