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Abstract

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including

aircraft, ships and space vehicles, etc., often perform their critical missions and are exposed to potential dangerous impact

environments such as base-transferred shock forces. In this study a transient response analysis technique of a rotor system

is proposed. The study involves applying the generalized finite element modeling method of a rotor-bearing system

considering a base-transferred shock force along with the state-space Newmark method of a direct time integration scheme

based on the average velocity concept. Experiments are performed to a test rig of a mock-up rotor-bearing system with a

series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical

and experimental results are carried out. The results show that the transient responses of the rotor are sensitive to the

duration times of the shocks. In particular, in cases where the frequencies, 1/(2� duration time), of the shock waves are

close to the critical speed of the rotor-bearing system, resonances may occur and the transient responses of the rotor are

consequently amplified. Overall, the analytical results agree quite well with the experimental data.

Published by Elsevier Ltd.
1. Introduction

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems,
including aircrafts, ships and space vehicles, etc., often experience various sudden shock forces through their
life cycles, depending on the operating conditions and external environment. These shock forces may be
transferred through bases or foundations directly to core rotor-bearing systems of turbomachinery, and can
induce severe damages due to direct impact collisions between the rotors and bearings, seals and other stators
or generate dangerous high vibrations in the rotors due to their rubbing contacts. Therefore, in cases of
turbomachinery which are exposed to potential dangerous impact environment and still perform their critical
missions, it is necessary to accurately predict transient responses of their rotor systems under base-transferred
shock forces and estimate their safety in the early design stages.
ee front matter Published by Elsevier Ltd.
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Transient response analyses of rotor-bearing systems to base-transferred shock forces might be classified
into system modeling methods and types of excitations. Hori and Kato [1] investigated the stability of a rotor
system supported by fluid film bearings when acted by seismic loads, using a Jeffcott rotor model. Tessarzik et
al. [2] analyzed transient responses of a simple turbomachinery model, considering relative coordinate systems,
to random excitations in the axial direction imposed at its base, and Soni and Srinivasan [3] investigated the
responses of a rigid rotor model to seismic loads. Singh et al. [4], Suarez et al. [5], and Gaganis et al. [6]
proposed finite element(FE) rotor models by taking their base motions into consideration and analyzed
transient responses to seismic excitations. It is noteworthy that Suarez et al. [5] proposed the most generalized
rotor-bearing system model with base excitations by introducing parametric and nonlinear effects, induced by
the rotational motions of the base, into their model.

As direct time-integration methods for obtaining a transient response of a dynamic system, there is an
explicit method such as the Runge–Kutta method and an implicit method such as the Newmark method.
However, generally speaking, since in the explicit method a time step, Dt, acts as a quite restrictive condition
for numerical stability, for a dynamic system with large degrees of freedom, the implicit method which has a
numerical stability for any Dt [7] is frequently utilized. Among the implicit methods, the Newmark method
based on the average acceleration is most widely used. This method has a guaranteed numerical stability and
second-order accuracy [8]. For a rotor-bearing system in which its bearing stiffness or damping is generally
asymmetric and unproportional to its system inertia or stiffness, an eigenvalue analysis is often performed by
transforming the system equation into a first-order differential equation by introducing the state-space vector.
On the other hand, the conventional Newmark method based on the average acceleration cannot be directly
applied to solve a transient response of the state-space first-order differential equation. To overcome this, Kim
and Lee [9] proposed the state-space Newmark method, which is based on the average velocity concept.

Most of the above previous studies concentrated on constructing reliable analytical models depending on
the types of base excitations, and only a few investigations have been carried out to verify the analytical
models through experiments or to estimate the quantitative errors of dynamic transient responses. In this
study a transient response analysis technique of a rotor system is proposed. The methods involves applying the
generalized FE modeling method of a rotor-bearing system considering the base-transferred shock force along
with the state-space Newmark method of a direct time integration scheme based on the average velocity
concept. Experiments are performed to a test rig of mock-up rotor-bearing system with a series of half-sine
waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and
experimental results are also carried out.
2. Equation of motion

2.1. Energy equation

Fig. 1 shows a rotor-bearing system mounted on its rigid base, and XYZ is the inertial reference frame and
xyz the local reference coordinate system attached to the base. At a certain point, P, along the centerline of the
rotor shaft, ux, uy, yx and yy represent translational and rotational displacements in the x and y directions. The
Fig. 1. Rotor-bearing system on the rigid base and its coordinate systems.
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rotor rotates at a constant angular velocity of O with respect to the z-axis and any displacement in the z

direction is neglected. Further, ubX, ubY, ubZ, ybX, ybY and ybZ represent translational and rotational
displacements of the base with respect to XYZ, respectively.

Considering a position vector, {rb}, of xyz from XYZ and a position vector, {r}, of P from xyz, a velocity
vector of P is expressed by

f_rPg ¼ f_rbg þ f_rg þ ½ob�frg, (1)

where

frg ¼ ux uy þ h z
� �T

; f_rbg ¼ _ubX _ubY _ubZb cT,

f_rg ¼ _ux _uy 0
� �T

; ½ob� ¼

0 �_ybZ
_ybY

_ybZ 0 �_ybX

�_ybY
_ybX 0

2
64

3
75.

Considering the translational and rotational motion of a disk element, representing a lumped mass at P, its
kinetic energy is expressed by

Td ¼
1
2

mdf_rPg
Tf_rPg þ

1
2
fogT½Id �fog, (2)

where md is a mass of the disk element, and diag½Id � ¼ fI
t
d I t

d I
p
dg and I t

d and I
p
d are the transverse and polar

moments of inertia of the disk element, repectively. An angular velocity vector, {o}, of the shaft can be
expressed by the following, utilizing the Euler angles a, b and g:

fog ¼

cos b cos g sin g 0

� cos b sin g cos g 0

sin b 0 1

2
64

3
75

_a
_b

_g

8><
>:

9>=
>;, (3)

where a ¼ yx þ ybX , b ¼ yy þ ybY and g ¼ Ot. Substituting Eqs. (1) and (3) into Eq. (2), the kinetic energy of
the disk element is

Td ¼
md

2
ðf_rbg

Tf_rbg þ f_rg
Tf_rg � frgT½ob�

2frg þ 2f_rgT½ob�frg þ 2f_rbg
Tf_rg

þ 2f_rbg
T½ob�frgÞ þ

1
2
ðI t

df
_YgTf _Yg þ 2OI

p
df
_YgTfe1gfe2gTfYg þ O2I

p
dÞ, ð4Þ

where fYg ¼ yx þ ybX yy þ ybY

� �T
; fe1g ¼ 1 0b cT and fe2g ¼ 0 1b cT and fe2g ¼ 0 1b cT: Referring to the

shaft element as shown in Fig. 2 and considering its translational and rotational motions, its kinetic energy is
expressed by

Ts ¼

Z l

0

1

2
rAf_rPg

Tf_rPgdxþ
Z l

0

1

2
rfogT½Is�fogdx, (5)
Fig. 2. Shaft element and its coordinate system.
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where rA is the mass per a unit length of the shaft element, and diag½I s� ¼ fI
t
sI

t
sI

p
s g and I t

s and Ip
s are the

transverse and polar area moments of inertia of the shaft element, respectively. Substituting Eqs. (1) and (3)
into Eq. (5), the kinetic energy of the shaft element is

Ts ¼

Z l

0

1

2
rAðf_rbg

Tf_rbg þ f_rg
Tf_rg � frgT½ob�

2frg þ 2f_rgT½ob�frg þ 2f_rbg
Tf_rg

þ 2f_rbg
T½ob�frgÞdxþ

Z l

0

1

2
rðI t

sf
_YgTf _Yg þ 2OIp

s f
_YgTfe1gfe2gTfYg þ O2Ip

s Þdx: ð6Þ

Considering the bending and shear deformations of the shaft element, its strain energy is expressed by

V s ¼

Z l

0

1

2
½EIt

sfy
0
gTfy0g þ kGAfysg

Tfysg�dx, (7)

where fyg ¼ yx yy

� �T
, fysg ¼ u0y þ yx u0x � yy

j kT
; and E is the Young’s modulus, G the shear modulus and

k the shear coefficient of the shaft element, and 0 represents @=@x.

2.2. FE equation of motion

Applying the Lagrange’s equation to the kinetic energy of the disk element given by Eq. (4), the equation of
motion of the disk element may be expressed by the following:

½Md �f €qdg þ ½Cd �f _qdg þ ½Kd �fqdg ¼ ff d1ðtÞg þ ff d2ðtÞg þ ff d3ðtÞg, (8)

where fqdg ¼ ux uy yx yy

� �T
, and the system matrices and forcing vectors are given in the Appendix A.

Different from the conventional equation of motion of a disk element [10], Eq. (8) contains in [Cd] the
parametric term due to the angular velocity of the base in addition to the gyroscopic effect term and has
the newly generated [Kd], comprised of the parametric terms due to the products of the angular velocities and
the angular acceleration of the base. The generalized excitation force also consists of ff d1ðtÞg due to the
translational acceleration of the base, the nonlinear ff d2ðtÞg generated by the products of the translational and
angular velocities of the base and ff d3ðtÞg due to the angular velocity and acceleration of the base.

Referring to Figs. 1 and 2, at point P in the shaft element {r}, {y} and {ys} are expressed by

frg ¼

ux

uy þ h

z

8><
>:

9>=
>; ¼

ux

uy

0

8><
>:

9>=
>;þ

0

h

z

8><
>:

9>=
>; ¼ fug þ feg ¼ ½Nt�fqsg þ feg, (9)

fyg ¼
yx

yy

( )
¼ ½Nr�fqsg, (10)

fysg ¼
u0y þ yx

u0x � yy

( )
¼ ½Ns�fqsg, (11)

where fqsg ¼ ux1
uy1 yx1

yy1 ux2
uy2 yx2

yy2

� �T
and feg ¼ 0 h zb c

T and [Nt], [Nr] and [Ns] are the
shape function matrices of the translational, rotational, shear rotary displacements of the shaft element [10].
Substituting Eqs. (9)–(11) into the kinetic and strain energies of the shaft element given by Eqs. (6) and (7),
and applying the Lagrange’s equation to them, the FE equation of motion of the shaft element may be
expressed by the following:

ð½Mt
s� þ ½M

r
s�Þf €qsg þ ðO½C

g
s � þ

_ybZ½C
p
s �Þf _qsg þ ð½K

e
s � þ ½K

c
s � þ

€ybZ½K
a
s �Þfqsg

¼ ff s1ðtÞg þ ff s2ðtÞ þ ff s3ðtÞg ð12Þ

where the system matrices and forcing vectors are given in the Appendix B. Similarly, different from the
conventional equation of motion of the shaft element [10], Eq. (12) contains in the generalized damping matrix
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the parametric term _ybZ½C
p
s � due to the angular velocity of the base in addition to the gyroscopic effect term

O½Cg
s �, and in the generalized stiffness matrix the parametric term ½Kc

s � due to the products of the angular
velocities and the angular acceleration of the base and the parametric term €ybZ½K

a
s � due to the angular

acceleration of the base in addition to ½Ke
s �, which is due to bending and shear deformations. The generalized

excitation force also consists of ff s1ðtÞg due to the translational acceleration of the base, the nonlinear ff s2ðtÞg

generated by the products of the translational and angular velocities of the base and ff s3ðtÞg due to the angular
velocity and acceleration of the base.

Further considering the equations of bearing elements and external forces such as unbalance forces, an
assembled-resultant equation of motion of the entire rotor-bearing system can be expressed by

½M�f €qg þ ½C�f _qg þ ½K �fqg ¼ ff ðtÞg. (13)

Finally, introducing the state-space vector, Eq. (13) can be transformed into the first-order differential
equation as given by

f_rg ¼ ½A�frg þ fFg, (14)

where

frg ¼ f _qg fqg
� �T

; ½A� ¼
�½M��1½C� �½M��1½K �

½I � ½0�

" #
,

fFg ¼
½M��1ff ðtÞg

f0g

( )
.

3. Transient response analysis

3.1. State-space Newmark method

As shown in Fig. 3 the state-space Newmark method assumes an average velocity over the time interval, Dt.
Defining time tð0ptpDtÞ within Dt, the average velocity between the time step tn and tnþ1 is

f_rðtÞg ¼ 1
2
½f_rgnþ1 þ f_rgn�. (15)

Integrating Eq. (15) with an initial condition, ftð0Þg ¼ frgn, the displacement at time t is

frðtÞg ¼ frgn þ
t
2
½f_rgnþ1 þ f_rgn�. (16)

From Eq. (16), the displacement at t ¼ Dt, in other words, the time step tnþ1, is

frgnþ1 ¼ frgn þ
Dt

2
½f_rgnþ1 þ f_rgn�. (17)
Fig. 3. Average velocity in the state-space Newmark method.
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Then, the velocity at tnþ1is

f_rgnþ1 ¼
2

Dt
½frgnþ1 � frgn� � f_rgn. (18)

Finally, considering Eq. (14) at tnþ1, and substituting Eq. (18) into it and manipulating,

frgnþ1 ¼ ð½I � �
Dt

2
½A�Þ�1ðfrgn þ

Dt

2
f_rgnþ1 þ

Dt

2
fFgnþ1Þ. (19)

Upon calculating Eq. (19) with the state values at tn the state values or displacement and velocity at tnþ1 are
obtained. Thus, the introduced state-space Newmark method yields a much simpler and more straightforward
formulation than the conventional Newmark method, which is based on the average acceleration and thereby
its coding is more readily carried out.

3.2. Error estimation

In order to estimate the quantitative error between analytical and experimental time responses, a magnitude
error factor, em, phase error factor, ep, and comprehensive error factor, ec, are explored from an analytical
response t1 and an experimental response t2 A response t2 with its data length number of N can be expressed
by the product of its magnitude m and unit vector l:

t ¼ ml, (20)

where m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1tðiÞ2

q
and l ¼ t=m. Utilizing the phase correlation, pa ¼ l1 � l2, between the two responses, ep

is defined by the following:

�p ¼
cos�1ðpaÞ

p
; 0p�pp1

�p ¼ 0! no phase error;

�p ¼ 1! out of phase;

(
(21)

where pa ¼ C=
ffiffiffiffiffiffiffi
AB
p

, A ¼
PN

i¼1t1ðiÞ
2, B ¼

PN
i¼1t2ðiÞ

2 and C ¼
PN

i¼1t1ðiÞt2ðiÞ. Utilizing the relative

magnitude error, ma ¼ ðA� BÞ=
ffiffiffiffiffiffiffi
AB
p

, em is defined by the following [11]:

�m ¼ signðmaÞ log10ð1þ jmajÞ, (22)

where if �m ¼ 0 there is no magnitude error, and if �m40; the magnitude error may increase but it converges to
a certain constant value and thereby em does not diverge. Finally, from em and ep, ec is defined by

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð�2m þ �

2
pÞ

q
, (23)

where x is a scale factor with a recommended value of p/4. On the other hand, if the absolute values of em, ep

and ec are all less than 0.2, the two responses are evaluated as being in good agreement with each other [11].
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Fig. 4. Equivalent FE rotor-bearing system model.
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4. Results and discussions

4.1. Numerical analysis

Fig. 4 shows an equivalent FE model of the rotor-bearing system used in the base-transferred shock
transient analysis, and its detailed modeling data are given in Table 1. Its critical speeds are 3044 and 8092 rev/
min. Figs. 5 and 6 show the shock excitations applied to the base of the rotor-bearing system and the transient
responses of the rotor rotating at 6000 rev/min as predicted at bearing 1 and 2 positions. The shock excitation
Table 1

Detailed FE modeling data for the rotor-bearing system

Shaft elementa

N L D N L D N L D N L D N L D N L D

1 10 10 8 34 24 15 25 40 22 40 40 29 30 40 36 20 20

2 30 15 9 20 30 16 25 40 23 40 40 30 20 30 37 10 10

3 20 15 10 20 30 17 25 40 24 45 40 31 20 30

4 28.5 20 11 25 30 18 35 40 25 45 40 32 34 24

5 28.5 20 12 25 30 19 40 40 26 45 40 33 6 20

6 28 20 13 25 40 20 40 40 27 45 40 34 25 20

7 6 20 14 25 40 21 40 40 28 30 40 35 20 20

Disk element

Disk no. Mass (kg) It (kgm
2) Ip (kgm2) Unbalance (gmm) Disk no. Mass (kg) It (kgm

2) Ip (kgm2) Unbalance (gmm)

D1 0.736 3.3E-4 2.67E-4 40+01 D4 1.883 2.24E-3 4.35E-3 40+01

D2 1.034 7.8E-4 1.5E-3 40+01 D5 2.824 3.47E-3 6.53E-3 —

D3 1.034 7.8E-4 1.5E-3 — D6 2.824 3.47E-3 6.53E-3 40+01

Bearing stiffness and damping (Kxy ¼ Kyx ¼ Cxy ¼ Cyx ¼ 0)

Brg. no. Kxx (N/m) Kyy (N/m) Cxx (N s/m), x ¼ 0:01 Cyy (N s/m), x ¼ 0:01

1, 2 1.75E6 1.75E6 5.57E1 5.57E1

aN, element no.; L, length (mm); D, diameter (mm). E ¼ 2:0� 1011 N=m2; r ¼ 7833:48 kg=m3.

Fig. 5. Shock excitation and y and x direction rotor responses predicted at bearing 1.
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Fig. 6. Shock excitation and y and x direction rotor responses predicted at bearing 2.

Fig. 7. Set-up of the rotor test-rig and electro-magnetic shaker.

Fig. 8. A typical half-sine wave shock signal with a duration time of 10ms generated by the electro-magnetic shaker.

A.S. Lee et al. / Journal of Sound and Vibration 297 (2006) 595–615602
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was an ideal half-sine wave with a magnitude of 3g and a duration time of 10ms, and was applied in the y

direction. The maximum y direction responses of the rotor at bearings 1 and 2 were predicted to be 398.8 and
520.9 mm (Pk-to-Pk), respectively. Even though the shock was applied only in the y direction and the coupling
effects of the bearings were neglected, the x direction responses of the rotor were generated due to the
gyroscopic coupling effect and increased with time.
4.2. Set-up of shock experiment

A rotor test-rig, which simulates the equivalent FE rotor-bearing system shown in Fig. 4, was constructed.
Fig. 7 shows a set-up of the shock experiment in which the rotor test-rig was installed on the electro-magnetic
shaker, and the rotor was excited only in the vertical y direction. The test rotor was supported by two ball
bearings and each bearing was installed on its pedestal through four coil springs. The resulting effective
Fig. 9. Spectra of experimental half-sine wave shock excitations.

Fig. 10. Experimental shock wave with a duration time of 5ms and analytical and experimental rotor responses at bearing 1 for 0 rev/min.
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bearing stiffness was then controlled by these springs. Modal tests revealed that the first and second resonant
speeds of the test rotor system were 3060 and 8076 rev/min, and thereby its natural characteristics were in good
agreement with those of the analytical model in Fig. 4. Fig. 8 shows a typical example of the half-sine wave
shock signal with a duration time of 10ms generated by the electro-magnetic shaker. Fig. 9 shows spectra of
the half-sine shock signals generated by the shaker with maximum accelerations of about 3g and duration
times of 5, 10 and 15ms.
Fig. 11. Experimental shock wave with a duration time of 5ms and analytical and experimental rotor responses at bearing 2 for 0 rev/min.

Fig. 12. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 1

for 0 rev/min.
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4.3. Comparisons of analyses and experiments

For the base-transferred shock excitations applied by the shaker at duration times of 5, 10 and 15ms, the
analytical and experimental transient time-responses of the rotor as obtained at bearings 1 and 2 positions are
shown in Figs. 10–15 for the stationary state (0 rev/min) and Figs. 16–21 for the rotating state at 6000 rev/min
along with their corresponding magnitude, phase and comprehensive error factors, representing quantitative
errors. In the analyses the damping ratios of the bearings were set to x ¼ 0:01.
Fig. 13. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 2 for

0 rev/min.

Fig. 14. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 1 for

0 rev/min.
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Fig. 15. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 2 for

0 rev/min.

Fig. 16. Experimental shock wave with a duration time of 5ms and analytical and experimental rotor responses at bearing 1 for

6000 rev/min.

A.S. Lee et al. / Journal of Sound and Vibration 297 (2006) 595–615606
For the stationary state. In the case of duration times of 5, 10 and 15ms, from Figs. 10–15 the y direction
responses of the rotor obtained at bearings 1 and 2 all have em, em and ep and ec values less than 0.2.
Therefore, the analytical and experimental transient time-responses of the rotor to the base-transferred shock
excitations were in good agreement with each other. Further, since the shocks were applied only in the y

direction and the coupling effects of the bearings were neglected in the analyses, the analytical x direction
responses of the rotor were not generated. It was observed that, as in the test rotor the coupling effects
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Fig. 17. Experimental shock wave with a duration time of 5ms and analytical and experimental rotor responses at bearing 2 for

6000 rev/min.

Fig. 18. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 1 for

6000 rev/min.

A.S. Lee et al. / Journal of Sound and Vibration 297 (2006) 595–615 607
of the bearings acted to some extent, the experimental x direction responses of the rotor increased with
increasing time.

For the rotating state. In the case of a duration time of 5ms, from Fig. 16 the y direction responses of the
rotor at bearing 1 have ep and ec values that are somewhat larger than 0.2 whereas em value is less than 0.2.
However, from Fig. 17 the y direction responses of the rotor at bearing 2 all have em, ep and ec values less than
0.2. In the cases of duration times of 10 and 15ms, from Figs. 18–21 the y direction responses obtained at
bearings 1 and 2 all have em, ep and ec values less than 0.2. Further, the analytical and experimental x direction
responses of the rotor show some differences from each other. Similar to the stationary state, it is reasoned
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Fig. 19. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 2 for

6000 rev/min.

Fig. 20. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 1

for 6000 rev/min.

A.S. Lee et al. / Journal of Sound and Vibration 297 (2006) 595–615608
that this is because the analytical model neglected the coupling effects of the bearings whereas in the test rotor
the coupling effects of the bearings acted to some extent.

On the other hand, it was observed from Figs. 10–21 that for both 0 and 6000 rev/min the y direction
responses of the rotor with a duration time of 10ms were amplified to a greater extent than those responses
with duration times of 5 and 15ms. The reason for this is that the frequencies, 1/(2�duration
time) ¼ 50Hz ¼ 3000 rev/min, of the shock waves with a duration time of 10ms were close to the natural
frequencies or critical speeds (analysis rotor: 3044 rev/min, test rotor: 3060 rev/min) of the rotor-bearing
system. From the above, the analytical and experimental transient time-responses of the rotor to the base-
transferred shock excitations overall appear to be in good agreement with each other.
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Fig. 21. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 2 for

6000 rev/min.

A.S. Lee et al. / Journal of Sound and Vibration 297 (2006) 595–615 609
5. Conclusions

In this study a transient response analysis technique of a rotor system was proposed. This technique
involved applying the generalized FE modeling method of a rotor-bearing system considering a base-
transferred shock force along with the state-space Newmark method of a direct time integration scheme based
on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system
with a series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses
between the analytical and experimental results were carried out. The results showed that the transient
responses of the rotor were sensitive to the duration times of the shocks. Particularly, in cases where the
frequencies, 1/(2�duration time), of the shock waves were close to the critical speed of the rotor-bearing
system, resonances could occur and the transient responses of the rotor could be amplified. Overall, it is
concluded that the analytical results agreed quite well with the experimental data.
Appendix A

A.1. For disk element, system matrices and forcing vectors
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2
66664

3
77775, (A.1)
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Appendix B. For shaft element, system matrices and forcing vectors
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s� ¼ ½M

t
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