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Abstract

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems, including
aircraft, ships and space vehicles, etc., often perform their critical missions and are exposed to potential dangerous impact
environments such as base-transferred shock forces. In this study a transient response analysis technique of a rotor system
is proposed. The study involves applying the generalized finite element modeling method of a rotor-bearing system
considering a base-transferred shock force along with the state-space Newmark method of a direct time integration scheme
based on the average velocity concept. Experiments are performed to a test rig of a mock-up rotor-bearing system with a
series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical
and experimental results are carried out. The results show that the transient responses of the rotor are sensitive to the
duration times of the shocks. In particular, in cases where the frequencies, 1/(2 x duration time), of the shock waves are
close to the critical speed of the rotor-bearing system, resonances may occur and the transient responses of the rotor are
consequently amplified. Overall, the analytical results agree quite well with the experimental data.

Published by Elsevier Ltd.

1. Introduction

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems,
including aircrafts, ships and space vehicles, etc., often experience various sudden shock forces through their
life cycles, depending on the operating conditions and external environment. These shock forces may be
transferred through bases or foundations directly to core rotor-bearing systems of turbomachinery, and can
induce severe damages due to direct impact collisions between the rotors and bearings, seals and other stators
or generate dangerous high vibrations in the rotors due to their rubbing contacts. Therefore, in cases of
turbomachinery which are exposed to potential dangerous impact environment and still perform their critical
missions, it is necessary to accurately predict transient responses of their rotor systems under base-transferred
shock forces and estimate their safety in the early design stages.
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Transient response analyses of rotor-bearing systems to base-transferred shock forces might be classified
into system modeling methods and types of excitations. Hori and Kato [1] investigated the stability of a rotor
system supported by fluid film bearings when acted by seismic loads, using a Jeffcott rotor model. Tessarzik et
al. [2] analyzed transient responses of a simple turbomachinery model, considering relative coordinate systems,
to random excitations in the axial direction imposed at its base, and Soni and Srinivasan [3] investigated the
responses of a rigid rotor model to seismic loads. Singh et al. [4], Suarez et al. [5], and Gaganis et al. [6]
proposed finite element(FE) rotor models by taking their base motions into consideration and analyzed
transient responses to seismic excitations. It is noteworthy that Suarez et al. [5] proposed the most generalized
rotor-bearing system model with base excitations by introducing parametric and nonlinear effects, induced by
the rotational motions of the base, into their model.

As direct time-integration methods for obtaining a transient response of a dynamic system, there is an
explicit method such as the Runge-Kutta method and an implicit method such as the Newmark method.
However, generally speaking, since in the explicit method a time step, A¢, acts as a quite restrictive condition
for numerical stability, for a dynamic system with large degrees of freedom, the implicit method which has a
numerical stability for any Ar [7] is frequently utilized. Among the implicit methods, the Newmark method
based on the average acceleration is most widely used. This method has a guaranteed numerical stability and
second-order accuracy [8]. For a rotor-bearing system in which its bearing stiffness or damping is generally
asymmetric and unproportional to its system inertia or stiffness, an eigenvalue analysis is often performed by
transforming the system equation into a first-order differential equation by introducing the state-space vector.
On the other hand, the conventional Newmark method based on the average acceleration cannot be directly
applied to solve a transient response of the state-space first-order differential equation. To overcome this, Kim
and Lee [9] proposed the state-space Newmark method, which is based on the average velocity concept.

Most of the above previous studies concentrated on constructing reliable analytical models depending on
the types of base excitations, and only a few investigations have been carried out to verify the analytical
models through experiments or to estimate the quantitative errors of dynamic transient responses. In this
study a transient response analysis technique of a rotor system is proposed. The methods involves applying the
generalized FE modeling method of a rotor-bearing system considering the base-transferred shock force along
with the state-space Newmark method of a direct time integration scheme based on the average velocity
concept. Experiments are performed to a test rig of mock-up rotor-bearing system with a series of half-sine
waves imposed by an eclectromagnetic shaker, and quantitative error analyses between analytical and
experimental results are also carried out.

2. Equation of motion
2.1. Energy equation
Fig. 1 shows a rotor-bearing system mounted on its rigid base, and XYZ is the inertial reference frame and

xyz the local reference coordinate system attached to the base. At a certain point, P, along the centerline of the
rotor shaft, u,, u,, 0, and 0, represent translational and rotational displacements in the x and y directions. The

Rotor-Bearing System

Fig. 1. Rotor-bearing system on the rigid base and its coordinate systems.
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rotor rotates at a constant angular velocity of Q with respect to the z-axis and any displacement in the z
direction is neglected. Further, u,y, upy, Upz, Opy, 0py and 0,7 represent translational and rotational
displacements of the base with respect to XYZ, respectively.

Considering a position vector, {r,}, of xyz from XYZ and a position vector, {r}, of P from xyz, a velocity
vector of P is expressed by

{rp} = {rp} + {7} + [oplir}, (1)

where
= lue w+h 2" ey =linx iy inzlT

0 —0pz  Opy
i =lie @ 0|, [wl=| Oz 0 —bpx
—Opy  Opx 0

Considering the translational and rotational motion of a disk element, representing a lumped mass at P, its
kinetic energy is expressed by

Ty = $mafip} {ip} + Ho} Lallo), )
where m, is a mass of the disk element, and diag[/,] = {I}, I, I’} and I, and I, are the transverse and polar
moments of inertia of the disk element, repectively. An angular velocity vector, {w}, of the shaft can be
expressed by the following, utilizing the Euler angles «, f# and 7y:

cos fcosy siny O a
{w}=| —cosfsiny cosy 0 B , (3)
sin f8 0 1 7
where o = 0, + Oy, f = 0, + 0py and y = Qt. Substituting Eqs. (1) and (3) into Eq. (2), the kinetic energy of
the disk element is

Ty= %({@}Tm} + (AT — (YT Toop(r} + 207 [wp){r} + 2{) {7}
+ 2{ip} [wp)(r}) + 3OO} + 2QF{O) {e1 }er) T{O) + Q1), 4)
where {®} = Lﬂx +0px 0,+ GbyJT, {ei} =11 0J/Tand{e;} =10 1JTand{e;} =10 1]T. Referring to the

shaft element as shown in Fig. 2 and considering its translational and rotational motions, its kinetic energy is

expressed by
ll /
Ts = / 5 pAlp) {Fp} dE + /
0 0

1
Ep{w}T[l.y]{w} d¢, ®)

Fig. 2. Shaft element and its coordinate system.
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where pA is the mass per a unit length of the shaft element, and diag[/,] = {I./!1?} and I’ and I? are the

transverse and polar area moments of inertia of the shaft element, respectively. Substituting Egs. (1) and (3)
into Eq. (5), the kinetic energy of the shaft element is

"
T, = /O 3 p ALY (s} + (YT} — (Y o]} + 207 Twpl{r) + 206} {7}

I ) ) )
+ 2{ip} [ewp]{r}) dE + /O 3 p(IH{OY(O) + 2017 {O} {1 Her} 1O} + Q°I7) dE. (6)

Considering the bending and shear deformations of the shaft element, its strain energy is expressed by
!
1
Vs =/ E[EI_Z{@/}T{@/} + KkGA{0,){0,)] d¢, (7)
0

T
where {0} = L()x GyJT, {0} = {u; +0, u, — QJ’J , and FE is the Young’s modulus, G the shear modulus and

k the shear coefficient of the shaft element, and ’ represents 0/0¢.

2.2. FE equation of motion

Applying the Lagrange’s equation to the kinetic energy of the disk element given by Eq. (4), the equation of
motion of the disk element may be expressed by the following:

[Mal{G.} + [Callgs} + [Kallas} = f a1 (O} + {f (O} + {f 13(D}, ®)

where {g,} = [ux u, 0y OyJT, and the system matrices and forcing vectors are given in the Appendix A.
Different from the conventional equation of motion of a disk element [10], Eq. (8) contains in [C,] the
parametric term due to the angular velocity of the base in addition to the gyroscopic effect term and has
the newly generated [K,], comprised of the parametric terms due to the products of the angular velocities and
the angular acceleration of the base. The generalized excitation force also consists of {f;(¢¥)} due to the
translational acceleration of the base, the nonlinear {f ;,(#)} generated by the products of the translational and
angular velocities of the base and {f ;;(¢)} due to the angular velocity and acceleration of the base.
Referring to Figs. 1 and 2, at point P in the shaft element {r}, {6} and {0} are expressed by

Uy Uy 0
{V} = Uy + h = uy + h = {l/l} + {E} = [Nf]{qs} + {6}, (9)
z 0 z
0,
y
u; + 0,
{05} = W—0, (= [Vsl{ghs (11)

where {¢q,} = |uy, wuy,, Oy 0, u, u, 0O Hyij and{e} =10 & z|]Tand [N/, [N,] and [N,] are the
shape function matrices of the translational, rotational, shear rotary displacements of the shaft element [10].
Substituting Eqgs. (9)—(11) into the kinetic and strain energies of the shaft element given by Egs. (6) and (7),
and applying the Lagrange’s equation to them, the FE equation of motion of the shaft element may be
expressed by the following:

(M1 + MG, + QLCI + 0p2[ DG + (K + [KS]+ O52[K D)
=@} + {20 + (0} (12)

where the system matrices and forcing vectors are given in the Appendix B. Similarly, different from the
conventional equation of motion of the shaft element [10], Eq. (12) contains in the generalized damping matrix
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the parametric term QbZ[C{Z] due to the angular velocity of the base in addition to the gyroscopic effect term
Q[CY], and in the generalized stiffness matrix the parametric term [K{] due to the products of the angular
velocities and the angular acceleration of the base and the parametric term 0,2[K{] due to the angular
acceleration of the base in addition to [K¢], which is due to bending and shear deformations. The generalized
excitation force also consists of {f;(#)} due to the translational acceleration of the base, the nonlinear {f,(?)}
generated by the products of the translational and angular velocities of the base and {f 5(¢)} due to the angular
velocity and acceleration of the base.

Further considering the equations of bearing elements and external forces such as unbalance forces, an
assembled-resultant equation of motion of the entire rotor-bearing system can be expressed by

[M1{g} + [Cl{g} + [KNq} = {f (1)} (13)
Finally, introducing the state-space vector, Eq. (13) can be transformed into the first-order differential
equation as given by

{r} = [Al{r} + {F}, (14)
where

=l @ 1 l_[M]_I[C] ~IMITIK]
r = 9 = b

v 1 [0]

{ M1 () }
(F} = .

)

3. Transient response analysis
3.1. State-space Newmark method

As shown in Fig. 3 the state-space Newmark method assumes an average velocity over the time interval, At.
Defining time 7(0 <t <Af) within A¢, the average velocity between the time step ¢, and ¢, is

{10} = 31 + (7] (15)
Integrating Eq. (15) with an initial condition, {z(0)} = {r},, the displacement at time 7 is
(r©) = () + 5[l + (] (16)

From Eq. (16), the displacement at T = At, in other words, the time step #,.1, is

A
(s = 0hy o+ 5 (s + 17,0 (a7

{f}
A

{l"}n+l

{}n =

//

At {r©)

I
|
|
|
|

0 t,

Loyl

Fig. 3. Average velocity in the state-space Newmark method.
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Then, the velocity at ¢,,is

. 2 .
{V}n+1 :Kt[{r}n+l - {r}n]_ {r}n' (18)
Finally, considering Eq. (14) at f,,;, and substituting Eq. (18) into it and manipulating,
At At . At
= (U1 = S [AD ™ (ks + 5 Fhss + 5 Fha)- (19)

Upon calculating Eq. (19) with the state values at ¢, the state values or displacement and velocity at ¢,,; are
obtained. Thus, the introduced state-space Newmark method yields a much simpler and more straightforward
formulation than the conventional Newmark method, which is based on the average acceleration and thereby
its coding is more readily carried out.

3.2. Error estimation

In order to estimate the quantitative error between analytical and experimental time responses, a magnitude
error factor, ¢, phase error factor, ¢, and comprehensive error factor, ¢., are explored from an analytical
response t; and an experimental response t, A response t, with its data length number of N can be expressed
by the product of its magnitude m and unit vector I:

t = ml, (20)

where m = \/Zﬁill(z’)zand 1 = t/m. Utilizing the phase correlation, p, =1, - I, between the two responses, ¢,
is defined by the following:

—1 —
~_cos (p,) 0<s <1 g, = 0 — no phase error,
& = o 5 SRS

21

¢, = 1 — out of phase,
where p, = C/vAB, A=YN 0()’, B=Y" n6()? and C=3Y 1()n(). Utlizing the relative

magnitude error, m, = (4 — B)/~/AB, ¢&,, is defined by the following [11]:
ém = Sign(ma) lOgIO(l + |ma|), (22)

where if ¢, = 0 there is no magnitude error, and if ¢, > 0, the magnitude error may increase but it converges to
a certain constant value and thereby ¢,, does not diverge. Finally, from &, and ¢, ¢ is defined by

ee = \/x(e3, + &), (23)

where x is a scale factor with a recommended value of /4. On the other hand, if the absolute values of ¢, ¢,
and ¢, are all less than 0.2, the two responses are evaluated as being in good agreement with each other [11].

400 T T T T T T
. Total rotor length (mm) =1030
g 300 Total rotor mass (kg) = 17.6827 T
s 200 | D1 D2 D3 D4 D5 D6 T
2 ® ® 0 ® O @
S 100} 1
£ 7 34
e Op -« P -Hr -t +-+-+-+-1-1 4 =
2 j{'_
& -100F Brg.# 1 Brg.#2 4

200 \ . . L . .

0 200 400 600 800 1000

Axial Location (mm)

Fig. 4. Equivalent FE rotor-bearing system model.
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Fig. 4 shows an equivalent FE model of the rotor-bearing system used in the base-transferred shock
transient analysis, and its detailed modeling data are given in Table 1. Its critical speeds are 3044 and 8092 rev/
min. Figs. 5 and 6 show the shock excitations applied to the base of the rotor-bearing system and the transient
responses of the rotor rotating at 6000 rev/min as predicted at bearing 1 and 2 positions. The shock excitation

Table 1

Detailed FE modeling data for the rotor-bearing system

Shaft element®

N L D N L D N L D N L D N L D N L D
1 10 10 8 34 24 15 25 40 22 40 40 29 30 40 36 20 20
2 30 15 9 20 30 16 25 40 23 40 40 30 20 30 37 10 10
3 20 15 10 20 30 17 25 40 24 45 40 31 20 30
4 28.5 20 11 25 30 18 35 40 25 45 40 32 34 24
5 28.5 20 12 25 30 19 40 40 26 45 40 33 6 20
6 28 20 13 25 40 20 40 40 27 45 40 34 25 20
7 6 20 14 25 40 21 40 40 28 30 40 35 20 20

Disk element

Disk no. Mass (kg) I, (kgm?) 1, (kg m?) Unbalance (gmm) Disk no. Mass (kg) 1, (kgm?)

I, (kg m?) Unbalance (gmm)

D1 0.736
D2 1.034
D3 1.034

3.384
7.85-4
7.8E-4

2.675-4 40/ 0° D4 1.883 2.24E3
1.58-3 40/ 0° D5 2.824 3.475-3
1.58-3 — D6 2.824 3.4753

Bearing stiffness and damping (K., = K, = Cy, = C,, = 0)

43553 40/ 0°
6.535-3 —
6.53E3 40/.0°

Brg. no.

KXX (N/m)

K,, (N/m) C.. (Ns/m), £ = 0.01

C,, (Ns/m), £ =0.01

1,2

1.75E6

1.75E6 5.57E1

5.57E1

N, element no.; L, length (mm); D, diameter (mm). E = 2.0 x 10" N/m?; p = 7833.48 kg/m’.

Acc.(m/s?)

Displacement (um)

Transient response simulation at Brg.1 (6000rpm rotating)

30f :
20 YT —— Y-dir. Base shock -
10
ol
200 I —— y-dir. transient response
ot AAAAANAAAANAAAANAAAAAAAA

200 VUV YVUVVVVVVVVVVVVVVVVVVY

200 >x-dir. transient response
0 >V'V"T"V‘ AN, AVAAV.AVJ\V%AV‘AV‘V VOV VY
-200 | . |
0.0 0.1 0.2 03 0.4 05
Time (sec)

Fig. 5. Shock excitation and y and x direction rotor responses predicted at bearing 1.
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Transient response simulation at Brg.2 (6000rpm rotating)

En 30 H
i\éi 20 DDised ——Y-dir. Base shock
g I
AR AR ARAARAAR
S 200\ VYV VVVVVVVVVVVVVUVVYVVVY
i§ 200 x-dir. transient response
§ 0 AAAAAAAAAAAAAAAA AP \AAAAS VI\VAVI\VI\
-200
0.0 0.1 0.2 0.3 04 05
Time (sec)

Fig. 6. Shock excitation and y and x direction rotor responses predicted at bearing 2.

Shock Signal (g)

. . . — . :
0.00 0.05 0.10 0.15 0.20 0.25 030
Time (sec)

Fig. 8. A typical half-sine wave shock signal with a duration time of 10 ms generated by the electro-magnetic shaker.
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was an ideal half-sine wave with a magnitude of 3g and a duration time of 10 ms, and was applied in the y
direction. The maximum y direction responses of the rotor at bearings 1 and 2 were predicted to be 398.8 and
520.9 um (Pk-to-Pk), respectively. Even though the shock was applied only in the y direction and the coupling
effects of the bearings were neglected, the x direction responses of the rotor were generated due to the
gyroscopic coupling effect and increased with time.

4.2. Set-up of shock experiment

A rotor test-rig, which simulates the equivalent FE rotor-bearing system shown in Fig. 4, was constructed.
Fig. 7 shows a set-up of the shock experiment in which the rotor test-rig was installed on the electro-magnetic
shaker, and the rotor was excited only in the vertical y direction. The test rotor was supported by two ball
bearings and each bearing was installed on its pedestal through four coil springs. The resulting effective

3
= S
T /\ —a— Duration time : 5ms
2 5 —e— Duration time : 10ms
] k\ —a&— Duration time : 15ms
3 H
£ |
g
S :
x 1 \
[$] H
Qo H
= i
LA |
50 100 150 200 250 300
Hz

Fig. 9. Spectra of experimental half-sine wave shock excitations.

Transient response of the rotor model at Brg. 1 (O rpm)

10 TR 0 . e YN OO TP SRS
[0
2
E 0 nﬁ M,
Q IJ —base shock (Y dir.), 5ms
< -30 -

B S s
g 500 £, =0.1624 ‘s =0.1015, £,=0.1697 S S A
a : 1 : :
K] i g IANANANWANL ‘
[s] 0 : W\/\/\f\/\f
= — theoretical (Y-dir., £=0.01) g
N -500 - . experimental (Y-dir.) [ e
§ 800 A A T
a : : : i
@ 0 : : —~ = = St =
e —— theoretical (X-dir., £=0.01) : §
T -500|- - - -experimental (X-dir.) B boranananannn e
x i i i

0.0 0.1 0. 2 0.3 0.4 0.5

Time (Sec)

Fig. 10. Experimental shock wave with a duration time of 5 ms and analytical and experimental rotor responses at bearing 1 for 0 rev/min.
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bearing stiffness was then controlled by these springs. Modal tests revealed that the first and second resonant
speeds of the test rotor system were 3060 and 8076 rev/min, and thereby its natural characteristics were in good
agreement with those of the analytical model in Fig. 4. Fig. 8 shows a typical example of the half-sine wave
shock signal with a duration time of 10 ms generated by the electro-magnetic shaker. Fig. 9 shows spectra of
the half-sine shock signals generated by the shaker with maximum accelerations of about 3g and duration
times of 5, 10 and 15 ms.

Transient response of the rotor model at Brg. 2 (O rpm)

P T N H
o H : H H
b i A § § 3:
g 0 W
8 30 ; § —— base shock (Y-dir.), 5ms
S e :

500+

] \Y V /i
—— theoretical (Y-dir., £=0.01)
-500 .. experimental (Y-dir.)

X-dir. Disp.(pm) Y-dir. Disp.(um)

C10]0) E—— S S S S
0 ; f e . -
—— theoretical (X-dir., £=0.01)
-500- - - - experimental (X-dir.)
0.0 0.1 0.2 03 0.4 0.5

Time (Sec)

Fig. 11. Experimental shock wave with a duration time of 5 ms and analytical and experimental rotor responses at bearing 2 for 0 rev/min.

Transient response of the rotor model at Brg. 1 (O rpm)

T B0 frrm e T
© H H H H

Q H H H H

£ 0 : '

b —— base shock (Y dir.), 10ms

Q

L QI | ] e Bt S e

500

-500

—theoretlcal (Y-dir., &= 001)
F - - - experimental (Y-dir.)

] e e,E

— theoretical (X-dir., £=0.01)
-500 - - - experimental (X-dir.)

0.0 0.1 0.2 03 0.4 0.5
Time (Sec)

X-dir. Disp.(pm) Y-dir. Disp.(um)

Fig. 12. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 1
for Orev/min.
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4.3. Comparisons of analyses and experiments

For the base-transferred shock excitations applied by the shaker at duration times of 5, 10 and 15ms, the
analytical and experimental transient time-responses of the rotor as obtained at bearings 1 and 2 positions are
shown in Figs. 10-15 for the stationary state (0 rev/min) and Figs. 16-21 for the rotating state at 6000 rev/min
along with their corresponding magnitude, phase and comprehensive error factors, representing quantitative
errors. In the analyses the damping ratios of the bearings were set to ¢ = 0.01.

Transient response of the rotor model at Brg. 2 (0 rpm)

Acc (m/secz)

w

o o

<
-3

o
i)
w
(]
s
(=]
(2]
-~
TR
9—
2
3
"]

£ £m=0.1554, £,20.0717, £,=0.1517

s R

: Y| 1]

oo VUV

5 500t AL LYY

> — theoretical (Y-dir., £=0.01)

E 500 - - - exper,mental Cdiry

a

g 0 ; R N - '~'—\’ N A’-;' \'\."‘!( ’I\/n\,

- — theoretical (X-dir., £=0.01)

3 -500- - - - experimental (X-dir) - e

0.0 0.1 0.2 03 0.4 05

Time (Sec)

Fig. 13. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 2 for
0 rev/min.

Transient response of the rotor model at Brg. 1 (O rpm)

Acc.(m/secz)

£ i s

= ; ; : :

a s /\ o, s :

% 0 : : : :

5 500l — theoretical (Y-dir. g S000)

- | -- - experimental (Y-dir.) : :

§ 800p T

& 9 ‘ ' ' ‘

a : : - T -

= — theoretical (X-dir., £=0.01) : :

E -500 - - - - experimental (X-dir.) e
0.0 0.1 02 03 0.4 05

Time (Sec)

Fig. 14. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 1 for
0 rev/min.
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Transient response of the rotor model at Brg. 2 (0 rpm)

&: 30 p

: A

g 0 ==

S \’J \“/ ——base shock (Y-dir.), 15ms

N T ) OO OO SO SOUUSUUSU U OO
g -

£ 500

)

5 0 H H

T .500L —— theorstical (Y-dir. £=0.01) ...

> | --- experimental (Y-dir.)

§ 500 A S AR A
% 0 H H i H

2 : : b T~ 7=
= —— theoretical (X-dir., £=0.01)

E -500 - - - -experimental (X-dir) - i

0.0 0.1 0.2 0.3 0.4 0.5
Time (Sec)

Fig. 15. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 2 for
0 rev/min.

Transient response of the rotor model at Brg. 1 (6000 rpm)

0 Auﬁvm

..... Smg..__......

T o) PSS S

£q=-0.1581,£,=0.2849,£,=0.2888

N I S N L e L e T "‘r'\ -

W

—— theoretical (Y-dir., £=0.01)

X-dir. Disp.(um) Y-dir. Disp.(pm) Acc.(m/sec2)
o

800 . experimental (Y-dir) T
S
0 bmenmi iy Ay
—— theoretical (X-dir., £=0.01)
-500-  __. experimental (X-dir.) pr /
0.0 0.1 0.2 03 0.4 0.5
Time (Sec)

Fig. 16. Experimental shock wave with a duration time of 5ms and analytical and experimental rotor responses at bearing 1 for
6000 rev/min.

For the stationary state. In the case of duration times of 5, 10 and 15 ms, from Figs. 10-15 the y direction
responses of the rotor obtained at bearings 1 and 2 all have g, ¢, and ¢, and ¢, values less than 0.2.
Therefore, the analytical and experimental transient time-responses of the rotor to the base-transferred shock
excitations were in good agreement with each other. Further, since the shocks were applied only in the y
direction and the coupling effects of the bearings were neglected in the analyses, the analytical x direction
responses of the rotor were not generated. It was observed that, as in the test rotor the coupling effects
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Transient response of the rotor model at Brg. 1 (6000 rpm)
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Fig. 18. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 1 for

6000 rev/min.

of the bearings acted to some extent, the experimental x direction responses of the rotor increased with

increasing time.

For the rotating state. In the case of a duration time of 5ms, from Fig. 16 the y direction responses of the
rotor at bearing 1 have ¢, and ¢, values that are somewhat larger than 0.2 whereas ¢, value is less than 0.2.
However, from Fig. 17 the y direction responses of the rotor at bearing 2 all have ¢,,, ¢, and ¢, values less than
0.2. In the cases of duration times of 10 and 15ms, from Figs. 18-21 the y direction responses obtained at
bearings 1 and 2 all have &,,, ¢, and &, values less than 0.2. Further, the analytical and experimental x direction
responses of the rotor show some differences from each other. Similar to the stationary state, it is reasoned
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Fig. 19. Experimental shock wave with a duration time of 10ms and analytical and experimental rotor responses at bearing 2 for
6000 rev/min.

Transient response of the rotor model at Brg. 1 (6000 rpm)
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Fig. 20. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 1
for 6000 rev/min.

that this is because the analytical model neglected the coupling effects of the bearings whereas in the test rotor
the coupling effects of the bearings acted to some extent.

On the other hand, it was observed from Figs. 10-21 that for both 0 and 6000 rev/min the y direction
responses of the rotor with a duration time of 10 ms were amplified to a greater extent than those responses
with duration times of 5 and 15ms. The reason for this is that the frequencies, 1/(2 x duration
time) = 50 Hz = 3000 rev/min, of the shock waves with a duration time of 10ms were close to the natural
frequencies or critical speeds (analysis rotor: 3044 rev/min, test rotor: 3060 rev/min) of the rotor-bearing
system. From the above, the analytical and experimental transient time-responses of the rotor to the base-
transferred shock excitations overall appear to be in good agreement with each other.
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Fig. 21. Experimental shock wave with a duration time of 15ms and analytical and experimental rotor responses at bearing 2 for
6000 rev/min.

5. Conclusions

In this study a transient response analysis technique of a rotor system was proposed. This technique
involved applying the generalized FE modeling method of a rotor-bearing system considering a base-
transferred shock force along with the state-space Newmark method of a direct time integration scheme based
on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system
with a series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses
between the analytical and experimental results were carried out. The results showed that the transient
responses of the rotor were sensitive to the duration times of the shocks. Particularly, in cases where the
frequencies, 1/(2 x duration time), of the shock waves were close to the critical speed of the rotor-bearing
system, resonances could occur and the transient responses of the rotor could be amplified. Overall, it is
concluded that the analytical results agreed quite well with the experimental data.

Appendix A

A.1. For disk element, system matrices and forcing vectors

mg 0 0 0
0 my 0 0
0 0 0 I,
0 —2my0p; 0 0
24007 0 0 0
[Cil = 0 0 A (A.2)

0 0o Qr 0
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Appendix B. For shaft element, system matrices and forcing vectors
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