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Abstract

This paper investigates the restriction effects of capillary and orifice on the stability of the rigid rotor–hybrid bearing

system. The finite difference method and numerical integration are used to solve the Reynolds lubrication equations and

static and dynamic performances of lubrication film, respectively, and the Routh–Hurwitz method is used to determine the

stability threshold. The results reveal that the influence of stability threshold versus carrying load according to hybrid

bearings with or without restrictors, as well as, shallow or deep recesses and various land-width ratios.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The hybrid journal bearings have gained considerably, in many engineering applications such as
precision machinery, since they combine the merits of hydrostatic and hydrodynamic bearings. Capillary
and orifice are most commonly restrictors for hydrostatic and hybrid bearings because of simple
manufacturing. Raimondi and Boyd [1] utilized experiment to yield the maximum load capacity at the
optimal restriction parameters of capillary or orifice for hydrostatic bearings. Rowe and Chong [2] showed
that the perturbation techniques contribute more efficient than disturbance method in computing the dynamic
coefficients. Ghosh [3], Ghosh et al. [4], Ghosh and Viswanath [5] and Ghosh et al. [6,7] utilized the small
perturbation method to evaluate static and dynamic coefficients of multirecessed hybrid bearings. Results
indicated that the recess volume fluid compressibility would affect the dynamic characteristics of hybrid
bearings in higher excited frequency range.

Cheng and Rowe [8] have claimed that the design of the restrictors becomes critical and must be undertaken
in parallel with the bearing configuration. Braun et al. [9–11] studied recesses depth and feed-line problems of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A effective recess area
a axial flow land width
Bij, B̄ij damping coefficients, B̄ij ¼ Bijco=PsLD;

ði; j ¼ x; yÞ
c radial clearance of bearing
D journal diameter
dc diameter of capillary
do diameter of orifice
e, e eccentricity, e ¼ e=c

eo, eo steady-state eccentricity, eo ¼ eo=c

ep, ep perturbed eccentricity, ep ¼ ep=c

Fx, Fy, F̄ x, F̄ y fluid-film force components,
ðF̄x; F̄ yÞ ¼ ðFx;F yÞ=PsLD

ho, h̄o film thickness, h̄o ¼ ho=c

hd, h̄d recess depth at the downstream of
restrictor inlet, h̄d ¼ hd=c

Kij, K̄ ij stiffness coefficients, K̄ ij ¼ Kijc
�

PsLD

ði; j ¼ x; yÞ
L bearing length
M non-dimensional mass parameter, M ¼

mco2=PsLD

Mc stability threshold, Mc ¼ mco2
c=PsLD

m rotor mass
Pd pressure of downstream of restrictor inlet

at the rth recess
Po static pressure
Pe, Pf dynamic pressure
Ps supply pressure
P̄ non-dimensional pressure, Pa/Ps, sub-

script a denoted for Po, Pr, Pe and Pf

Qr flow rate at the rth recess, Q̄r ¼

12mQr=Psc
3

Qro static flow rate
Qe, Qf dynamic flow rate
Q̄ non-dimensional flow rate, Q̄b ¼

12mQb=Psc
3, subscript b denoted for

Qro, Qe and Qf

R journal radius
t time coordinate
V0, V̄0 recess volume, V̄ 0 ¼ V 0=Ac

x, y, z, x̄, ȳ, z̄ Cartesian coordinates, ðx̄; ȳÞ ¼
ðx; yÞ=c, z̄ ¼ z=ðL=2Þ

W, W load capacity, W ¼W=PsLD

a circumferential sill angle
b fluid compressibility parameter
dc capillary restriction parameter, dc ¼

3pd4
c=32lcc

3

do orifice restriction parameter, do ¼

3
ffiffiffi
2
p

pmCdd2
o

. ffiffiffiffiffiffiffiffiffiffiffiffi
rPsc3

p
fo steady-state attitude angle
fp perturbed attitude angle
g fluid compressibility parameter, g ¼

V̄ 0bPs

L speed parameter, L ¼ 6mo=Psðc=RÞ2

l whirl ratio, l ¼ op=o
m absolute viscosity of lubricant
y angular coordinate
r density of lubricant
s squeeze number, s ¼ 6mop=Psðc=RÞ2

t non-dimensional time, t ¼ opt

o journal rotating speed
oc critical journal rotating speed
op whirl frequency of journal center about

the equilibrium point
c frequency parameter, c ¼ sA=R2
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the laminar flow in journal bearing clearance by the simulation of utilizing two or three-dimensional
Navier–Stokes equations. They obtained that the patterns of jet-dominated flow in both deep and shallow
recesses are similar to each other. Therefore, Reynolds equation can be applied to the lubricant flow, which is
jet-dominated in both sills and recesses.

Chen et al. [12,13] have determined the influences of restriction effects of capillary and orifice,
respectively, on the stability of a rotor system supporting by deep or shallow recessed hybrid bearings.
Their results have shown that restriction parameters dominate bearing load capacity and rotor stability, which
provide appropriate selections of restriction parameters and land-width ratios in hybrid design for stability
threshold.

This paper studies the restriction effects of capillary and orifice on the stability of a rigid rotor supported by
hybrid bearings. The restriction influences are also compared with the same cases of hybrid bearing without
restrictor. The stability threshold versus carrying load for various land-width ratios and various recess depth
of the rigid rotor–hybrid bearing system are obtained from the analysis of load capacity and stability
threshold, respectively, relative to the same eccentricity ratio.
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2. Analysis

2.1. Lubrication equations of hybrid bearing

For an iso-viscous, incompressible lubricant situated in a hybrid bearing clearance assuming of laminar flow
without inertial effect, the non-dimensional Reynolds equation of lubricant can be derived from
Navier–Stokes equation and expressed in the Cartesian coordinates system as

q
qy

h̄
3 qP̄

qy

� �
þ

D

L

� �2 q
qz̄

h̄
3 qP̄

qz̄

� �
¼ L

qh̄

qy
þ s

qh̄

qt
. (1)

As shown in Fig. 1, the journal center rotates about its steady-state position (eo, fo) with a small whirl which
is decomposed into radial and tangential components represented by Re(epe

it) and Re(eofpe
it), respectively.

This small journal whirl will induce small perturbations of the film pressure and film thickness which are
composed of steady-state part subscripted by o and dynamic parts subscripted by e and f. Thus, the pressure
and film thickness distributions can be expressed, respectively, by

P̄ ¼ P̄o þ epe
itP̄e þ eofpe

itP̄f, (2a)
Fig. 1. Journal whirling in a six-recessed hybrid bearing: (a) configuration, (b) perturbed orbit of journal center, and (c) coordinates of

recess edges.
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h̄ ¼ h̄o þ epe
it cos yþ eofpe

it sin y. (2b)

The perturbation method suggested by Ghosh et al. [6] is utilized substituting Eqs. (2a)–(2b) into Eq. (1)
with neglecting higher order terms gives the linearized Reynolds equations of static and dynamic pressures.
The details of these equations are shown in Ghosh et al. [6].

Pressure distribution within a shallow recess may vary as position changing. It can be seen from Braun and
his colleagues [9–11] that pressure distribution in recess are strongly influenced by the jet strength, feed-line
angle, aspect ratio, and recess depth. Since the boundary condition for downstream location of restrictor inlet
must satisfy the pressure distribution, the appropriate boundary conditions for both shallow and deep recesses
can be assumed as
(1)
 P̄aðy; z̄ ¼ �1Þ ¼ 0 for both ends of a bearing;
(2)

qP̄a

qz̄
ðy; z̄ ¼ 0Þ ¼ 0 for the symmetry;
(3)
 P̄aðy; z̄Þ ¼ P̄aðyþ 2p; z̄Þ for the continuity of an intact film;

(4)
 P̄a ¼ P̄da for the downstream of restrictor inlet at the rth recess;

(5)
 P̄

þ

a ¼ P̄
�

a at adjacencies of recess and sill, where + and � denoted for sill and recess, respectively.
where a denoted for P̄o, P̄e and P̄f.
The linearized Reynolds equations with boundary conditions are solved numerically for static and dynamic

pressure distributions by using the finite difference method, with a successive over-relaxation scheme.
The non-dimensional continuity equation of downstream flow of a restrictor at the rth recess for a hybrid

bearing with capillary or orifice compensation can be given as

dð1� P̄dÞ
m
¼ Q̄r þ c

q
qt
ðh̄dÞ, (3)

where m ¼ 1 and d ¼ dc ¼ 3pd4
c=32lcc3 for a capillary restrictor and m ¼ 0:5 and d ¼ do ¼

3
ffiffiffi
2
p

pmCdd2
0

� ffiffiffiffiffiffiffiffi
rPs

p
c3 for an orifice restrictor, c ¼ sA=R2 and s ¼ 6mop=Psðc=RÞ2 are recess frequency

parameter and squeeze number, respectively. The term on the left side of the equal sign refers to the mass flow
into the recess through a restrictor, the first term on the right side of the equal sign is the mass flow out from
the inlet of recess through the four edges of the rth recess, and the second terms refer to the time rate of mass
changing due to squeeze effect. However, the compressible effect of lubricant is excluded from the continuity
equation. For most conditions oil lubricants are considered to be incompressible because of low frequency of
dynamic loading and the relatively small volume of oil in the recesses and between recess and the restrictor.
However, at high frequencies, the compressibility becomes significant effect of reducing the dynamic stiffness
and damping of a bearing film.

Also, the perturbations of P̄d , h̄d and Q̄r are expressed as

P̄d ¼ P̄do þ epe
itP̄de þ eofpe

itP̄df, (4a)

h̄d ¼ h̄do þ epe
it cos yd þ eofpe

it sin yd , (4b)

Q̄r ¼ Q̄ro þ epe
itQ̄e þ eofpe

itQ̄f, (4c)

where yd is the angular position of the downstream of restrictor inlet.
The expression for the outflow of lubricant from the recess is given by

Q̄r ¼

Z yr

yl

�h̄
3

d

qP̄

qz̄

� �
z̄¼z̄b

dyþ
Z z̄t

z̄b

Lh̄d � h̄
3

d

qP̄

qy

� �
y¼yl

dz̄

þ

Z yr

yl

�h̄
3

d

qP̄

qz̄

� �
z̄¼z̄t

dyþ
Z z̄t

z̄b

Lh̄d � h̄
3

d

qP̄

qy

� �
y¼yr

dz̄; ð5Þ

where y1 and yr are referred to both bounds of circumferential coordinates and z̄b and z̄t are referred to both
bounds of axial coordinates, respectively, of the downstream edges of restrictor inlet at the rth recess as shown
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in Fig. 1(c). Similarly, the static and dynamic pressures of downstream of restrictor inlet in recesses can be
obtained by substituting Eqs. (4a)–(4c) into Eqs. (3) and (5), and equating coefficients of static and dynamic
perturbations on both sides gives

P̄do ¼ 1�
Q̄ro

d

� �z

, (6)

P̄de ¼ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P̄do

p� �Z
d

ðQ̄e þ ic cos yd Þ, (7)

P̄df ¼ �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P̄do

p� �Z
d

ðQ̄f þ ic sin yd Þ, (8)

where z ¼ 1 and Z ¼ 0 for capillary restriction, and z ¼ 2 and Z ¼ 1 for orifice restriction.

2.2. Load capacity

The bearing load capacity is equivalent to reactive resistances which are induced by fluid film pressure
in the bearing clearance. The non-dimensional components of the resultant reaction forces can be
obtained by

F̄x ¼
Fx

PsLD
¼ �2

Z 1

0

Z 2p

0

P̄o cos ydydz̄, (9a)

F̄ y ¼
F y

PsLD
¼ �2

Z 1

0

Z 2p

0

P̄o sin ydydz̄. (9b)

Hence, the non-dimensional load capacity is given by

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̄

2
x þ F̄

2
y

q
. (10)

2.3. Stiffness and damping coefficients

The non-dimensional stiffness and damping coefficients along the e and f directions due to the dynamic
pressures P̄e and P̄f can be determined by

K̄ ee Kff

K̄fe K̄ ef

" #
¼ �Re 2

Z 1

0

Z 2p

0

cos y sin y

sin y cos y

� �
P̄e 0

0 P̄f

" #
dy dz̄

( )
, (11)

B̄ee B̄ff

B̄fe B̄ef

" #
¼ �Im 2

Z 1

0

Z 2p

0

cos y sin y

sin y cos y

� �
P̄e 0

0 P̄f

" #
dydz̄

( )
, (12)

where B̄ij ¼ Bijco=PsLD and, K̄ ij ¼ Kijc=PsLD; ði; j ¼ e;fÞ.
Using coordinate transformation the non-dimensional stiffness and damping coefficients along the x and y

directions can be obtained from

K̄xx K̄xy

K̄yx K̄yy

" #
¼

cos f0 � sin f0

sin f0 cos f0

" #
K̄ ee K̄ ef

K̄fe K̄ff

" #
cos f0 sin f0

� sin f0 cos f0

" #
, (13)

B̄xx B̄xy

B̄yx B̄yy

" #
¼

cos f0 � sin f0

sin f0 cos f0

" #
B̄ee B̄ef

B̄fe B̄ff

" #
cos f0 sin f0

� sin f0 cos f0

" #
. (14)

where fo is the steady-state attitude angle.
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2.4. Stability threshold of rigid rotor– hybrid bearing system

In the fixed reference coordinates (Ob, x, y) a rigid rotor is supported horizontally by two identical hybrid
journal bearings. The rotor is assumed to consist of a massless shaft and a single, centered mass m without
unbalance mass as illustrated in Fig. 2. When the journal is operating in its steady state at the conditions of a
given load capacity W, lubricant viscosity m, supply pressure Ps and shaft speed o, for a small disturbance in
film pressure the non-dimensional perturbation equations of center motion of the rigid rotor with whirl
frequency op about the equilibrium position can be expressed by

Ml2
d2x̄

dt2
¼ �2F̄x ¼ �2ðK̄xxx̄þ K̄xyȳþ lB̄xx _̄xþ lB̄xy _̄yÞ, (15)

Ml2
d2ȳ

dt2
¼ �2F̄ y ¼ �2ðK̄yxx̄þ K̄yyȳþ lB̄yx

_̄xþ lB̄yy
_̄yÞ, (16)

where M ¼ mco2=PsLD is mass parameter, l ¼ op=o is whirl ratio, and components of bearing force, along
with the stiffness and damping coefficients, are determined by integration of static and dynamic pressures,
respectively, as mentioned above.

Substituting x̄ ¼ X̄est and ȳ ¼ Ȳest, where X̄ and Ȳ are constant, into Eqs. (15) and (16) gives a set of
simultaneous and linear equations of X̄ and Ȳ . The value of coefficients determinant of the linear equations
set must be zero for non-trivial solutions of X̄ and Ȳ . Thus, the characteristic equation of complex eigenvalues
for this rigid rotor–hybrid bearing system is obtained in the form of an algebraic polynomial of s with the
coefficients being functions of stiffness and damping coefficients. According to Routh–Hurwitz theory, the
stability threshold of this system can be determined by

Mc ¼
mco2

c

PsLD
¼

2A1A3A5

A2
1 þ A2A2

5 � A1A4A5

, (17)

where A1 ¼ K̄xxB̄yy þ K̄yyB̄xx � K̄xyB̄yx � K̄yxB̄xy, A2 ¼ K̄xxK̄yy � K̄xyK̄yx, A3 ¼ B̄xxB̄yy � B̄xyB̄yx, A4 ¼

K̄xx þ K̄yy and A5 ¼ B̄xx þ B̄yy as seen in Ref. [12].
Consequently, the instability induced by self-excited vibration occurs when value M of this system is larger

than Mc. Conversely, for MoMc, the vibration resulting from initial perturbation of the rotor dies out
exponentially with time. Thus, M ¼Mc relates to the critical condition at which the rotor whirls to a limit
cycle through transient vibration.
Fig. 2. Rigid rotor model.
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Fig. 3. The load capacity W
	 


of shallow-recessed bearing (hd ¼ c ¼ 1:0) versus eccentricity ratio (e) for: (a) a=L ¼ 0:1, (b) a=L ¼ 0:25,
(c) a=L ¼ 0:4, for L ¼ 6:0, for L ¼ 0:0.
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3. Results and discussion

This study has analyzed the dynamic characteristics of a rigid rotor–hybrid bearing system rotating with
L ¼ 6:0 or non-rotating with L ¼ 0:0. The rigid rotor is supported by two single-row and six-recessed hybrid
bearings, which are regulated by capillary and orifice or without using restrictors, respectively. According to
simulation results in Chen et al. [12,13] both restriction parameters of capillary and orifice are selected as
dc ¼ do ¼ 2:0, which can yield good stability. The bearing geometric parameters are selected as L=D ¼ 1:0 and
a ¼ 341. For three land-width ratios (a=L ¼ 0:1, 0.25 and 0.4) simulations of load capacity W

	 

and stability

threshold ðMcÞ for both shallow (hd ¼ c ¼ 1:0) and deep (hd ¼ c ¼ 5:0) recesses are described as follows.

3.1. Comparison of the restriction effects

The variations of load capacity W
	 


and stability threshold Mc

	 

versus eccentricity ratio (e) of shallow-

recessed bearing with three land-width ratios cases are shown in Figs. 3 and 4, respectively. It can be found
that for all cases, the orifice compensated bearings are better from the point of view of support than capillary
compensated bearings. Also, the W is increased with an increase of speed parameter (L) owing to the increase
of hydrodynamic effects.

For L ¼ 6:0, the W increases with an increase of land-width ratio (a/L) due to the predominance of
hydrodynamic effect get over hydrostatic effect. However, it is contrary to L ¼ 0:0, since increase of land-
width ratio results in decreasing of hydrostatic effect, which is dominance of hydrostatic load capacity.

It is observed that for all cases the orifice compensated bearings provide larger stability threshold than
capillary compensated bearings. This superiority may be attributed to the conclusion of Cheng and Rowe [8],
who have revealed that orifice may give fractionally greater stiffness. The influence of land-width ratio on
stability is contrary to load capacity; the stability threshold gets larger as land-width ratio decreasing.

For cases with three land-width ratios the variations of load capacity W
	 


and stability threshold Mc

	 

versus eccentricity ratio (e) of deep-recessed bearing are shown in Figs. 5 and 6, respectively. It is observed that
for all cases, the comparative results of restriction effect, land-width ratio and speed parameter on both load
capacity W

	 

and stability threshold Mc

	 

are similar to those cases of shallow-recessed bearing.

For L ¼ 6:0 the W of deep-recessed bearing is smaller than that of shallow-recessed bearing for the same
land-width ratio since the shallow recesses can provide more hydrodynamic pressures than deep recesses.
Contrarily, for L ¼ 0:0 the W of deep-recessed bearing is larger than that of shallow-recessed bearing for the
same land-width ratio, since the deep recesses can provide more hydrostatic pressures than shallow recesses.

For large eccentricity ratio the Mc of deep-recessed bearing is smaller than that of shallow-recessed bearing,
this is because of that the hydrodynamic effects are generated not only in lands but also in shallow recesses.
While, for small eccentricity ratio the coupled hydrostatic and hydrodynamic effects are provided by shallow
recesses which may induce a smaller Mc, therefore, the Mc of deep-recessed bearing is superior to that of
shallow-recessed bearing.

For cases with three land-width ratios the variations of stability threshold Mc

	 

versus carrying load W

	 

are drawn in Fig. 7. According to above descriptions it can be found that from the viewpoint of stability, there
exists a critical point of carrying loads for both capillary and orifice, when the carrying load is greater than this
point the bearings should be designed with shallow recesses, otherwise, the deep recesses are requisite.

For three land-width ratios a=L ¼ 0:1, 0:25 and 0:4 cases, the critical point of carrying loads for orifice are
W ¼ 0:4, 0:55 and 0:9, respectively, and for capillary are W ¼ 0:5, 0:7 and 0:95, respectively. Obviously, the
values of critical point are increased with the increase of land-width ratio. And, this point of orifice occurs
earlier than that of capillary.

3.2. Comparison in dynamic pressures with or without considering recess volume compressibility

When the recess volume compressibility effect in the bearing recesses and downstream of restrictors inlet is
taken into consideration, cgðqP̄d=qtÞ is added in the right side on the equal sign of Eq. (3). This term describes
the time rate of mass changing in recesses as the lubricant subjected to compressive deformation, where fluid
compressibility parameter is defined by g ¼ V 0bPs and V0 is non-dimensional lubricant volume of recess.
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Fig. 4. The stability threshold Mc

	 

versus eccentricity ratio (e) of the rotor rotating at L ¼ 6:0 and supported by shallow-recessed

bearings for: (a) a=L ¼ 0:1, (b) a=L ¼ 0:25, and (c) a=L ¼ 0:4.
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Consequently, the dynamic pressures Pde and Pdf are added by the compressibility effect terms in both real
and image parts after the same procedures of substituting Eqs. (4a)–(4c) into the modified continuity equation
which is Eq. (3) added by compressibility effect term cgðqP̄d=qtÞ.
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The influences of recess compressibility in changing of dynamic pressures Pde and Pdf have been evaluated
for numerical examples of this paper and listed in Table 1. for the comparisons of the continuity equation with
or without compressibility effect. The results show that for both deep and shallow recesses with capillary or
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Fig. 7. The stability threshold Mc

	 

versus carrying load W

	 

of the rotor rotating at L ¼ 6:0 for: (a) a=L ¼ 0:1, (b) a=L ¼ 0:25, and

(c) a=L ¼ 0:4, for hd ¼ c ¼ 1:0, for hd ¼ c ¼ 5:0.
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orifice cases the reducing percentages of absolute values of dynamic pressures Pde and Pdf are all less than 3%.
Therefore, in this paper, the recess compressible effect is neglected and the term cgðqP̄d=qtÞ is excluded from
the continuity equation.
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Table 1

Recess compressibility effect in dynamic pressures

Recess type d g c Reducing percentage of absolute values of

maximum pressure P̄re & P̄rf

Orifice restriction

hd ¼ c ¼ 5 2.0 2.5� 10�3 60 �0.74%�2.89%

hd ¼ c ¼ 1 2.0 5� 10�4 60 �1.13%�0.878%

Capillary restriction

hd ¼ c ¼ 5 2.0 2.5� 10�3 60 �0.49%+0.07%

hd ¼ c ¼ 1 2.0 5� 10�4 60 �0.164%+0.007%
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4. Conclusion

The influences of restriction effects of capillary and orifice on the stability of a rigid rotor supported by
hybrid bearings are studied by Routh–Hurwitz method. The simulation results are concluded as:
(1)
 The orifice compensated bearings are better from the point of view of support than capillary compensated
bearings.
(2)
 For both shallow- and deep-recessed hybrid bearings at L ¼ 6:0, the load capacities are increased with an
increase of land-width ratio. Contrarily, for L ¼ 0:0 the load capacities are increased with a decrease of
land-width ratio.
(3)
 For all cases the bearings with orifice restriction can provide larger stability threshold than with capillary
for a rigid rotor subjected to a specific carrying load.
(4)
 For stability of large carrying load the shallow-recessed bearings are superior to the deep-recessed
bearings. Contrarily, for stability of small carrying load the deep-recessed bearings are superior to the
shallow-recessed bearings.
(5)
 Thus, from the view for stability in bearing design with either capillary or orifice, when the
carrying load exceed its critical point the bearing should be designed with shallow recesses, otherwise,
the deep recesses are requisite in order to obtain appreciate stability threshold for a rigid rotor–hybrid
bearing system.
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