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Abstract

A new method is presented to provide an insight in to the characterizations of structural damages. The present algorithm

makes use of an original finite element model and a subset of measured eigenvalues and eigenvectors. The proposed

method detects damages in a decoupled fashion. First, a theory is developed to determine the number of damaged

elements. With the damage number determined, the localization and quantification algorithms are then developed. A plane

truss structure is analyzed as a numerical example to verify the present method. Results show that the method is accurate

and robust in structural damage identification when the number of measured modes is more than the number of damaged

elements with or without noise.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

With the increasing demands for structural quality and reliability, damage identification via techniques
that examine changes in measured structural vibration response is a very important topic of research.
The basic idea of these techniques is that modal parameters are functions of the physical properties
of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause
changes in the modal properties. Any damage identification method can be classified by its capabilities to
characterize the damage. There are three levels of damage characterization: detection, location, and
quantification.

Most prior work in damage identification is based on the modification of a structural finite element
model (FEM). The goal of these methods is to use test data from the damaged structure and the
correlated FEM of the undamaged structure to determine changes to the stiffness and/or mass matrices.
This class of methods can be divided into three main groups: One group is the optimal matrix update
methods. The objective functions are either the minimum of a norm of the property perturbation or the
minimum of the rank of the property perturbation. Rodden used ground vibration test data to determine
the structural influence coefficients of a structure [1]. Baruch and Itzhack developed a closed form
solution for the minimal Frobenius-norm matrix adjustment to the structural stiffness matrix incorporating
measured frequencies and mode shapes [2]. Chen and Garba developed a theory for assessing the occurrence,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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location and extent of potential damage using on-orbit response measurements [3]. Kiddy and Pines
proposed a method to update both mass and stiffness matrices simultaneously [4]. Chiang and Lai presented a
two-stage structural damage detection method in which the residual force method and the method of
simulated evolution are employed, respectively [5]. Zimmerman and Kaouk made use of a minimum rank
update theory to detect structural damage [6]. The damage sites are located by the damage vectors and the
damage extents are assessed by the minimum rank update theory. Doebling improved this method by
computing the minimum rank updates directly to the elemental stiffness parameters [7]. Another group is
sensitivity methods. These methods start with the derivatives of the eigenvalues and/or eigenvectors to
changes in material and physical parameters. Wong et al. developed a perturbation method from sensitivity of
eigenparameters for damage detection of large structures [8]. Messina et al. proposed an assurance
criterion for detecting single damage sites [9] and extended this method to identify the relative amount of
damage at multiple sites [10,11]. Shi et al. extended the multiple damage location assurance criterions by
using incomplete mode shape instead of modal frequency [12]. The third group is eigenstructure
assignment methods. Andry et al. presented an excellent overview of eigenstructure assignment theory and
applications [13]. Zimmerman and Kaouk utilized a symmetric eigenstructure assignment algorithm to
perform the partial spectral assignment [14]. Lim and Kashangaki referred to a best achievable eigenvector as
a damage indicator [15]. The damage is located by computing the Euclidean distances between the measured
mode shapes and the best achievable eigenvectors. The magnitude of damage is assessed by a minimum norm
update theory. Kiddy and Pines used the eigenstructure assignment technique to detect damage in rotating
structures [16].

A new method similar in concept to the minimum rank update theory is presented in the present paper. The
proposed algorithm makes use of an original finite element model and a subset of measured eigenvalues and
eigenvectors and assumes that the number of measured modes is more than the number of damaged elements
and the method detects damage in a decoupled fashion. At the outset, a theory is developed to determine the
number of damaged elements. The number of damage elements is equal to the number of nonzero eigenvalues
of the damage matrix defined as the product of the mode shape matrix and the residual force matrix. Then the
damage elements can be localized by the damage localization matrix. Finally, the damage extents can be easily
obtained. A numerical example of a plane truss structure is used to verify the present method. To illustrate the
practical feasibility of the proposed method, the effect of measurement noise is taken into consideration.
Results show that the proposed method can localize both single and multiple damages and can determine
the magnitude of damage successfully even if the measurement noise inevitably makes the damage detection
more difficult.
2. The residual force equation

Without loss of generality, by assuming that the mass matrix is unchanged as damage occurs, the eigenvalue
equation for an n degrees of freedom FEM of a damaged structure is

ðKd � ldjMÞfdj ¼ 0, (1)

Kd ¼ Ku � DK , (2)

where M is the mass matrix, Ku and Kd are the stiffness matrices associated with the undamaged and damaged
structural models, respectively, DK is the corresponding changes, ldj and fdj are the jth eigenvalue and
eigenvector of the damage structure, respectively.

Substituting Eq. (2) into (1) yields

ðKu � ldjMÞfdj ¼ DKfdj . (3)

Letting bj ¼ ðKu � ldjMÞfdj , Eq. (3) can be rewritten as

DKfdj ¼ bj , (4)

where bj is the jth residual force vector.
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If the number of the measured modes is m, Eq. (4) can be expressed in the following form for all measured
modes:

DKF ¼ B, (5)

where F ¼ ½fd1 fd2 � � �fdm� and B ¼ ½b1 b2 � � � bm�.
3. Determining the number of damaged elements

The perturbed global stiffness matrix DK can be expressed as [7]

DK ¼ ADPAT, (6)

where A is the stiffness connectivity matrix and DP is the elemental damage parameters matrix, they are
given as

A ¼ ½a1 a1 � � � aN �, (7)

DP ¼

a1
a2

. .
.

aN

2
66664

3
77775
; ai 2 ½0; 1� (8)

in which the (n� 1) vector ai is the ith elemental stiffness connectivity vector, N is the total number of elements
in the system, and ai is the ith elemental damage parameter. The value of ai is 0 if the ith element is undamaged
and ai is 1 if the ith element is completely damaged. The matrix A is unchanged as damage occurs.

Substituting Eq. (6) into (5) yields

ADPATF ¼ B. (9)

Pre-multiplying FT in Eq. (9) gets

FTADPATF ¼ FTB. (10)

Letting

C ¼ FTA; D ¼ FTB, (11,12)

substituting Eqs. (11) and (12) into Eq. (10) results in

CDPCT ¼ D, (13)

where the (m�m) matrix D is defined as the damage matrix. The eigenvalue decomposition of D is

D ¼ ULUT, (14)

where

U ¼ ½u1 u2 � � � um�; L ¼ diagðs1 s2 � � � smÞ. (15,16)

Substituting Eq. (14) into (13) gets

CDPCT ¼ ULUT. (17)

Eq. (17) shows that the rank of DP should be equal to the rank of L, i.e., the number of nonzero diagonal
entries in L is equal to the number of damaged elements, so we can predict the number of damaged elements
by L (see Appendix A). When the measurement noise is considered, the number of relatively larger entries in L
is also equal to the number of damaged elements.
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3. Damage localization and quantification

Eq. (17) can be rearranged as

L ¼ UTCDPCTU . (18)

Letting

E ¼ UTC ¼ ½e1 e2 � � � eN �, (19)

where the (m�N) matrix E is defined as the damaged localization matrix whose columns corresponding to the
elements and ei is defined as the damage localization vector. When the ith element is damaged, then the vector
ei has zero elements corresponding to the zero diagonal entries in L (see Appendix B). If not, then the ith
element is undamaged. For the vibrational data with measurement noise, the vector ei should have smaller
elements corresponding to the smaller diagonal entries in L if the ith element is damaged.

By using the above described localization approach, the damaged elements have been determined.
Supposing that the number of the damaged elements is qðqomÞ, and the damage localization vectors of these
elements are e1,e2,?,eq, respectively, then they can be assembled as

S ¼ e1 e2 � � � eq

� �
, (20)

where the (m� q) matrix S has m�q zero arrows. Eq. (18) reduces to

L ¼ SDP�ST, (21)

in which

DP� ¼

a1
a2

. .
.

aq

2
666664

3
777775
. (22)

Removing the zero arrows in S, the (m� q) matrix S reduces to the (q� q) matrix S*. Correspondingly,
removing the zero diagonal entries in L, the (m�m) matrix L reduces to the (q� q) matrix L*. With the above
operations, Eq. (21) becomes

Ln
¼ SnDPnSnT . (23)

Therefore, the damage extent can be obtained as

DPn ¼ Sn�1Ln SnT
� ��1

. (24)
4. Numerical example

A plane steel truss structure (shown in Fig. 1) is taken as an example to verify the proposed method.
The basic parameters of the structure are as follows: E ¼ 200GPa, r ¼ 7:8� 103 kg=m3, L ¼ 1m, and
1 3

4 8 12

1511975 13

2 6 10 1460°
L L L L

Fig. 1. A plane truss structure.
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A ¼ 0:004m2. The first 4 modes are used in the damage identification. The mode shapes are contaminated
with 5% random noise in the study of the measurement noise effect. The contaminated signal is represented as

fij ¼ fijð1þ gfi r
f fmax;j

�� ��Þ, (25)

where fij and fij are the mode shape components of the jth mode at the ith degrees of freedom with noise and
without noise, respectively; gfi is the random number with a mean equal to zero and a variance equal to 1; rf is
the random noise level; and fmax,j is the largest component in the jth mode shape.

4.1. Single damage

Assume that a single damage occurs in the 6th element with a stiffness loss of 20%. The eigenvalue matrix L
of the damage matrix D without noise is

L ¼

177:4333

0:0000

0:0000

0:0000

2
6664

3
7775.

We can easily draw a conclusion that a single damage occurs because there is only one nonzero diagonal
entry in L. Then the damage localization matrix E can be calculated by Eq. (19), which is listed in Table 1.

From Table 1, we can see that only e6 has zero elements corresponding to the zero diagonal entries in L, so
the 6th element is damaged and the others are undamaged. Using Eq. (24), we can obtain the damage extent of
the 6th element as a6 ¼ 0:2000, which is exactly the assumed value 0.2.

The eigenvalue matrix L of the damage matrix D under 5% noise is

L ¼

176:1587

4:8572

�2:3128

�0:1515

2
6664

3
7775.

Now we can see that the first eigenvalue is much larger than the others in L, so only one element is damaged.
The damage localization matrix E is listed in Table 2, from which the 6th element can be easily identified to be
the damaged element. Using Eq. (24), we can obtain that a6 ¼ 0:2018, which has 0.9% error.
Table 1

Results for single damage (no noise)

Element 1 2 3 4 5

ei 17.7736 �6.9276 �5.5159 �14.0446 �31.6498

23.7118 21.8225 20.8988 �16.0819 10.6371

�8.3739 �16.6326 �10.4654 1.1514 �7.6450

�32.5886 19.8221 �8.2194 27.6561 29.3354

Element 6 7 8 9 10

ei �29.7853 �8.7337 11.2762 31.2892 6.6782

0.0000 1.4936 �9.5602 �2.0319 �5.5459

0.0000 0.9018 �7.6119 5.5737 1.2007

0.0000 30.8530 �9.1716 5.7865 �21.2895

Element 11 12 13 14 15

ei 41.0603 �27.5669 0.0411 �29.5359 30.3142

1.5795 3.9447 9.4541 �16.2767 �11.9787

�1.9163 �22.4757 �21.2253 15.4320 30.6215

�16.7065 �5.4708 �14.2233 1.4674 6.3301
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Table 2

Results for single damage (5% noise)

Element 1 2 3 4 5

ei 15.5980 �5.8164 6.1574 �11.6679 �30.5403

8.6263 �23.1739 4.7808 �9.0355 �23.1715

17.3696 7.2732 �11.8949 �14.7210 2.2962

�15.8045 �20.1518 16.1779 10.6755 �12.4710

Element 6 7 8 9 10

ei 29.5434 7.2108 12.0188 31.1512 5.6173

�1.3135 21.4160 12.4739 �5.0716 17.4581

0.1258 0.5029 �11.3545 1.1373 �2.3730

�0.4080 6.2692 11.6706 �0.5532 8.2616

Element 11 12 13 14 15

ei �39.5194 �26.8521 0.7600 29.3443 28.8274

�8.7068 7.1708 8.0362 �7.0293 �4.0014

�1.5862 �8.8864 �3.0341 5.0260 6.8349

�0.8161 1.9709 �2.2174 �12.2982 3.7876

Table 3

Results for two damages (no noise)

Element 1 2 3 4 5

ei �26.1688 21.3461 5.1865 25.3934 59.9308

�5.4892 20.5835 �1.9913 8.2272 7.5638

�0.7284 2.9654 0.3988 4.0786 0.0000

30.9060 12.8260 20.8407 �23.5955 0.0000

Element 6 7 8 9 10

ei 23.7291 22.8481 �10.3663 �21.2076 �15.0529

�19.1033 17.1629 1.6893 21.6297 �13.0520

0.0000 �3.7644 11.5045 �4.0540 3.2162

0.0000 �7.2796 �8.2188 �3.0626 0.6395

Element 11 12 13 14 15

ei �35.5940 24.4581 0.8792 17.4360 �29.1267

14.6140 �12.0715 �0.6216 �26.6348 9.8905

2.6666 17.6157 15.0738 �6.1816 �21.0704

5.2724 1.8238 9.4846 �13.4655 �8.5057
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4.2. Two damages

Assume that two damages occur in the 5th and 6th elements with two stiffness losses of 20%. The
eigenvalue matrix L of the damage matrix D is

L ¼

830:9554

84:4293

0:0000

0:0000

2
6664

3
7775.
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Again, the conclusion has been drawn that two damages occur because there are two nonzero diagonal
entries in L. Then the damage localization matrix E can be calculated by Eq. (19), which is shown in Table 3.

From Table 3, it can be seen that only e5 and e6 have zero elements corresponding to the zero diagonal
entries in L, so the 5th and 6th elements are damaged and the others are undamaged. Using Eq. (24), we can
obtain the damage extents as a5 ¼ 0:2000 and a6 ¼ 0:2000, which are exactly the assumed values (0.2, 0.2).

The eigenvalue matrix L of the damage matrix D under 5% noise is

L ¼

812:5916

83:6294

�3:8671

3:6283

2
6664

3
7775.

We can also find that the first two eigenvalues are much larger than the others, so two elements are
damaged. The damage localization matrix E is listed in Table 4, which shows that the 5th and 6th elements are
the most suspected damaged elements. Using Eq. (24), we can obtain that a5 ¼ 0:1974 and a6 ¼ 0:2117, which
have �1.3% and 5.85% errors, respectively.

4.3. Multiple damages

Assume that multiple damages occur in the 4th, 5th and 6th elements with stiffness losses all of 20%. The
eigenvalue matrix L of the damage matrix D is

L ¼

1:0808

0:1717

0:0000

0:0721

2
6664

3
7775� 103.

It is obvious that three damages occur because there are three nonzero diagonal entries in L. Then the
damage localization matrix E can be calculated by Eq. (19), which is shown in Table 5.

From Table 5, one can see that just e4, e5 and e6 have zero elements corresponding to the zero diagonal
entries in L, so the 4th, 5th and 6th elements are damaged and the others are undamaged. The damage extents
can be obtained by Eq. (24) as a4 ¼ 0:2000, a5 ¼ 0:2000 and a6 ¼ 0:2000, which are exactly the assumed values
(0.2, 0.2, 0.2).
Table 4

Results for two damages (5% noise)

Element 1 2 3 4 5

ei �25.4990 21.5490 �6.2136 25.1211 58.9647

�4.5899 21.5559 0.2009 8.9515 8.1176

16.6986 11.4034 �11.8623 �8.9445 0.0651

34.7237 19.0742 �23.6544 �23.7739 0.9723

Element 6 7 8 9 10

ei �23.7531 �23.3433 �10.7548 �21.2080 �15.0058

18.3563 �16.9302 1.8920 20.7461 �12.6742

0.0700 7.7151 9.6766 �5.4986 3.8693

1.8470 9.6706 �0.9331 �4.7244 2.3119

Element 11 12 13 14 15

ei 35.7622 24.2531 1.0170 �17.2099 �28.4642

�14.3978 �10.5229 0.7306 27.2379 6.7084

�7.1385 20.8287 22.8002 16.1427 �28.9649

�10.2464 14.6617 22.6595 23.2331 �25.9332
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Table 5

Results of localization for multiple damages (no noise)

Element 1 2 3 4 5

ei �29.2076 18.8506 1.9918 37.9905 58.6388

25.2057 7.8946 21.6326 �23.5710 9.6143

4.7950 5.5521 4.2207 0.0000 0.0000

�11.2694 �27.0162 �10.5273 5.5661 �9.6109

Element 6 7 8 9 10

ei 22.8546 24.1368 �9.0118 �18.5627 �15.3200

14.5135 �11.5592 �6.0290 �19.6612 4.8824

0.0000 �5.4054 10.9678 �4.9484 3.5939

15.4065 �11.0305 1.2239 �14.9160 11.0013

Element 11 12 13 14 15

ei �34.6150 20.2387 �3.1823 19.3240 �22.5015

�8.9811 20.2289 15.4975 1.7364 �27.8186

3.8390 19.4576 18.0785 �9.1460 �24.4215

�14.4069 3.9311 �8.5761 31.4214 2.9571

Table 6

Results of localization for multiple damages (5% noise)

Element 1 2 3 4 5

ei �28.8329 18.4241 �1.3469 38.3043 59.4776

24.2913 6.2325 �20.9792 �23.3287 9.4392

4.6559 6.3066 �4.6595 0.1631 0.4648

12.2815 26.9067 �10.7744 �5.7298 8.9867

Element 6 7 8 9 10

ei �22.8560 �23.5810 �8.7523 �19.1544 �15.2456

�15.6004 12.3985 �5.6402 �20.6028 5.9543

0.3824 4.8198 10.6549 �4.3506 3.1792

15.7470 �10.5799 �1.7332 15.1618 �11.0828

Element 11 12 13 14 15

ei 34.5409 20.2790 �3.0223 �19.6775 �23.1599

9.9998 21.5101 15.8558 �3.4136 �28.9609

�3.7182 19.5369 18.3875 9.8682 �24.6788

�14.1227 �3.6226 8.8654 31.5709 �3.4873
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The eigenvalue matrix L of the damage matrix D under 5% noise is

L ¼

1:1045

0:1720

0:0060

0:0750

2
6664

3
7775� 103

The damage localization matrix E is listed in Table 6. The 4th, 5th and 6th elements are the most suspected
damaged elements from E and L. Using Eq. (24), we can obtain that a4 ¼ 0:2030, a5 ¼ 0:2089 and
a6 ¼ 0:1930, which have 1.5%, 4.45% and �3.5% errors, respectively.
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5. Conclusions

A decoupled damage identification algorithm is presented in this paper. The method approaches the damage
identification problem in three steps: determining the number of damaged elements, localizing the damaged
elements and quantifying the damage extents. A plane truss structure is used as a numerical example to
illustrate the proposed method. Results demonstrate that the proposed procedure can localize and quantify
the damage accurately if the number of measured modes is more than the number of damaged elements with
or without noise.
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Appendix A

The statement after Eq. (17) ‘‘Eq. (17) shows the rank of DP should be equal to the rank of L’’ can be
illuminated as follows:

From Eq. (14) one can obtain

rankðDÞ ¼ rankðLÞ. (A1)

According to Eq. (6) we have [7]

rankðDKÞ ¼ rankðDPÞ. (A2)

Substituting Eqs. (6) and (12) into Eq. (10) yields

FTDKF ¼ D. (A3)

From Eq. (A3) one can obtain [6]

rankðDKÞ ¼ rankðDÞ. (A4)

Considering Eqs. (A1), (A2) and (A4) one can easily obtain

rankðDPÞ ¼ rankðLÞ. (A5)

Appendix B

The statement after Eq. (19) ‘‘When the ith element is damaged, then the vector ei has zero elements
corresponding to the zero diagonal entries in L’’ can be proven as follows:

Eq. (18) can be rewritten as

s1
s2

. .
.

sm

2
66664

3
77775
¼
XN

i¼1

ai

e1i

e2i

..

.

em
i

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ðe1i e2i � � � e

m
i Þ, (B1)

where e1i ; e
2
i ; � � � ; e

m
i are the elements of ei. From Eq. (B1) one can obtain

sm ¼
XN

i¼1

aiðe
m
i Þ

2. (B2)
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If sm ¼ 0, Eq. (B2) becomes

XN

i¼1

aiðe
m
i Þ

2
¼ 0. (B3)

Because aiA[0,1], one can obtain

XN

i¼1

aiðe
m
i Þ

2
X0. (B4)

From Eq. (B4), the equal sign is valid only if

aiðe
m
i Þ

2
¼ 0; i ¼ 1�N. (B5)

When the ith element is damaged (ai40), Eq. (B5) is valid only if

em
i ¼ 0. (B6)
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