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Abstract

Evidently, a perforated pipe is an essential component in muffler systems. It has the ability to reduce the power levels of
noise sources generated by flow. Muffler systems are composed of several elements joined together in series or parallel. In
practical approach, each element can have one or more perforated pipe installed. This yields the ability to estimate the
acoustic characteristic by the product of the individual element four-pole parameters.

In this work, a method to derive the four-pole parameters of such element with consideration of higher-order mode is
presented. Based on the results obtained, the parameter C was investigated systematically. Some comparisons between the
experimental measurements and the predicted results are discussed. The mean flow velocity is not considered in this paper.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Perforated pipes are a commonly used feature in muffler designs, mainly because of their ability to reduce
the acoustic power of the noise generated by flow significantly influenced by its velocity [1-5]. Contemporary
automotive muffler chambers consist of more than one resonance room and expansion room joined together
in series, in which one or several perforated pipes are installed. In this case, the acoustic characteristics of
mufflers can be easily estimated by obtaining the product of the individual element four-pole parameters.
When the dimension of each element is small compared with the acoustic wavelength, the one-dimensional
model four-pole parameter is frequently used. However, by the presence of a perforated pipe, the one-
dimension frequency range will become extremely narrow due to the generation of higher-order modes at low-
frequency range. In order to estimate the performance of mufflers in wide frequency range, the modeling or
analysis of such an arrangement would require the expression of four-pole parameters including the higher
order modes effect.

In the present work, a method to derive the four-pole parameters of an elliptical muffler chamber having
a perforated pipe with the higher order mode effect is suggested. Perforated tube muffler is modeled as a
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piston-driven rigid tube. The four-pole parameters are defined from the average sound pressure of the input
and output piston, which are obtained by using the impedance model of perforated pipe. Based on the results
obtained, the parameter C is investigated systematically. Some comparisons between the experimental
measurements and the predicted results are also discussed. The mean flow velocity is not considered in this

paper.
2. Analysis method
2.1. Model of analysis and boundary conditions

Consider the elliptic cylindrical cavity of eccentricity e,, and length / having a thin perforated pipe in
elliptical form as shown in Fig. 1. The eccentricity of the input, of perforated pipe and of output are e, ¢, and

e;, respectively. Assume that the acoustic impedance of perforated pipe can be regarded as uniform over its
surface.

output

|~ perforated

.......... M pipe

input

Fig. 1. Cross section and geometry of the problem.
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The general solution of the wave equation in elliptical coordinates is a combination of some function as
follows [6]:

$(E,n,2) = (Ao exp(uz) + By exp(—pz)) <Z ConCen(E, 5)cen(n, )+ Y Smi1Sems1 (&, 8)5emi (1, s)) . (D)
m=0 m=0

where ¢(&,n, z) is the velocity potential, 4y, By, C,, and S, are arbitrary constants determinable from the
boundary conditions. Functions ce,,(1,s) and Ce,,(,s) are even and even modified Mathieu function of mth
order, respectively; se,(n,s) and Se,(&,s) are odd and odd modified Mathieu function of mth order,
respectively. The value of s is defined by the following equation:

q2 2 2
5= &+, @)

where ¢ is the distance between the foci and the origin, k = w/c with w and ¢ are the angular frequency and the
sound velocity, respectively, u is arbitrary constant.

Let the velocity potential inside the perforated tube be ¢;, and that outside the tube be ¢y, respectively.
Since the distribution of ¢;, is symmetric about the major and the minor axis, ¢;, must be even and periodic in
n, hence the general solution of ¢;, becomes

i = (Ai exp(uz) + Bi exp(—2)) Y CuCen(&, 5)cen(1, 5)- 3)

m=0

Since ¢y has both symmetrical and unsymmetrical terms, the general solution of ¢, becomes

d)out = (AO eXp(luZ) + BO exp(—,uz)) (Z Cm Cem(éa S)cem(’/h S)+ Z Sm+lS6m+1(é: s)sem(n, S)) . (4)

m=0 m=0

The boundary conditions are as follows:

M oat z=0. V.= yope, S
z

2 at z=1, Vo= pren), ©
z

[3] at i = iw: Vf = _a¢0ut/aé = O’ (7)

[4] at z=1 V.= —0¢y,/0z=0, (8)

where V. and V; are the velocity components in the z, and & directions, respectively, V and V; are the driving
velocity at the input and the output piston, respectively, F(&, 1) = 1 at the piston and F(&, ) = 0 elsewhere.

Let the sound pressure and the volume velocity inside the perforated pipe be P;, and Uj,, respectively. Let
those outside the perforated pipe be Py and Uy, respectively. Then at the surface of perforated pipe & = ¢,
the following relations are obtained:

Pin = Pout + Zpipe Uoul, (9)

Uin = Uout» (10)

where z,;, is the impedance of perforated pipe. Since the sound pressure P and volume velocity U are related
to the velocity potential ¢ by P = jkpce and U = d¢/d&, Eqs. (6) and (7) are then represented as

Zpipe a(lsout
jkpe ¢

(6] at &=¢, 0y, /0 =0y /0L (12)

[5] at ¢ = ép’ ¢in - (rbout =

(11)
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2.2. Sound pressure on the input and output piston

According to the above boundary conditions, ¢;, can be determined (see Appendix A). Therefore, the sound
pressure at the input piston of the chamber corresponding to ¢;, becomes

0o 00
PO = ]kpc d)inlz:O = jkzw Z Z (GTm,l Q21 i UO GSm,inln,j Ul) (1 + Zm,i)@m(ga n, Sm,i)a (13)
m=0 i=0
where

1

GSm,i = . - N 5 (14)
:um,i sinh :um,il + Zm,iﬂm+1,i sinh /"‘m+l,il

1

GTm,i = = P (1 5)

,um,i tanh :um,il + Zm,i,um-ﬁ-l,i tanh :um-‘rl,il

1 /
Mg = — A/ Ami (kaW) (16)
[

w

1 —
Hms1,i = a_ m+1 i (kan) (1 7)
;Lm,i = 2\/ Sm,i/eWa (18)
)Vm+l,i = 2\/5111+1,i/ew, (19)
@m(é: n, Sm,i) = Cem(f, Sm,i)cem(na Sm,i)s (20)
Sw &, 2n g, 2n 5
= [ [ encnswnenazar [ [ [T e cnsncmazan e
0Jo 0 0 0
g(&,n) = cosh2& — cos 2. (22)

Uy = VySy and U; = VS, are volume velocity at input and output, respectively, Sy, S; and S,, are cross-
sectional area of input, output and chamber, respectively, Z,, = pc/S,,, a,, is major semi-axis of elliptical
chamber, Zm,i is given in Eq. (A.24) (see Appendix A), the term related to the acoustic impedance of
perforated pipe.

Similarly, the sound pressure on the output side (z = 1) is given by

Py = jkpedinl-mi = kZw Y > (GSpi0), Uo = GTniQly ;UN(L + Zi Ol 11, $ms). (23)

m=0 i=0

2.3. The average sound pressure on input and output piston

Let ds;ds, be an elemental cross-sectional area as shown in Fig. 2 with
dsds; = [(6x/08)* + (3y/5E)"1dE[(Sx/on)*
2
+ (dy/on)*1dy = %(cosh 2¢ — cos 2n)dédy. (24)

Then the average sound pressure acting on the output piston can be expressed as

1 [ .
Po=5 i /0 Podsds, = ijMZZ<GTm,QOOUO GS,,”QO’U,)(HZ,,,,,-), (25)

m=0 i=
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Fig. 2. Elemental area on the input and output piston.

where

o _ @ S J5' ST OmlEn smi)g(E m)dédn
" 2 SMSU foéw fozn @3,1(69 1/’3 Sﬂ1,i)g(£’ W)dfdn

& p2n
/ / Om(E. s sm)g(E )AED. (26)
0 0

Symbols u and v are 0 or /, respectively. Similarly, the average sound pressure on the output piston can be
simplified as

00 00
F1 :jkzw Z Z (GSm,iQS;f,‘ UO - GTm,i f,;,l,,‘ Ul)(l + Zm,i)' (27)
m=0 i=0

2.4. The four-pole parameters

By setting U; = 0 in Egs. (25) and (27), the parameter 4 and C can be obtained as

A= E _ Z;,.?:()Z;Z()GTm,ngﬂ(l + Zm,i) (28)
Prlui=o 3700 (3220 GS %‘(1 +Zm,i)’
1
C= 2 = — — . (29)
Privizo  §kZyS e o320 GSmiQni(l + Zims)

Next, by setting P; = 0 in Eq. (27), we have the relationship between U, and U,. Thus the parameter D and
B can be obtained as

Bt =D G| T ) T+ 2, G0
11P;=0 m=0 i=0 GSm,iQW;,i
D— ﬂ _ ZE?:OZE:O GTm,iQ;lv’ql,i (3])
Uilp=o D om0 im0 GSumi Q%’

Moreover, expanding the above parameters with mode (0, 0) and rewriting k& by k—ju in order to consider
the attenuation constant o in the chamber, we have

A = cosh(x + jk) + —= O mi) ’

2GS 0% (1 + Zp))

m,i

(32)
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i 1 ()1 . GT2 Q le

B = Z,, sinh(x + jk)] + j(kj — 2)Z,y £ GS,; | —EEmiZmi _ 1) o0 (1 4 Z,,.), (33)
GSizn tQ?;;Ii
C=1 /(2 b (ke + DZ0Z S QU1 + Zon) (34)
sinh(o + jk)! w mim,i myi) |»
111 IQ
= cosh(a + jk)/ —|— —__Em (35)
2 GSm,z

where the symbol X means )", >" % without m =i = 0.
3. Results and discussion

Four-pole parameters are derived from Egs. (32)—(35) in which the first term represents the plane wave and
the second, the transverse wave. Hereafter, in order to validate the previous theoretical developments, we
consider the case of parameter C as shown by Eq. (34).

The calculated result of parameter C is shown by the solid line in Fig. 3(a), when we represent Eq. (34) in dB as

20 Log,o|C| = 20 Log,, +(Gk+o)x Z, E GS,,”Qm,(l +Zni)|. (36)

smh(oc + Jk)l

The parameter C will have a lower level corresponding to the frequencies at which these denominators
sinh(o+jk)! and  w,,;sinh w,, [ + Z,, i, ; sinhi, 50 of GS,; in Eq. (36) are zero. Namely, when
sinh(o + jk)! = 0, these frequencies are

f—n% (n=0,1,2.) (37)

For the second denominator p,, ; sinh w,, ;/ + Z il 1 sinh 7z, 157, it s difficult to find these frequencies when
this denominator become zero logically. However, when Z,, ;, the term related to the acoustic impedance of the
perforated pipe as defined by Eq. (A.34) in Appendix A, is extremely small, these frequencies can be found:

. c /
Aum,i sinh :um,il =0 .. fl(‘)i)l - na }“fn,i + (nﬂ:aw/l)z' (38)

w

Oppositely, when Z,,,,i is very large, these frequencies become

:um+l,i sinh :um+1,il =0 .. mz - m+1 i + (nnan/l) (39)

where the relations of 4,,; and Jmi With the chamber eccentricity are shown in Fig. 4. Therefore, the frequencies
where p,,,; sinh w,, ;[ + Zilor i 1. sinh 1, ;/ = 0 appear between f,, V and f,, /2. The generation mechanism of
these frequencies can be understood according to the calculation example shown in Fig. 3(b). The values of sin k/
in Fig. 3(b) are shown on a magnification of 10 x for convenience.

From Fig. 3(a), it is observed that the lower level of mode (1,0) does not appear in the frequency range over
1750 Hz despite the fact that their denominator has zero values shown in Fig. 3(b). This is conceivable if the
level of (1,0) is less than the one of mode (2,0), which has a first resonance at 1600 Hz and its level suddenly
increases in the upper frequency range. This relationship is obvious from the calculated results, shown in
Fig. 3(c) with a dotted line and solid line represents the computed results shown in Fig. 3(a) and mode (1,0)
itself.

Our computations have been achieved with the attenuation factor o given by [7]

/

o= 0.022034 [ =—,
2cry

(40)
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Fig. 3. The generation mechanism of parameter C: (a) Computed and measured results, (b) resonance mechanism, and (c) level of (1,0)

mode.

where rg is set by the average of major and minor semi-axis of elliptical chamber. The acoustic impedance of

perforated pipe is given by [8]

Zoive = (6 x 1073 + jk(r + 0.75d),)),
SfU

(41)

where Sris the surface area, ¢ is the porosity and the equivalent thickness of the holes is #+0.75d), in which d,

is a hole diameter.
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Fig. 4. Relationship between eccentricity and of higher-order modes.
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Fig. 5. Block diagram of the experimental apparatus.

In order to examine the correctness of the predicted theoretical, the measurement of parameter C was
performed. A block diagram of the whole experimental apparatus [9] is shown in Fig. 5. Two microphones
were located at both sides of the chamber to measure the sound pressures P4 and Pg. The dimensions of the
chamber considered in this work are e¢,, = 0.6, a,, = 15cm, / = 35cm. The perforated pipe had a wall thickness
of 0.5mm. It was drilled with 0.6 cm diameter holes and 1.5 cm pitch so that the porosity, the ratio of the total
hole areas to the pipe surface area, is 10%. Eccentricity e, = 0.85 was selected to satisfy the condition
e,a, = e,a,, and this means both the chamber and perforated pipe have the same foci.

From Fig. 5, the relationship between P4 and Pg is given by

P, cos ki 2o sinkl A B Py
U] =~ \i Zio sinkly cos ki ( C D) Ug |’ (42)
where the first term represents the four-pole parameters of the input pipe which has length /, and the second

represents our model chamber. Symbols U,, Up and Z, represent volume velocity and acoustic impedance
of inlet pipe, respectively. By installing the microphone 2 on the output piston, Up will become zero; thus,
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Eq. (42) can be written as
PA = (COS kl() A+ Z() sin kloC)PB (43)

Furthermore, since the first term can be disregarded as compared to the second term, Eq. (43) can be written
in terms of dB as follows:

201og;o|C| = 201log,o|P4/Pp| — 2010g,o|Zo sin kly|. (44)

This means parameter C can be found by subtracting the acoustic characteristic of inlet pipe Z, sin kl, from
the measured sound pressures P, and Pp. Note that Eq. (44) corresponds to our theoretical Eq. (36).

Measured results are shown by the dotted line in Fig. 3(a). Except for the difference in the level caused by
the attenuation factor o used in the calculation, the agreement observed between the measurement and the
analytical prediction is acceptable. There are also some differences in the levels for a frequencies above
2250 Hz caused by the effect of (2,1) mode which is not considered in our calculation.

4. A special case

The four-pole parameters are derived from Egs. (32) to (35). From these equations we can easily obtain the
four-pole parameters. In case the perforated pipe is not attached by letting Z,,;, the term related to acoustic
impedance of perforated pipe defined by Eq. (A.24), tends to zero. We now have

> GT,,: 0"
A = cosh(o + jk) + 7(2’" (45)

2 GSpi0)

° G 2 T,OT -
B = Z, sinh(x+ jK)] +j(k = jo) Zyy 2GSy x | — == 1) O (46)
GS,,,.i O
C=1/(— 2" L (k+0)Z05GSp 0" (47)
sinh(a + jk)I v mEmi

. z GTm,ia
D = cosh(a + jk) + ———=, (48)

Z GSm,i ng;{l

in which GS,,; and GT,,; become
GS,.; = ! (49)
e :um,i sinh :um,il ’
1

GTm,i = (50)

‘um,i tanh :um,il .

In this case, only the even modes of the (2m, i) order may propagate due to symmetry. So the higher-order
modes are generated in order of mode (2,0), (0,1) and so on. Fig. 6 shows parameter C in the cases with and
without perforated pipe. It is clearly recognized that by the presence of mode (1,0), the one-dimensional
frequency range when using a perforated pipe is narrower than without one.

When the cross section of the chamber and perforated pipe are circular, the four-pole parameters
can be easily derived from our results by letting the eccentricity of their section tend to zero. The difference
between this case and the elliptical case is sz, in Egs. (32)—(35). When the eccentricity tends to zero, namely,
£— o0, g—0 the relations ce,,(1,5) = cos mn, se,,(n,s)—sinmn, Ce,,(E,5)—J,(Ar/r,), s€,+1(E,8)—> T+ 1(Ar/r,,)
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Fig. 6. Parameter C in case of with and without perforated pipe: (a) measured results, and (b) calculated results from Eq. (13) (with
perforated pipe) and Eq. (46) (without perforated pipe).

are obtained [6]. Applying these relations and substituting into Egs. (29)-(32) we have the four-pole

parameters:

éGT,, 0% + 7,
A = cosh(o + jk) + < i O i( m,l)’

2GS O (1 4+ Z,))

m,i

B = Z,, sinh(o + jk)] + j(kj — ) Z,, 2GSy, _1%4%%3_1 §%U+Zml
GS,,. O,
C=1 ) (-2t e+ 07 2GS Q1 + Z)
B sinh(a + Jk)[ w m,iLm,i mi) | >

D = cosh(a + jk) +

0,/
DI CAYHTO o

5

(1)

(52)

(53)

(54)
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in which
5 " (;‘u 0271 r (2 i(r /1)) cos m0 dr dO (55)
ML o 1T, Goni(r [ry))dr x [ 02 " 1 (A i(r /1)) cos mO dr dO

= Jm()wn,irprw)/‘];n()~m,irprvtr)a (56)
€= Jerl()“m,irprw)/'];n_;_l(;Lm,irprw)a (57)

1 J A ) a1 (AL 1y
Fm,i _ 1 — m( T,z ) ,1""1( :?1,1 ) , (58)

(c1 — ) Jm(/lm,,‘rw)llmﬂ (/lm,,‘rw)

Jm(x) represents the Bessel functions of mth order, r, and r, are the radius of perforated pipe and the
chamber, respectively.

5. Conclusion

The derivation of the four-pole parameters for the elliptical chamber having a perforated pipe has been
presented by solving the equations, considering the higher-order mode effects. The four-pole parameters are
given by Egs. (32)—(35). Based on the results obtained, the cause and mechanism of resonance frequencies of
parameter C is discussed in detail. A good correlation between the prediction and experiment of parameter C is
observed. Our results can be applied to a chamber without a perforated pipe and both chamber and perforated
pipe in circular section. Those four-pole parameters are given by Eqgs. (45)—(47) and Eqgs. (51)—(54), respectively.

Appendix A

In order to find ¢;, and ¢ from Egs. (5) to (9), let ¢§, and ¢&., be solutions of Egs. (3) and (4) obtained for
the following boundary conditions:

[la] at z=0, V.=—0¢%/0z = VoFo(&,n), (A1)
[2a] at z=1, V.= —-0¢{ /0z=0, (A.2)
[Ba] at &=&,. Ve=—04%, /0 =0, (A3)
[4a] at z=1[ V.= —-0¢s,/0z=0, (A4)
[Sa] At &= G = = 2 O, (A5)
[6a] at &=, 0¢f /0 =0, /0E, (A.6)
and let ¢2, and ¢5,, be solutions of Egs. (3) and (4) obtained for the following boundary conditions:
[Ib] at z=0, V.=-0¢) /0z=0, (A.7)
2b] at z=1[, V.=-03¢" /0z=V,Fi(&n), (A.8)
[3a] at ¢=¢&,, Ve=-0¢),/0=0, (A9)
[4b] at z=0, V,=-0¢", /0z=0, (A.10)

Zhole a(/ﬁb
5b t — b _ b out
[ ] a i 617’ n out ]kPC aé

(A.11)
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[6b] at &=¢&,, 3l — 0 =dgh, /oc. (A.12)

Then ¢;, and ¢,y can be obtained as ¢y, — ¢+ ¢hn and Pou — P4+ ¢, respectively.
At first, ¢y, can be derived by the following procedure. From Eq. (A.2) we have

B; = A;exp (2ul). (A.13)
Substituting Eq. (A.13) into Eq. (3), we have

= Aif (2. ) Cen(E, S)cen(n, ), (A.14)
m=0
where
(2, 1) = exp(uz) + exp(2ul) exp(—pi2). (A.15)
Similarly, find B, from Eq. (A.4) and substituting into Eq. (4) we obtain
(l)out = Z Cg;f(zs //‘)Cem(éy S)Cem(i’], S) + Z qu+1f(2, ,u)Seerl (éy S)Sem+l (’7» S) (A 1 6)
m=0 m=0
and from Eq. (A.3) we have
> O ) Ce (& cem, ) + Y S 1S (G 1S,y (Eyn )51 (1, 8) = 0. (A.17)
m=0 m=0
To make Eq. (A.17) always zero, it is necessary that
Ce,, (&, 5) = Gen(@n) (A.18)
0¢ ¢=¢y
and
Se, (£, 5) = OSemsi(ess) _ (A.19)
o¢ &=¢,

Letting the positive roots of Egs. (A.18) and (A.19) be s,,,; and 5,41,(i = 0, 1,2,...), respectively, and letting
p correspond to s, ; and 5,41, to be u,,; and @, 1,47, then ¢35, can be obtained as

o0 o0
0= A G b1y, ) Cen(E, 5mi)cem(, smi)s (A.20)

m=0 i=0

00 00 00 00
¢gut - Z Z Cm,if(zs ,um,j)cem(éa sm,i)cem(i/la Sm,i) + Z Z( Sm-‘rl,if(zs ﬂn1+1,i)Sem+l (é, sm+l,i)sem+l(7/la Sm+l,i)) .

m=0 i=0 m=0 i=0
(A.21)
Next, derive 4,,; from Eq. (A.5) and considering Eq. (A.6) we have
Cm,if/(za ;um,i)cem(ﬁa Sn7,i)cem(’7: Sm,i) —0 — VOFO(fa 77) (A22)

By multiplying both sides of Eq. (A.22) by Ce, (&, si.i)cen(n, smi)(cosh 2& — cos 2y) and integrating with
respect to & from 0 to &,, and with respect to n from 0 to 2z, we can determine the constant C,, ;. Thus
@i, becomes

00 00
“ Vo .
d)in = Z Z L SR 1,1 i ng'(l + Zm,i)@m(fa n, Sm,i)a (A23)

. Hang1a sinh g,
m=0'i=0 cosh o (125 T Zmi Coh T (1—2)
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where
mi — an(CZ + an) 5 (A24)
(a1 + an)(cl — 0 — an)
Zpipe

n =" > A2

"= ke (A.25)
Cem(ép’ Sm i)
g =—"F"", A.26
! Cejn(fp, Sm,i) ( )
Sem-H (fp, Sm+1 i)
=—+>, A.27
? SE;;1+1(£pa strl,i) ( )
@m = (5, n, Sm,i) = Cem(gys Sm,,')Cem(i’], Sm,i)a (A28)
g(&,n) = cosh 2¢& — cos 21, (A.29)
& p2n ¢ r2m

= [ [ oucnsmancszan ) [7 [T 0 nsuncnican (A30)

Similarly, by using Egs. (A 7)—(A 12), ¢, can be obtained:

Vi
Pin Z ZMW sinh ol % i SI0h il "“(1 T Z””)@’”(é 1, Sm.i)s (A.31)
Ll COSh Hom,iZ + mi cosh M1,

where Hm_il is defined by Eq. (A.29) in which &, is replaced by 5,. Thus, from Egs. (A.23) and (A.31), we obtain
0 .Vo

(l’) _ ga 2 : z : ml
mn m m Hpi Sinh g, il  Hng1y sinh 073/

=0 50 \ e T Zmi e

1 'Vl

Hm,! sinh :uml + Z :um+lx sinh .um+] 11
m, i
cosh Hy,iZ cosh Hon1,i%

(1 + Zm,i)@m(és n, Sm,i)~ (A32)
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