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Abstract

Evidently, a perforated pipe is an essential component in muffler systems. It has the ability to reduce the power levels of

noise sources generated by flow. Muffler systems are composed of several elements joined together in series or parallel. In

practical approach, each element can have one or more perforated pipe installed. This yields the ability to estimate the

acoustic characteristic by the product of the individual element four-pole parameters.

In this work, a method to derive the four-pole parameters of such element with consideration of higher-order mode is

presented. Based on the results obtained, the parameter C was investigated systematically. Some comparisons between the

experimental measurements and the predicted results are discussed. The mean flow velocity is not considered in this paper.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Perforated pipes are a commonly used feature in muffler designs, mainly because of their ability to reduce
the acoustic power of the noise generated by flow significantly influenced by its velocity [1–5]. Contemporary
automotive muffler chambers consist of more than one resonance room and expansion room joined together
in series, in which one or several perforated pipes are installed. In this case, the acoustic characteristics of
mufflers can be easily estimated by obtaining the product of the individual element four-pole parameters.
When the dimension of each element is small compared with the acoustic wavelength, the one-dimensional
model four-pole parameter is frequently used. However, by the presence of a perforated pipe, the one-
dimension frequency range will become extremely narrow due to the generation of higher-order modes at low-
frequency range. In order to estimate the performance of mufflers in wide frequency range, the modeling or
analysis of such an arrangement would require the expression of four-pole parameters including the higher
order modes effect.

In the present work, a method to derive the four-pole parameters of an elliptical muffler chamber having
a perforated pipe with the higher order mode effect is suggested. Perforated tube muffler is modeled as a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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piston-driven rigid tube. The four-pole parameters are defined from the average sound pressure of the input
and output piston, which are obtained by using the impedance model of perforated pipe. Based on the results
obtained, the parameter C is investigated systematically. Some comparisons between the experimental
measurements and the predicted results are also discussed. The mean flow velocity is not considered in this
paper.
2. Analysis method

2.1. Model of analysis and boundary conditions

Consider the elliptic cylindrical cavity of eccentricity ew and length l having a thin perforated pipe in
elliptical form as shown in Fig. 1. The eccentricity of the input, of perforated pipe and of output are e0, ep and
el, respectively. Assume that the acoustic impedance of perforated pipe can be regarded as uniform over its
surface.
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Fig. 1. Cross section and geometry of the problem.
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The general solution of the wave equation in elliptical coordinates is a combination of some function as
follows [6]:

fðx; Z; zÞ ¼ ðA0 expðmzÞ þ B0 expð�mzÞÞ
X1
m¼0

CmCemðx; sÞcemðZ; sÞ

 
þ
X1
m¼0

Smþ1Semþ1ðx; sÞsemþ1ðZ; sÞ

!
, (1)

where fðx; Z; zÞ is the velocity potential, A0, B0, Cm and Sm+1 are arbitrary constants determinable from the
boundary conditions. Functions cem(Z,s) and Cem(x,s) are even and even modified Mathieu function of mth
order, respectively; sem(Z,s) and Sem(x,s) are odd and odd modified Mathieu function of mth order,
respectively. The value of s is defined by the following equation:

s ¼
q2

4
ðk2
þ m2Þ, (2)

where q is the distance between the foci and the origin, k ¼ o=c with o and c are the angular frequency and the
sound velocity, respectively, m is arbitrary constant.

Let the velocity potential inside the perforated tube be fin and that outside the tube be fout, respectively.
Since the distribution of fin is symmetric about the major and the minor axis, fin must be even and periodic in
Z, hence the general solution of fin becomes

fin ¼ ðAi expðmzÞ þ Bi expð�mzÞÞ
X1
m¼0

CmCemðx; sÞcemðZ; sÞ. (3)

Since fout has both symmetrical and unsymmetrical terms, the general solution of fout becomes

fout ¼ ðA0 expðmzÞ þ B0 expð�mzÞÞ
X1
m¼0

CmCemðx; sÞcemðZ; sÞ

 
þ
X1
m¼0

Smþ1Semþ1ðx; sÞsemðZ; sÞ

!
. (4)

The boundary conditions are as follows:

½1� at z ¼ 0; V z ¼ �
qfin

qz
¼ V 0F 0ðx; ZÞ, (5)

½2� at z ¼ 1; V z ¼ �
qfin

qz
¼ V lF lðx; ZÞ, (6)

½3� at x ¼ xw; V x ¼ �qfout=qx ¼ 0, (7)

½4� at z ¼ l; V z ¼ �qfout=qz ¼ 0, (8)

where Vz and Vx are the velocity components in the z, and x directions, respectively, V0 and Vl are the driving
velocity at the input and the output piston, respectively, F ðx; ZÞ ¼ 1 at the piston and F ðx; ZÞ ¼ 0 elsewhere.

Let the sound pressure and the volume velocity inside the perforated pipe be Pin and Uin, respectively. Let
those outside the perforated pipe be Pout and Uout, respectively. Then at the surface of perforated pipe x ¼ xp,
the following relations are obtained:

Pin ¼ Pout þ ZpipeUout, (9)

U in ¼ Uout, (10)

where zpipe is the impedance of perforated pipe. Since the sound pressure P and volume velocity U are related
to the velocity potential f by P ¼ jkrcf and U ¼ @f=@x, Eqs. (6) and (7) are then represented as

½5� at x ¼ xp; fin � fout ¼
Zpipe

jkrc

qfout

qx
, (11)

½6� at x ¼ xp; qfin=qx ¼ qfout=qx. (12)
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2.2. Sound pressure on the input and output piston

According to the above boundary conditions, fin can be determined (see Appendix A). Therefore, the sound
pressure at the input piston of the chamber corresponding to fin becomes

P0 ¼ jkrcfinjz¼0 ¼ jkZw

X1
m¼0

X1
i¼0

GTm;iQ
0
m;iU0 � GSm;iQ

l
m;iUl

� �
ð1þ €Zm;iÞYmðx; Z; sm;iÞ, (13)

where

GSm;i ¼
1

mm;i sinh mm;il þ €Zm;immþ1;i sinh mmþ1;il
, (14)

GTm;i ¼
1

mm;i tanh mm;il þ €Zm;immþ1;i tanh mmþ1;il
, (15)

mm;i ¼
1

aw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m;i � ðkawÞ

2
q

, (16)

mmþ1;i ¼
1

aw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2mþ1;i � ðkawÞ

2

q
, (17)

lm;i ¼ 2
ffiffiffiffiffiffiffi
sm;i
p

=ew, (18)

lmþ1;i ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
smþ1;i

p
=ew, (19)

Ymðx; Z; sm;iÞ ¼ Cemðx; sm;iÞcemðZ; sm;iÞ, (20)

Qu
m;i ¼

Sw

S0

Z xu

0

Z 2p

0

Ymðx; Z; sm;iÞgðx; ZÞdxdZ
�Z xw

0

Z 2p

0

Y2
mðx; Z; sm;iÞgðx; ZÞdxdZ, (21)

gðx; ZÞ ¼ cosh 2x� cos 2Z. (22)

U0 ¼ V 0S0 and Ul ¼ VlSl are volume velocity at input and output, respectively, S0, Sl and Sw are cross-
sectional area of input, output and chamber, respectively, Zw ¼ rc=Sw, aw is major semi-axis of elliptical
chamber, €Zm;i is given in Eq. (A.24) (see Appendix A), the term related to the acoustic impedance of
perforated pipe.

Similarly, the sound pressure on the output side (z ¼ 1) is given by

Pl ¼ jkrcfinjz¼1 ¼ jkZw

X1
m¼0

X1
i¼0

ðGSm;iQ
0
m;iU0 � GTm;iQ

l
m;iUlÞð1þ €Zm;iÞYmðx; Z; sm;iÞ. (23)

2.3. The average sound pressure on input and output piston

Let ds1ds2 be an elemental cross-sectional area as shown in Fig. 2 with

ds1ds2 ¼ ½ðdx=dxÞ2 þ ðdy=dxÞ2�dx½ðdx=dZÞ2

þ ðdy=dZÞ2�dZ ¼
q2

2
ðcosh 2x� cos 2ZÞdxdZ. ð24Þ

Then the average sound pressure acting on the output piston can be expressed as

P0 ¼
1

S0

Z x0

0

Z 2p

0

P0ds1ds2 ¼ jkZw

X1
m¼0

X1
i¼0

GTm;iQ
0;0
m;iU0 � GSm;iQ

0;l
m;iUl

� �
ð1þ €Zm;iÞ, (25)
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Fig. 2. Elemental area on the input and output piston.
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where

Qu;v
m;i ¼

q2

2

Sw

SuSv

R xu

0

R 2p
0

Ymðx; Z; sm;iÞgðx; ZÞdxdZR xw

0

R 2p
0 Y2

mðx; Z; sm;iÞgðx; ZÞdxdZ

Z xv

0

Z 2p

0

Ymðx; Z; sm;iÞgðx; ZÞdxdZ. (26)

Symbols u and v are 0 or l, respectively. Similarly, the average sound pressure on the output piston can be
simplified as

Pl ¼ jkZw

X1
m¼0

X1
i¼0

GSm;iQ
0;l
m;iU0 � GTm;iQ

l;l
m;iUl

� �
ð1þ €Zm;iÞ. (27)
2.4. The four-pole parameters

By setting Ul ¼ 0 in Eqs. (25) and (27), the parameter A and C can be obtained as

A ¼
P0

Pl

����
Ul¼0

¼

P1
m¼0

P1
i¼0GTm;iQ

0;0
m;ið1þ

€Zm;iÞP1
m¼0

P1
i¼0GSm;iQ

0;l
m;ið1þ

€Zm;iÞ
, (28)

C ¼
U0

Pl

����
Ul¼0

¼
1

jkZw

P1
m¼0

P1
i¼0GSm;iQ

0;l
m;ið1þ

€Zm;iÞ
. (29)

Next, by setting Pl ¼ 0 in Eq. (27), we have the relationship between U0 and Ul. Thus the parameter D and
B can be obtained as

B ¼
P0

Ul

����
Pl¼0

¼ jkZw

X1
m¼0

X1
i¼0

GSm;i

GT2
m;iQ

0;0
m;i Ql;l

m;i

GS2
m;iQ

0;l
m;i

� 1

0
@

1
AQ0;l

m;ið1þ
€Zm;iÞ, (30)

D ¼
U0

Ul

����
Pl¼0

¼

P1
m¼0

P1
i¼0GTm;iQ

l;l
m;iP1

m¼0

P1
i¼0GSm;iQ

0;l
m;i

. (31)

Moreover, expanding the above parameters with mode (0, 0) and rewriting k by k�ja in order to consider
the attenuation constant a in the chamber, we have

A ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
0;0
m;ið1þ

€Zm;iÞ

S
d

GSm;iQ
0;l
m;ið1þ

€Zm;iÞ

, (32)
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B ¼ Zw sinhðaþ jkÞl þ jðkj� aÞZw S
d

GSm;i

GT2
m;iQ

0;0
m;i Ql;l

m;i

GS2
m;iQ

0;l
m;i

� 1

0
@

1
AQ0;l

m;ið1þ
€Zm;iÞ, (33)

C ¼ 1

�
Zw

sinhðaþ jkÞl
þ ðjk þ aÞZw S

d
GSm;iQ

0;l
m;ið1þ

€Zm;iÞ

� �
, (34)

D ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
l;l
m;i

S
d

GSm;iQ
0;l
m;i

, (35)

where the symbol S
d
means

P1
m¼0

P1
i¼0 without m ¼ i ¼ 0.

3. Results and discussion

Four-pole parameters are derived from Eqs. (32)–(35) in which the first term represents the plane wave and
the second, the transverse wave. Hereafter, in order to validate the previous theoretical developments, we
consider the case of parameter C as shown by Eq. (34).

The calculated result of parameter C is shown by the solid line in Fig. 3(a), when we represent Eq. (34) in dB as

20Log10jCj ¼ 20Log10
Zw

sinhðaþ jkÞl
þ ðjk þ aÞ � Zw S

d
GSm;iQ̄

0;l
m;ið1þ

~Zm;iÞ

����
����. (36)

The parameter C will have a lower level corresponding to the frequencies at which these denominators
sinh(a+jk)l and mm;i sinh mm;il þ €Zm;immþ1;i sinhmmþ1;il of GSm,i in Eq. (36) are zero. Namely, when
sinhðaþ jkÞl ¼ 0, these frequencies are

f ¼ n
c

2l
ðn ¼ 0; 1; 2; . . .Þ. (37)

For the second denominator mm;i sinh mm;il þ €Zm;immþ1;i sinh mmþ1;il, it is difficult to find these frequencies when
this denominator become zero logically. However, when €Zm;i, the term related to the acoustic impedance of the
perforated pipe as defined by Eq. (A.34) in Appendix A, is extremely small, these frequencies can be found:

mm;i sinh mm;il ¼ 0 ‘ f
ð1Þ
m;i ¼

c

2paw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2m;i þ ðnpaw=lÞ2

q
. (38)

Oppositely, when €Zm;i is very large, these frequencies become

mmþ1;i sinh mmþ1;il ¼ 0 ‘ f
ð2Þ
m;i ¼

c

2paw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2mþ1;i þ ðnpaw=lÞ2

q
, (39)

where the relations of lm,i and lm;i with the chamber eccentricity are shown in Fig. 4. Therefore, the frequencies
where mm;i sinh mm;il þ €Zm;immþ1;i sinh mmþ1;il ¼ 0 appear between fm,i

(1) and fm,i
(2). The generation mechanism of

these frequencies can be understood according to the calculation example shown in Fig. 3(b). The values of sinkl

in Fig. 3(b) are shown on a magnification of 10� for convenience.
From Fig. 3(a), it is observed that the lower level of mode (1,0) does not appear in the frequency range over

1750Hz despite the fact that their denominator has zero values shown in Fig. 3(b). This is conceivable if the
level of (1,0) is less than the one of mode (2,0), which has a first resonance at 1600Hz and its level suddenly
increases in the upper frequency range. This relationship is obvious from the calculated results, shown in
Fig. 3(c) with a dotted line and solid line represents the computed results shown in Fig. 3(a) and mode (1,0)
itself.

Our computations have been achieved with the attenuation factor a given by [7]

a ¼ 0:02203

ffiffiffiffiffiffiffiffiffi
f

2cr0

s
, (40)
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Fig. 3. The generation mechanism of parameter C: (a) Computed and measured results, (b) resonance mechanism, and (c) level of (1,0)

mode.
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where r0 is set by the average of major and minor semi-axis of elliptical chamber. The acoustic impedance of
perforated pipe is given by [8]

Zpipe ¼
rc

Sf s
ð6� 10�3 þ jkðtþ 0:75dhÞÞ, (41)

where Sf is the surface area, s is the porosity and the equivalent thickness of the holes is t+0.75dh in which dh

is a hole diameter.
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In order to examine the correctness of the predicted theoretical, the measurement of parameter C was
performed. A block diagram of the whole experimental apparatus [9] is shown in Fig. 5. Two microphones
were located at both sides of the chamber to measure the sound pressures PA and PB. The dimensions of the
chamber considered in this work are ew ¼ 0:6, aw ¼ 15 cm, l ¼ 35 cm. The perforated pipe had a wall thickness
of 0.5mm. It was drilled with 0.6 cm diameter holes and 1.5 cm pitch so that the porosity, the ratio of the total
hole areas to the pipe surface area, is 10%. Eccentricity ep ¼ 0:85 was selected to satisfy the condition
epap ¼ ewaw, and this means both the chamber and perforated pipe have the same foci.

From Fig. 5, the relationship between PA and PB is given by

PA

UA

 !
¼

cos kl0 jZ0 sin kl0

j 1
Z0

sin kl0 cos kl0

 !
A B

C D

� �
PA

UB

 !
, (42)

where the first term represents the four-pole parameters of the input pipe which has length l0 and the second
represents our model chamber. Symbols UA, UB and Z0 represent volume velocity and acoustic impedance
of inlet pipe, respectively. By installing the microphone 2 on the output piston, UB will become zero; thus,
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Eq. (42) can be written as

PA ¼ ðcos kl0 Aþ Z0 sin kl0CÞPB. (43)

Furthermore, since the first term can be disregarded as compared to the second term, Eq. (43) can be written
in terms of dB as follows:

20 log10jCj ¼ 20 log10jPA=PBj � 20 log10jZ0 sin kl0j. (44)

This means parameter C can be found by subtracting the acoustic characteristic of inlet pipe Z0 sin kl0 from
the measured sound pressures PA and PB. Note that Eq. (44) corresponds to our theoretical Eq. (36).

Measured results are shown by the dotted line in Fig. 3(a). Except for the difference in the level caused by
the attenuation factor a used in the calculation, the agreement observed between the measurement and the
analytical prediction is acceptable. There are also some differences in the levels for a frequencies above
2250Hz caused by the effect of (2,1) mode which is not considered in our calculation.

4. A special case

The four-pole parameters are derived from Eqs. (32) to (35). From these equations we can easily obtain the
four-pole parameters. In case the perforated pipe is not attached by letting €Zm;i, the term related to acoustic
impedance of perforated pipe defined by Eq. (A.24), tends to zero. We now have

A ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
0;0
m;i

S
d

GSm;iQ
0;l
m;i

, (45)

B ¼ Zw sinhðaþ jkÞl þ jðk � jaÞZw S
d

GSm;i �
GT2

m;iQ
0;0
m;i Ql;l

m;i

GS2
m;iQ

0;l
m;i

� 1

0
@

1
AQ0;l

m;i , (46)

C ¼ 1

�
Zw

sinhðaþ jkÞl
þ ðjk þ aÞZw S

d
GSm;iQ

0;l
m;i

� �
; (47)

D ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
l;l
m;i

S
d

GSm;iQ
0;l
m;i

, (48)

in which GSm;i and GTm;i become

GSm;i ¼
1

mm;i sinh mm;il
, (49)

GTm;i ¼
1

mm;i tanh mm;il
. (50)

In this case, only the even modes of the (2m, i) order may propagate due to symmetry. So the higher-order
modes are generated in order of mode (2,0), (0,1) and so on. Fig. 6 shows parameter C in the cases with and
without perforated pipe. It is clearly recognized that by the presence of mode (1,0), the one-dimensional
frequency range when using a perforated pipe is narrower than without one.

When the cross section of the chamber and perforated pipe are circular, the four-pole parameters
can be easily derived from our results by letting the eccentricity of their section tend to zero. The difference
between this case and the elliptical case is Qu;v

m;i in Eqs. (32)–(35). When the eccentricity tends to zero, namely,
x-N, q-0 the relations cem(Z,s)-cosmZ, sem(Z,s)-sinmZ, Cem(x,s)-Jm(lr/rw), sem+1(x,s)-Jm+1(lr/rw)
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are obtained [6]. Applying these relations and substituting into Eqs. (29)–(32) we have the four-pole
parameters:

A ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
0;0
m;ið1þ

€Zm;iÞ

S
d

GSm;iQ
0;l
m;ið1þ

€Zm;iÞ

, (51)

B ¼ Zw sinhðaþ jkÞl þ jðkj� aÞZw S
d

GSm;i

GT2
m;iQ

0;0
m;i Ql;l

m;i

GS2
m;iQ

0;l
m;i

� 1

0
@

1
AQ0;l

m;ið1þ
€Zm;iÞ, (52)

C ¼ 1

�
Zw

sinhðaþ jkÞl
þ ðjk þ aÞZw S

d
GSm;iQ

0;l
m;ið1þ

€Zm;iÞ

� �
, (53)

D ¼ coshðaþ jkÞl þ
S
d

GTm;iQ
l;l
m;i

S
d

GSm;iQ
0;l
m;i

, (54)
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in which

Qu;v
m;i ¼

rw

rurv

R ru

0

R 2p
0 rJmðlm;iðr=rwÞÞ cos my drdyR rw

0 rJ2
mðlm;iðr=rwÞÞdr�

R rv

0

R 2p
0 rJmðlm;iðr=rwÞÞ cos mydrdy

, (55)

c1 ¼ Jmðlm;irprwÞ=J 0mðlm;irprwÞ, (56)

c2 ¼ Jmþ1ðlm;irprwÞ=J 0mþ1ðlm;irprwÞ, (57)

Gm;i ¼
1

ðc1 � c2Þ
1�

J 0mðl
r
m;irwÞJmþ1ðl

r
m;irwÞ

Jmðl
r
m;irwÞJ

0
mþ1ðl

r
m;irwÞ

 !
, (58)

Jm(x) represents the Bessel functions of mth order, rp and rw are the radius of perforated pipe and the
chamber, respectively.

5. Conclusion

The derivation of the four-pole parameters for the elliptical chamber having a perforated pipe has been
presented by solving the equations, considering the higher-order mode effects. The four-pole parameters are
given by Eqs. (32)–(35). Based on the results obtained, the cause and mechanism of resonance frequencies of
parameter C is discussed in detail. A good correlation between the prediction and experiment of parameter C is
observed. Our results can be applied to a chamber without a perforated pipe and both chamber and perforated
pipe in circular section. Those four-pole parameters are given by Eqs. (45)–(47) and Eqs. (51)–(54), respectively.

Appendix A

In order to find fin and fout from Eqs. (5) to (9), let fin
a and fout

a be solutions of Eqs. (3) and (4) obtained for
the following boundary conditions:

½1a� at z ¼ 0; Vz ¼ �qf
a
in=qz ¼ V 0F 0ðx; ZÞ, (A.1)

½2a� at z ¼ 1; Vz ¼ �qf
a
in=qz ¼ 0, (A.2)

½3a� at x ¼ xw; Vx ¼ �qf
a
out=qx ¼ 0, (A.3)

½4a� at z ¼ l; V z ¼ �qf
a
out=qz ¼ 0, (A.4)

½5a� at x ¼ xp; fa
in � fa

out ¼
Zpipe

jkrc

qfa
out

qx
, (A.5)

½6a� at x ¼ xp; qfa
in=qx ¼ qfa

out=qx, (A.6)

and let fin
b and fout

b be solutions of Eqs. (3) and (4) obtained for the following boundary conditions:

½1b� at z ¼ 0; V z ¼ �qf
b
in=qz ¼ 0, (A.7)

½2b� at z ¼ l; V z ¼ �qf
b
in=qz ¼ V lF lðx; ZÞ, (A.8)

½3a� at x ¼ xw; V x ¼ �qf
b
out=qx ¼ 0, (A.9)

½4b� at z ¼ 0; V z ¼ �qf
b
out=qz ¼ 0, (A.10)

½5b� at x ¼ xp; fb
in � fb

out ¼
Zhole

jkrc

qfb
out

qx
, (A.11)
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½6b� at x ¼ xp; qfb
in � qx ¼ qfb

out=qx. (A.12)

Then fin and fout can be obtained as fin ¼ fin
a +fin

b and fout ¼ fout
a +fut

b , respectively.
At first, fin can be derived by the following procedure. From Eq. (A.2) we have

Bi ¼ Ai exp ð2mlÞ: (A.13)

Substituting Eq. (A.13) into Eq. (3), we have

fa
in ¼

X1
m¼0

Aif ðz;mÞCemðx; sÞcemðZ; sÞ, (A.14)

where

f ðz;mÞ ¼ expðmzÞ þ expð2mlÞ expð�mzÞ. (A.15)

Similarly, find B0 from Eq. (A.4) and substituting into Eq. (4) we obtain

fout ¼
X1
m¼0

C0
mf ðz; mÞCemðx; sÞcemðZ; sÞ þ

X1
m¼0

S0
mþ1f ðz;mÞSemþ1ðx; sÞsemþ1ðZ; sÞ (A.16)

and from Eq. (A.3) we have

X1
m¼0

C0
mf ðz;mÞCe0mðxw; sÞcemðZ; sÞ þ

X1
m¼0

S0
mþ1f ðz;mÞSe0mþ1ðxw; sÞsemþ1ðZ; sÞ ¼ 0. (A.17)

To make Eq. (A.17) always zero, it is necessary that

Ce0mðxw; sÞ ¼
qCemðx; sÞ

qx

����
x¼xw

¼ 0 (A.18)

and

Se0mðxw; sÞ ¼
qSemþ1ðx; sÞ

qx

����
x¼xw

¼ 0. (A.19)

Letting the positive roots of Eqs. (A.18) and (A.19) be sm;i and smþ1;iði ¼ 0; 1; 2; . . .Þ, respectively, and letting
m correspond to sm,i and smþ1;i to be mm;i and mmþ1;if

a
in, then fout

a can be obtained as

fa
in ¼

X1
m¼0

X1
i¼0

Am;if ðz;mm;iÞCemðx; sm;iÞcemðZ; sm;iÞ, (A.20)

fa
out ¼

X1
m¼0

X1
i¼0

Cm;if ðz; mm;iÞCemðx; sm;iÞcemðZ; sm;iÞ þ
X1
m¼0

X1
i¼0

Smþ1;if ðz; mmþ1;iÞSemþ1ðx; smþ1;iÞsemþ1ðZ; smþ1;iÞ
� 	

:

(A.21)

Next, derive Am,i from Eq. (A.5) and considering Eq. (A.6) we have

Cm;if
0
ðz;mm;iÞCemðx; sm;iÞcemðZ; sm;iÞ

��
z¼0
¼ �V 0F0ðx; ZÞ. (A.22)

By multiplying both sides of Eq. (A.22) by Cemðx; sm;iÞcemðZ; sm;iÞðcosh 2x� cos 2ZÞ and integrating with
respect to x from 0 to xw and with respect to Z from 0 to 2p, we can determine the constant Cm,i. Thus
fin

a becomes

fa
in ¼

X1
m¼0

X1
i¼0

V 0

mm;i sinh mm;i l

cosh mm;ið1�zÞ
þ Zm;i

mmþ1;i sinh mmþ1;i l

cosh mmþ1;ið1�zÞ

H0
m;ið1þ

€Zm;iÞYmðx; Z; sm;iÞ, (A.23)
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where

€Zm;i ¼
Zpnðc2 þ ZpnÞ

ðc1 þ ZpnÞðc1 � c2 � ZpnÞ
, (A.24)

Zpn ¼
Zpipe

jkrc
, (A.25)

c1 ¼
Cemðxp; sm;iÞ

Ce0mðxp; sm;iÞ
, (A.26)

c2 ¼
Semþ1ðxp; smþ1;iÞ

Se0mþ1ðxp; smþ1;iÞ
, (A.27)

Ym ¼ ðx; Z; sm;iÞ ¼ Cemðx; sm;iÞcemðZ; sm;iÞ, (A.28)

gðx; ZÞ ¼ cosh 2x� cos 2Z, (A.29)

Hu
m;i ¼

Z xu

0

Z 2p

0

Ymðx; Z; sm;iÞgðx; ZÞdxdZ
�Z xu

0

Z 2p

0

Y2
mðx; Z; sm;iÞgðx; ZÞdx dZ. (A.30)

Similarly, by using Eqs. (A.7)–(A.12), fin
b can be obtained:

fb
in ¼

X1
m¼0

X1
i¼0

V l

mm;i sinh mm;i l

cosh mm;iz
þ €Zm;i

m̄mþ1;i sinh mmþ1;i l

cosh mmþ1;iz

Hl
m;ið1þ

€Zm;iÞYmðx; Z; sm;iÞ, (A.31)

where Hm,i
l is defined by Eq. (A.29) in which x0 is replaced by xl. Thus, from Eqs. (A.23) and (A.31), we obtain

fin ¼ fa
in þ fb

in ¼
X1
m¼0

X1
i¼0

H0
m;iV 0

mm;i sinh mm;i l

cosh mm;ið1�zÞ
þ €Zm;i

mmþ1;i sinh mmþ1;i l

cosh mmþ1;ið1�zÞ

0
@

�
Hl

m;iV l

mm;i sinh mm;i l

cosh mm;iz
þ €Zm;i

mmþ1;i sinh mmþ1;i l

cosh mmþ1;iz

1
Að1þ €Zm;iÞYmðx; Z; sm;iÞ. ðA:32Þ
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