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Abstract

The dynamic responses of both the in-plane and out-of-plane vibrations are investigated for an axially moving

membrane. Using the extended Hamilton principle, equations of motion are derived for the moving membrane with no-slip

boundary conditions at rollers. The equations of motion are discretized by using the Galerkin method and then the

generalized-a time integration method is applied to compute the dynamic responses of the membrane. Based on the

computed results, the responses are compared between the in-plane and out-of-plane vibrations. In addition, the effects of

translating velocity/acceleration, critical speeds and velocity profiles on the dynamic behaviours for displacements and

stresses are investigated and discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving membranes have many engineering applications, for instance, paper production, printing
processes, web transport systems and tape recording. In these applications, the vibration levels and
transporting speeds of membranes are major concerns. A severe vibration level of a membrane does not only
result in breaks during production of paper or web, but it also leads to poor quality in printing or recording
processes. Since the natural frequencies of a membrane decreases with the transporting speed and eventually
the membrane may encounter instability, there is a limitation on increasing the transporting speed. The
limitation in the speed restricts high productivity in manufacturing.

A vast amount of research has been performed on axially moving materials such as moving strings, beams
and plates. Many important studies on the stability [1–4], modal analysis [1,2,5,6], discretization [5,7], and
nonlinear vibration [8–10] of the moving materials were reported. In addition, the effects of unsteady
gyroscopic systems [11,12] and parametric excitation [13–15] on the moving materials were also investigated.
However, not many studies related to axially moving membranes have been presented. Some research works
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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on the moving membrane are follows. The longitudinal vibration of a moving magnetic tape was studied by
Wickert [16], who found that in a particular transport speed range longitudinal motion of the tape can be self-
excited through negative damping for small amplitude vibration and positive damping for large amplitudes.
Shin et al. [17] studied the free in-plane vibration of an axially moving membrane considering the effects of the
translating speed and aspect ratio of the membrane. Their study showed that translating speed, aspect ratio,
and boundary conditions have significant effects on the in-plane vibrations of the moving membrane.
Different from the above studies on the in-plane vibrations, Koivurova and Pramila [18] analysed the out-of-
plane or transverse vibration of a moving membrane by using the finite-element method. In their study, it was
found that nonlinearities and coupling phenomena have a considerable effect on the dynamic behaviour of the
system. As an extended study for Ref. [18], the transverse vibrations of an axially moving membrane
submerged in ideal fluid were investigated by Niemi and Pramila [19]. On the other hand, Wang [20] analysed
the vibration of an axially moving web, controlled through self-acting air bearings. He pointed out that the
pressurized air layers between a moving web and bearing surfaces can significantly reduce the transverse web
deflection and provide a means of effective stabilizing. Even though many studies on axially moving
membranes have been presented, to the authors’ knowledge, there is no study on an axially moving membrane
which considers both the in-plane and out-of-plane vibrations simultaneously.

In this paper, the dynamic responses of an axially moving membrane are investigated. Using the extended
Hamilton principle [21], nonlinear coupled equations of motion are derived for both the in-plane and out-of-
plane displacements. During the derivation, the translating acceleration and geometric nonlinearity of the
membrane are considered. The derived equations are discretized by using the Galerkin approximation
method, and then the nonlinear dynamic responses are computed by using the generalized-a time integration
method [22] without a nonlinear equation solver. From the computed dynamic responses, the effects of the
translating velocity and acceleration on the dynamic behaviours are analysed. In addition, deformed shapes
and stress distributions are also investigated.
2. Equations of motion

Fig. 1 shows the model of a membrane moving in the x direction with translating velocity V and
acceleration _V . The moving membrane with width b and thickness h is supported by two pairs of rollers
separated by distance L. The right rollers are driving rollers and the left rollers are driven ones. When the
membrane is accelerated or decelerated, the tension at the right end is different from the tension at the left end.
Denoting the tensions per unit width at the right and left ends by TL and T0, respectively, the tension TL can
be expressed in terms of T0 and _V :

TL ¼ T0 þ rhL _V (1)

where r is the mass density of the membrane. In addition to the tensions, the membrane is subjected to
pressure p in the z direction.

The membrane may have deformation as well as rigid-body motion. The rigid-body motion is described by
the translating velocity and acceleration. When point P moves to point P0 by only the deformation of the
membrane, the displacement of point P can be represented by displacements in the x, y and z directions.
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Fig. 1. Configuration of an axially moving membrane with translating velocity V and acceleration _V .
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These displacements are denoted by u, v and w, which are known as the longitudinal, lateral and transverse
displacements, respectively. Because u and v are in the plane of the undeformed membrane, they are called the
in-plane displacements. However, w is perpendicular to the membrane, so it is called the out-of-plane
displacement. Since u, v and w are functions of time t as well as the x and y coordinates, they can be
represented by

u ¼ uðt;x; yÞ; v ¼ vðt;x; yÞ; w ¼ wðt;x; yÞ. (2)

The equations of motion can be derived by using the extended Hamilton principle [21]:Z t2

t1

ðdK � dU þ dWnc � dMÞdt ¼ 0, (3)

where t1 and t2 are arbitrary time, d is the variation operator, K is the kinetic energy, U is the potential energy,
Wnc is work done by the non-conservative force, and M is the momentum transport across the boundaries.

The variation of kinetic energy for the moving membrane can be written by

dK ¼ rh

Z
A

v � dvdA, (4)

where A is the area of the membrane i.e., A ¼ bL and v is the velocity vector given by

v ¼ V þ
qu

qt
þ V

qu

qx

� �
iþ

qv

qt
þ V

qv

qx

� �
jþ

qw

qt
þ V

qw

qx

� �
k, (5)

in which i, j and k are unit vectors in the x, y and z directions, respectively. On the other hand, the variation of
potential energy may be given by

dU ¼

Z
A

ðqxd�x þ qyd�y þ 2qxyd�xyÞdA, (6)

where qx, qy and qxy are the linearized membrane forces per unit length while ex, ey and exy are the nonlinear
strains. These stresses and strains are functions of the displacements u, v and w:

qx ¼
Eh

1� n2
qu

qx
þ n

qv

qy

� �
; qy ¼

Eh

1� n2
qv

qy
þ n

qu

qx

� �
; qxy ¼

Eh

2ð1þ nÞ
qu

qy
þ

qv

qx

� �
, (7)

�x ¼
qu

qx
þ

1

2

qw

qx

� �2

; �y ¼
qv

qy
þ

1

2

qw

qy

� �2

; �xy ¼
1

2

qu

qy
þ

qv

qx
þ

qw

qx

qw

qy

� �
, (8)

in which E is Young’s modulus and v is Poisson’s ratio. Note that Eq. (8) represent the von Karman strain
theory which demonstrates the geometrically nonlinear relations between the strains and displacements.
Although linear stresses are used for modelling, the dynamic behaviour of the membrane can be well described
by the geometric nonlinearity caused by large deformation.

Assuming that the pressure p is exerted over the entire membrane surface, the virtual work done by non-
conservative forces is given by

dWnc ¼

Z b

0

ðTL dujx¼L � T0 dujx¼0Þdyþ

Z
A

p dwdA. (9)

On the other hand, the variation of the momentum transport can be expressed as

dM ¼ rhV

Z b

0

v � drjLx¼0 dy (10)

where r is the displacement vector given by

r ¼ ðxþ uÞiþ ðyþ vÞjþ wk. (11)
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The introduction of Eqs. (4), (6), (9) and (10) into Eq. (3) yields the following equations of motion:

rh
q2u
qt2
þ 2V

q2u
qt qx

þ V2 q
2u

qx2
þ _V

qu

qx

� �
�

qqx

qx
�

qqxy

qy
¼ �rh _V , (12)

rh
q2v

qt2
þ 2V

q2v
qt qx

þ V 2 q
2v

qx2
þ _V

qv

qx

� �
�

qqy

qy
�

qqxy

qx
¼ 0, (13)

rh
q2w
qt2
þ 2V

q2w

qt qx
þ V2 q

2w

qx2
þ _V

qw

qx

� �
�

q
qx

qx

qw

qx
þ qxy

qw

qy

� �
�

q
qy

qy

qw

qy
þ qxy

qw

qx

� �
¼ p. (14)

Note that Eqs. (12) and (13) describe the in-plane motion of the membrane while Eq. (14) describes the out-
of-plane motion. Since qx, qy and qxy can be expressed in terms of u and v, Eqs. (12) and (13) are partial
differential equations coupled through only the in-plane displacements. This means equations (12) and (13)
can be solved without considering the out-of-plane displacement w. It should be noted that the in-plane and
out-of-plane displacements are in Eq. (14). Furthermore, this equation is a nonlinear partial differential
equation because the membrane forces are functions of the in-plane displacements. The appearance of the in-
plane displacements in the equation of out-of-plane motion implies that that the transverse vibration is
influenced by the membrane forces.

Next, consider the boundary conditions for the axially moving membrane. Even though the membrane
can have various cases of boundary conditions at the rollers, this paper deals with only no slipping
boundary conditions. When there is no slipping between the membrane and the rollers in the y direction,
the boundary conditions at the right and left ends are given by

qx ¼ T0; v ¼ w ¼ 0 at x ¼ 0, (15)

qx ¼ TL; v ¼ w ¼ 0 at x ¼ L. (16)

Since the sides corresponding to y ¼ 0 and y ¼ b have no traction, the boundary condition at these sides
may be given by

qy ¼ qxy ¼ qy

qw

qy
þ qxy

qw

qx
¼ 0 at y ¼ 0; b. (17)

3. Discretization of the equations of motion

By using the Galerkin method, approximate solutions are obtained from the partial differential equations of
Eqs. (12)–(14) with the boundary conditions of Eqs. (15)–(17). Since it is difficult to find the comparison
functions for this problem, the equations of motion are transformed into the weak forms that require the
admissible functions instead of the comparison functions. Two weak forms are derived in this paper: one is for
the in-plane motion and the other is for the out-of-plane motion. As pointed out in the previous section, since
the equations of in-plane motion are coupled through only the in-plane displacements, these equations can be
solved independently of the out-of-plane displacement. Moreover, once the in-plane displacements are
determined, the equations of out-of-plane motion may be regarded as a linear partial differential equation
because the membrane forces qx, qy and qxy become prescribed known functions.

For these reasons, it is convenient for analysis to derive two weak forms for the in-plane and out-of-plane
motions. The derived weak form for the in-plane motion can be expressed asZ b

0

Z L

0

rhūT q2u
qt2
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þ V 2 q
2u

qx2
þ _V

qu
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þ ēTDe
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¼
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0
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0

Z L

0

ūdxdy, ð18Þ
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where ū, v̄ and w̄ are the weighting functions of u, v and w, respectively, and

u ¼ fu; vgT; ū ¼ fū; v̄gT; e ¼
qu

qx
;
qv

qy
;
qu

qy
þ

qv

qx

� �T

; ē ¼
qū

qx
;
qv̄

qy
;
qū

qy
þ

qv̄

qx

� �T

,

D ¼
Eh

1� n2

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
664

3
775. ð19Þ

The weak form for the out-of-plane motion may be represented byZ b

0

Z L

0

rhw̄
q2w
qt2
þ 2V

q2w

qt qx
þ V2 q

2w

qx2
þ _V

qw

qx

� �
þ h̄

T
Qh

� �
dxdy ¼

Z b

0

Z L

0
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where

h ¼
qw

qx
;
qw

qy

� �T

; h̄ ¼
qw̄

qx
;
qw̄

qy

� �T

; Q ¼
qx qxy

qxy qy

" #
. (21)

Since the natural boundary conditions have already been applied during derivation of the weak forms, the
admissible functions can be used as the basis functions for the displacements. Thus, the displacements of the
membrane may be approximated as

u ¼
XNx

i¼0

XNy

j¼0

Tu
ijðtÞX iðxÞY jðyÞ; v ¼

XNx

i¼0

XNy

j¼0

Tv
ijðtÞY jðyÞ sinði þ 1Þpx=L,

w ¼
XMx

i¼0

XMy

j¼0

Tw
ij ðtÞY jðyÞ sinði þ 1Þpx=L, ð22Þ

where Nx and Ny are the total numbers of the basis functions for the in-plane displacements in the x and y

directions, respectively, Mx and My are the total numbers of the basis functions for the out-of-plane
displacement, Tu

ijðtÞ, Tv
ijðtÞ and Tw

ij ðtÞ are functions of time to be determined, and X iðxÞ and Y jðyÞ are given by

X iðxÞ ¼
XRi

r¼0

ð�1Þrð2i � 2rÞ!

2ir!ði � rÞ!ði � 2rÞ!
ð2x=L� 1Þi�2r,

Y jðyÞ ¼
XRj

r¼0

ð�1Þrð2j � 2rÞ!

2jr!ðj � rÞ!ðj � 2rÞ!
ð2y=b� 1Þj�2r, ð23Þ

in which

Ri ¼
i=2 if i is even;

ði � 1Þ=2 if i is odd:

(
(24)

Note that X iðxÞ and Y jðyÞ are the Legendre polynomials. It is also noted that sin ði þ 1Þpx=L as well as X iðxÞ

and Y jðyÞ are admissible functions which satisfy the essential boundary conditions. The weighting functions ū,
v̄ and w̄ can be approximated with the same equations as Eq. (22) except the time-dependent functions Tu

ijðtÞ,
Tv

ijðtÞ and Tw
ij ðtÞ. In the weighting functions, these functions should be replaced by arbitrary time-dependent

functions that are represented by T̄
u

ijðtÞ, T̄
v

ijðtÞ and T̄
w

ij ðtÞ.
The discretized equations of motion can be obtained by using the arbitrariness of the time-dependent

functions, T̄
u

ijðtÞ, T̄
v

ijðtÞ and T̄
w

ij ðtÞ, after substituting the trial and weighting functions into the weak forms. The
resultant discretized equations may be represented by matrix–vector equations. The matrix-vector equations
of motion can be written as

Muv €T
uv
þ 2VGuv _T

uv
þ ðV2Huv þ _VGuv

þ KuvÞTuv ¼ Fuv, (25)
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Mw €T
w
þ 2VGw _T

w
þ ½V 2Hw þ _VGw

þ KwðTuvÞ�Tw ¼ Fw, (26)

where the superposed dot stands for differentiation with respect to time, Tuv and Tw are unknown vectors
given by

Tuv ¼ fTu
00;T

u
10; . . . ;T

u
Nx0
;Tu

01;T
u
11; . . . ;T

u
Nx1
; . . . ;Tu

0Ny
;Tu

1Ny
; . . . ;Tu

NxNy
,

Tv
00;T

v
10; . . . ;T

v
Nx0
;Tv

01;T
v
11; . . . ;T

v
Nx1
; . . . ;Tv

0Ny
;Tv

1Ny
; . . . ;Tv

NxNy
gT,

Tw ¼ fTw
00;T

w
10; . . . ;T

w
Mx0

;Tw
01;T

w
11; . . . ;T

w
Mx1

; . . . ;Tw
0My

;Tw
1My

; . . . ;Tw
MxMy
gT, ð27Þ

where Muv and Mw are the mass matrices for the in-plane and out-of-plane motions, respectively, Guv and
Gw are the matrices related to the gyroscopic force, Huv and Hw are the matrices related to the centrifugal
force, Kuv and Kw are the structural stiffness matrices, and Fuv and Fw are the applied force vectors. It should
be pointed out that the out-of-plane stiffness matrix Kw is not a constant matrix but a function of the in-plane
displacement vector Tuv. Therefore, the in-plane matrix–vector equation of Eq. (25) is linear while the out-of-
plane matrix–vector equation of Eq. (26) is nonlinear.

4. Time integration method

A solution procedure needs to be established to calculate the dynamic responses of the axially
moving membrane. In this study, a computation algorithm using the generalized-a time integration
method [22] is proposed to obtain dynamic responses. Before presenting the algorithm, it is necessary
to define the approximate values of Tuv, _T

uv
and €T

uv
at time t ¼ tn as d

uv
n , vuv

n and auv
n , respectively. Similarly, the

approximate values of Tw, _T
w
and €T

w
at time t ¼ tn are denoted by dw

n , v
w
n and aw

n .
In order to compute dynamic responses of the moving membrane using the generalized-a

method, it is necessary to rewrite the matrix–vector equations of Eqs. (25) and (26) as the following
balance equations.

Muvauv
nþ1�am

þ 2Vnþ1�af
Guvvuv

nþ1�af
þ ðV 2

nþ1�af
Huv þ _Vnþ1�af

Guv
þ KuvÞduv

nþ1�af
¼ Fuv

nþ1�af
(28)

Mwaw
nþ1�am

þ 2V nþ1�af
Gwvw

nþ1�af
þ ½V2

nþ1�af
Hw þ _Vnþ1�af

Gw
þ Kwðduv

nþ1�af
Þ�dw

nþ1�af
¼ Fw

nþ1�af
, (29)

where the subscripts nþ 1� am and nþ 1� af represent interior interpolations between the values of time
steps tn and tn+1:

duv
nþ1�af

¼ af d
uv
n þ ð1� af Þd

uv
nþ1; vuv

nþ1�af
¼ af v

uv
n þ ð1� af Þv

uv
nþ1,

auv
nþ1�am

¼ ama
uv
n þ ð1� amÞa

uv
nþ1; Fuv

nþ1�af
¼ Fuvðaf tn þ ð1� af Þtnþ1Þ, ð30Þ

dw
nþ1�af

¼ af d
w
n þ ð1� af Þd

w
nþ1; vw

nþ1�af
¼ af v

w
n þ ð1� af Þv

w
nþ1,

aw
nþ1�am

¼ ama
w
n þ ð1� amÞa

w
nþ1; Fw

nþ1�af
¼ Fwðaf tn þ ð1� af Þtnþ1Þ, ð31Þ

V nþ1�af
¼ V ðð1� af Þtnþ1 þ af tnÞ; _Vnþ1�af

¼ _V ðð1� af Þtnþ1 þ af tnÞ, (32)

in which am and af are algorithmic parameters defined by the generalized-a method. The update equations for
displacement and velocity are given by

duv
nþ1 ¼

~d
uv

n þ bDt2auv
nþ1; vuv

nþ1 ¼ ~vuv
n þ gDtauv

nþ1, (33)

dw
nþ1 ¼

~d
w

n þ bDt2aw
nþ1; vw

nþ1 ¼ ~vw
n þ gDtaw

nþ1, (34)

where

~d
uv

n ¼ duv
n þ Dtvuv

n þ ð
1
2
� bÞDt2auv

n ;
~d

w

n ¼ dw
n þ Dtvw

n þ ð
1
2
� bÞDt2aw

n ,

~vuv
n ¼ vuv

n þ ð1� gÞDtauv
n ; ~vw

n ¼ vw
n þ ð1� gÞDtaw

n . ð35Þ
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In Eqs (33)–(35), b and g are algorithmic parameters defined in terms of am and af, and Dt is the time step
size between tn and tn+1:

b ¼ ð1� am þ af Þ
2=4; g ¼ 1=2� am þ af ; Dt ¼ tnþ1 � tn. (36)

Introduction of Eq. (33) to the resultant equation obtained by substituting Eq. (30) into Eq. (28) leads to

Auv
n auv

nþ1 ¼ buv
n , (37)

where

Auv
n ¼ ð1� amÞM

uv þ 2ð1� af ÞgDtVnþ1�af
Guv
þ ð1� af ÞbDt2ðV2

nþ1�af
Huv þ _Vnþ1�af

Guv
þ KuvÞ,

buv
n ¼ Fuv

nþ1�af
� amM

uvauv
n � 2Vnþ1�af

Guv
½af v

uv
n þ ð1� af Þ~v

uv
n �

� ðV 2
nþ1�af

Huv þ _V nþ1�af
Guv
þ KuvÞ½af d

uv
n þ ð1� af Þ~d

uv

n �. ð38Þ

Once the in-plane acceleration vector at time tnþ1, a
uv
nþ1, is updated from Eq. (37), the in-plane displacement

and velocity vectors at time tnþ1, d
uv
nþ1 and vuv

nþ1, are determined by Eq. (34). Similarly, the out-of-plane
acceleration aw

nþ1 is computed from

Aw
n a

w
nþ1 ¼ bw

n , (39)
where

Aw
n ¼ ð1� amÞM

w þ 2ð1� af ÞgDtVnþ1�af
Gw
þ ð1� af ÞbDt2½V 2

nþ1�af
Hw þ _V nþ1�af

Gw
þ Kwðduv

nþ1�af
Þ�,

bw
n ¼ Fw

nþ1�af
� amM

waw
n � 2Vnþ1�af

Gw
½af v

w
n þ ð1� af Þ~v

w
n �

� ½V 2
nþ1�af

Hw þ _V nþ1�af
Gw
þ Kwðduv

nþ1�af
Þ�½af d

w
n þ ð1� af Þ~d

w

n �. ð40Þ

With the known value of aw
nþ1 from Eq. (39), the updated values of dw

nþ1 and vw
nþ1 can be determined from

Eq. (34). It should be noted that Eq. (39) is a nonlinear equation because Aw
n , namely, Kw is a function of duv

n

and duv
nþ1. Although Eq. (39) is a nonlinear equation, the use of a nonlinear equation solver, e.g., the

Newton–Rhapson method, is not necessary for updating the displacement, velocity and acceleration vectors.
The reason is that Kw in the first equation of Eqs. (40) becomes a prescribed matrix after duv

nþ1 is computed.
To start the time integration procedure, initial values are required for the displacement, velocity and

acceleration vectors. These initial values are determined by

duv
0 ¼ Tuvð0Þ; dw

0 ¼ Twð0Þ; vuv
0 ¼

_T
uv
ð0Þ; vw

0 ¼
_T

w
ð0Þ; Fuv

0 ¼ Fuvð0Þ; Fw
0 ¼ Fwð0Þ,

auv
0 ¼ ðM

uvÞ
�1
fFuv

0 � 2V ð0ÞGuvvuv
0 � ½V

2ð0ÞHuv þ _V ð0ÞGuv
þ Kuv�duv

0 g,

aw
0 ¼ ðM

wÞ
�1
fFw

0 � 2V ð0ÞGwvw
0 � ½V

2ð0ÞHw þ _V ð0ÞGw
þ Kw�dw

0 g ð41Þ

The time integration procedure for the dynamic response of the axially moving membrane is summarized in
Table 1. Once the approximated values of Tuv and Tw, which contain the approximated values for Tu

ij, Tv
ij and
Table 1

Time integration procedure for the dynamic response of the axially moving membrane

A. Initial calculations

1. Initialize duv
0 , dw

0 , v
uv
0 , vw

0 , a
uv
0 and aw

0 by using Eq. (41).

2. Select the appropriate algorithmic parameters, am and af , and the time step size Dt.

B. For each time step (n ¼ 1, 2, y, N)

1. Compute the values of ~d
uv

n , ~d
w

n , ~v
uv
n and ~vw

n by using Eq. (35).

2. Obtain the values of auv
nþ1 from Eq. (37).

3. Compute the values of duv
nþ1 and vuv

nþ1 from Eq. (33).

4. Determine the value of duv
nþ1�af

by using the first equation of Eq. (30).

5. Obtain the values of aw
nþ1 from Eq. (39).

6. Compute the values of dw
nþ1 and vw

nþ1 from Eq. (34).

7. n nþ 1, go to Step B1.
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Tw
ij , are computed, the longitudinal displacement u, the lateral displacement v and the transverse displacement

w, are determined from Eq. (22).

5. Analysis and discussion

Before analysing and discussing the dynamic responses of the moving membrane, it is necessary to define the
following dimensionless parameters:

~u ¼
u

L
; ~v ¼

v

L
; ~w ¼

w

L
; ~x ¼

x

L
; ~y ¼

y

L
; ~t ¼

t

L

ffiffiffiffiffiffiffiffiffiffiffi
T0=h

r

s
; ~V ¼ V

ffiffiffiffiffiffiffiffiffiffiffi
r

T0=h

r

~E ¼
E

T0=h
; ~b ¼

b

L
; ~h ¼

h

L
; ~p ¼

p

T0=h
; ~qx ¼

qx

T0
; ~qy ¼

qy

T0
; ~qxy ¼

qxy

T0
. ð42Þ

The dimensionless parameters used in all the numerical computations of this paper are given by ~E ¼ 400,
~b ¼ 0:5, ~h ¼ 0:001 and n ¼ 0:3.

5.1. Natural frequencies and critical speeds

Consider the eigenvalue problems that provide the natural frequencies of the axially moving membrane.
Neglecting all transient terms from Eqs. (25) and (26), the equilibrium position vectors, Tuv

� and Tw
� , for free

vibrations can be determined by

Tuv
� ¼ ðV

2Huv þ KuvÞ
�1Fuv; Tw

� ¼ 0. (43)

The linearized equations of Eqs. (25) and (26) around the equilibrium position vectors are given by

Muv €T
uv
þ 2VGuv _T

uv
þ ðV2Huv þ KuvÞTuv ¼ 0,

Mw €T
w
þ 2VGw _T

w
þ ½V 2Hw þ KwðTuv

� Þ�T
w ¼ 0, ð44Þ

where KwðTuv
� Þ is a constant matrix.

Assuming the solutions of Eq. (44) as

Tuv ¼ Xuv expðluvtÞ; Tw ¼ Xw expðlwtÞ, (45)

where luv and lw are the eigenvalues for the in-plane and out-of-plane motions, respectively, Xuv and Xw are
the corresponding eigenvectors, the eigenvalue problems may be written by

ðl2uvM
uv þ 2VluvG

uv
þ V2Huv þ KuvÞXuv ¼ 0; ½l2wM

w þ 2lwVGw
þ V 2Hw þ KwðTuv

� Þ�X
w ¼ 0. (46)

Since the natural frequencies are the imaginary parts of the eigenvalues, the dimensionless natural
frequencies for the in-plane and out-of-plane motions may be written as

~ouv ¼ Im luv

L

p

ffiffiffiffiffiffiffiffiffiffiffi
r

T0=h

r� �
; ~ow ¼ Im lw

L

p

ffiffiffiffiffiffiffiffiffiffiffi
r

T0=h

r� �
. (47)

The convergence test provides adequate numbers of the basis function for accurate computation.
The convergence characteristics of the out-of-plane natural frequencies ~ow are presented in Table 2,
where the natural frequencies are computed when ~V ¼ 0:5. As shown in Table 2, the convergence of
the out-of-plane natural frequencies is mainly dependent on My rather than Mx. The convergences of the in-
plane natural frequencies are omitted in this paper, because they have been already discussed in Ref. [17]. For
the following numerical computations, the total number of the basis functions and time step size are selected
as Mx ¼My ¼ Nx ¼ Ny ¼ 7 and D~t ¼ 0:01.

It is interesting to compare the natural frequencies of the in-plane and out-of-plane motions. Figs. 2 and 3
show the dimensionless in-plane natural frequencies ~ouv and the out-of-plane natural frequencies ~ow,
respectively, for the variation of the dimensionless translating velocity ~V . As shown in Figs. 2 and 3,
the out-of-plane natural frequencies are much less than the in-plane natural frequencies. It is well known that
the critical speed is defined as the lowest speed when one of the natural frequencies becomes zero, that is, when
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Table 2

Convergence characteristics of the dimensionless out-of-plane natural frequencies ~ow when the membrane has the dimensionless

translating speed ~V ¼ 0:5

Mx My Mode

(0, 1) (0, 2) (0, 3) (1, 1) (1, 2) (1, 3)

3 3 0.7147 0.7320 0.7557 1.5460 1.5727 1.6446

4 0.7147 0.6918 0.7324 1.5460 1.5249 1.6446

5 0.6541 0.6918 0.7143 1.5054 1.5249 1.6133

6 0.6541 0.5955 0.7143 1.5054 1.4833 1.6133

7 0.5073 0.5955 0.6596 1.4527 1.4833 1.5687

4 3 0.7127 0.7305 0.7550 1.4562 1.4787 1.5412

4 0.7127 0.6897 0.7313 1.4562 1.4395 1.5338

5 0.6521 0.6897 0.7119 1.4248 1.4395 1.5080

6 0.6521 0.5930 0.7119 1.4248 1.4081 1.5080

7 0.5038 0.5930 0.6556 1.3845 1.4081 1.4659

5 3 0.7115 0.7294 0.7543 1.4559 1.4781 1.5391

4 0.7115 0.6883 0.7300 1.4559 1.4389 1.5287

5 0.6495 0.6883 0.7106 1.4233 1.4389 1.5033

6 0.6495 0.5882 0.7106 1.4233 1.4050 1.5033

7 0.4947 0.5882 0.6533 1.3770 1.4050 1.4613

6 3 0.7114 0.7292 0.7541 1.4466 1.4706 1.5347

4 0.7114 0.6881 0.7299 1.4466 1.4282 1.5241

5 0.6492 0.6881 0.7103 1.4111 1.4282 1.4976

6 0.6492 0.5878 0.7103 1.4111 1.3908 1.4976

7 0.4939 0.5878 0.6514 1.3602 1.3908 1.4537

7 3 0.7109 0.7289 0.7540 1.4463 1.4702 1.5346

4 0.7109 0.6876 0.7296 1.4463 1.4280 1.5235

5 0.6488 0.6876 0.7099 1.4111 1.4280 1.4970

6 0.6488 0.5876 0.7099 1.4111 1.3901 1.4970

7 0.4938 0.5876 0.6503 1.3527 1.3901 1.4527
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the membrane is dynamically unstable. Comparing Figs. 2 and 3, it is observed that the dimensionless critical
speed for the in-plane motion is ~V ffi 6:96 while the critical speed for the out-of-plane motion is ~V ffi 0:73.
Since the critical speed for the out-of-plane motion is less than the speed for the in-plane motion, the dynamic
stability is subjected to the out-of-plane critical speed.
5.2. Dynamic responses for the in-plane and out-of-plane displacements

The dynamic responses of the moving membrane are investigated when the translating velocity is
prescribed. Fig. 4 illustrates ramped profiles of the dimensionless velocity, which may be expressed by

~V ¼
~Vmax ~t=40 for 0p~tp40;
~Vmax for ~tX40;

(
(48)

where ~Vmax is the maximum velocity of a given velocity profile. An impulsive pressure with magnitude of
~p ¼ 0:002 is applied over the entire membrane surface at the initial time. Two values of ~Vmax, i.e., 0.65 and
0.75 are chosen in this paper, because the out-of-plane critical speed ~V ¼ 0:73 is between these values.

The dynamic responses for the ramped velocity profiles with ~Vmax ¼ 0:65 and ~Vmax ¼ 0:75 are presented in
Figs. 5 and 6, respectively. The displacements are computed at a point defined by ~x ¼ 0:5 and ~y ¼ 0:125. Note
that ~Vmax ¼ 0:65 is less than the critical speeds for both the in-plane and out-of-plane motions. Therefore,
when the translating velocity changes according to the ramped profile with ~Vmax ¼ 0:65, the dynamic
responses for the in-plane displacements, ~u and ~v, as well as the out-of-plane displacement, ~w, are bounded and
stable, as shown in Fig. 5. However, when ~Vmax ¼ 0:75 or when the maximum translating speed is larger than
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Fig. 3. Dimensionless natural frequencies of the out-of-plane motion for the variation of the dimensionless translating velocity.
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Fig. 4. Ramped profiles of the dimensionless velocity.
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Fig. 2. Dimensionless natural frequencies of the in-plane motion for the variation of the dimensionless translating velocity.
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Fig. 5. Dynamic responses of the dimensionless displacements when the translating velocity has the ramped profile with ~Vmax ¼ 0:65:
(a) the longitudinal displacement ~u, (b) the lateral displacement ~v, and (c) the transverse displacement ~w.
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the out-of-plane critical speed and less than the in-plane critical speed, ~u and ~v are bounded but ~w becomes
unbounded, as illustrated in Fig. 6.

It is interesting to compare the dynamic responses between the in-plane and out-of-plane displacements.
Figs. 5 and 6 show that the in-plane responses have shorter periods than the out-of-plane response. This is an
expected result because the in-plane natural frequencies are larger than the out-of-plane frequencies, as shown
in Figs. 2 and 3. An amplitude modulation, which is often called the beat phenomenon, is observed in Fig.
5(c). This modulation is caused by a bundle of the natural frequencies with very close values, shown in Fig. 3.

The effects of the translating acceleration on the dynamic responses need to be analysed. Since the slope of a
velocity profile in Fig. 4 represents the translating acceleration, the dimensionless acceleration corresponding
to the ramped profile given by Eq. (48) is ~Vmax=40 for 0p~tp40 and zero for ~tX40. Figs. 5(a) and 6(a) show
that the longitudinal displacements ~u have a zero average value when the accelerations are zero, i.e., ~tX40,
while they have negative average values when the accelerations are positive, i.e., 0p~tp40. This results from
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Fig. 6. Dynamic responses of the dimensionless displacements when the translating velocity has the ramped profile with ~Vmax ¼ 0:75:
(a) the longitudinal displacement ~u, (b) the lateral displacement ~v, and (c) the transverse displacement ~w.
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the inertia effect due to the positive acceleration. A similar phenomenon is observed in the lateral
displacements ~v which are described in Figs. 5(b) and 6(b). The effects of the accelerations on ~w can be seen in
0p~tp40 of Figs. 5(c) and 6(c), where it is found that the periods of the transverse vibration increase with time.
This phenomenon happens because the natural frequencies decrease due to the positive accelerations.

The effects of translating velocity profiles are also investigated. A smooth velocity profile of Fig. 7 is
considered for comparison, which can be expressed as

~V ¼
~Vmax ~t=40� ð ~Vmax ~t=40Þ sinðp~t=20Þ for 0p~tp40;
~Vmax for ~tX40;

(
(49)

where ~Vmax ¼ 0:65. With this profile, the dynamic responses computed at a point given by ~x ¼ 0:5 and
~y ¼ 0:125 are presented in Fig. 8. Comparing the responses of the smooth and ramped profiles, prominent
differences are observed in the responses for ~u and ~v; however, no apparent difference is observed in the
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Fig. 7. Smooth profile of the dimensionless velocity.
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Fig. 8. Dynamic responses of the dimensionless displacements when the translating velocity has the smooth profile with ~Vmax ¼ 0:65:
(a) the longitudinal displacement ~u, (b) the lateral displacement ~v, and (c) the transverse displacement ~w.
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responses of ~w. When ~t ¼ 0 or 40, the ramped profile possesses suddenly changed acceleration, but the smooth
profile dose not. The acceleration without a sudden change yields vibration-free responses for ~u and ~v, as
shown in Fig. 8(a) and (b).

5.3. Deformed shapes and stress distributions

It is valuable to investigate the deformed shapes and stress distributions of the moving membrane. The
deformed shapes and the stress distributions are computed at given time ~t ¼ 60 when the translating velocity is
prescribed by the ramped profile with ~Vmax ¼ 0:65, as expressed by Eq. (48). The deformed shape due to the
in-plane displacements ~u and ~v is illustrated in Fig. 9 and the deformed shape due to the out-of-plane
displacement ~w is illustrated in Fig. 10. As shown in Fig. 9, the in-plane deformed shape is symmetric with
respect to the centrelines of the membrane parallel to the x and y axes. It is seen that the middle part is shrunk
in the y direction except the end parts. This deformed shape results from the x-directional tension and the no-
slip conditions at the rollers. Since the impulsive pressure is applied over the entire surface of the membrane,
the out-of-plane displacement of the membrane has a bulging shape at the central part, as depicted in Fig. 10.
This implies that the central part may have the largest magnitude of vibration.

When the translating velocity has the ramped profile with ~Vmax ¼ 0:65, the stress distributions at ~t ¼ 60 are
shown in Fig. 11, where Figs. 11(a)–(c) are for the dimensionless membrane forces, ~qx, ~qy and ~qxy, respectively.
As shown in Fig. 11(a), the x-directional normal stress ~qx has a larger value at the middle part corresponding
to y ¼ b=2, compared to the top and bottom parts. On the other hand, it is observed from Fig. 11(b) that both
end parts defined by x ¼ 0 and L have relatively larger ~qy than other parts. The dimensionless shear stress ~qxy,
presented in Fig. 11(c), demonstrates that the four corner of the membrane have relatively larger values of the
shear stress. From the stress distributions, it may be inferred that the moving membrane may be broken
x

y

Fig. 9. Deformed shape due to the in-plane displacements ~u and ~v when ~t ¼ 60 and ~V ¼ 0:65.

Fig. 10. Deformed shape due to the out-of-plane displacement ~w when ~t ¼ 60 and ~V ¼ 0:65.



ARTICLE IN PRESS

0.95

1.00

1.00

0.95

0.900.85

0.900.85

0.80

0.80

1.05

1.00
0.95

0.95

1.05

0.90

0.90

0.85

0.85

1.00

0.80

0.80

0.25

0.250.20

0.20

0.150.10

0.15
0.10

0.15

0.050.00

0.05

0.00

0.100.05

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.050.100.150.200.250.30

0.05

0.05

0.00

-0.05

-0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.05

0.05

x

y

(a)

(b)

(c)

Fig. 11. Stress distributions when ~t ¼ 60 and ~V ¼ 0:65: (a) ~qx, (b) ~qy, and (c) ~qxy.
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around the rollers if it has a severe vibration. The reason is that the parts in the neighbourhood of the rollers
have high stress concentration.

6. Summary and conclusions

The dynamic responses for the axially moving membrane are investigated in this paper. Considering the
geometric nonlinearity, the equations of motion are derived with the no-slip boundary conditions at the
rollers. The derived equations consist of linear and nonlinear equations for the in-plane and out-of-plane
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motion, respectively. These equations are transformed to the weak forms, which are discretized by applying
the Galerkin method. In order to obtain dynamic responses, a method which does not use a nonlinear
equation solver is presented.

It is observed that the in-plane responses have shorter periods than the out-of-plane response because the
former has higher natural frequencies than the latter. It is also found that dynamic instability occurs in the
out-of-plane motion rather than in the in-plane motion because the out-of-plane motion has a lower critical
speed than the in-plane motion. The out-of-plane responses exhibit the increasing period with the translating
velocity and the amplitude modulation due to close natural frequencies. Prominent differences between the
smooth and ramped profiles can be found not in out-of-plane motion but in the in-plane motion. Finally, the
central region of the membrane has relatively large displacements and the regions near the rollers have high
stress concentrations.
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