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Abstract

A study of the effects of anisotropy of face sheets, of core layer, and as of other mechanical/geometrical parameters of

flat sandwich panels on their eigenfrequency characteristics is presented. The study is carried out in the context of an

advanced model of sandwich structures featuring monoclinic anisotropy-type laminated face sheets and an orthotropic

light core. A detailed analysis of the influence of a number of important parameters associated with panel geometry, fiber

orientation and stacking sequence in the face sheets, and material properties of the core is carried out, and pertinent

conclusions are outlined. In spite of the intricacy of the investigated problem, the adopted solution methodology of the

problem enables one to obtain a closed-form solution of eigenfrequency predictions. Numerical simulations highlighting

the implications of a number of parameters on eigenfrequencies, as well as validations against the few ones available in the

specialized literature, are presented. Pertinent conclusions regarding their dynamic optimization via the use of directional

properties of fiber-composite materials in the face sheets and of orthotropicity in the core layer material are supplied.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A renewed interest for the use of sandwich structures in the construction of advanced supersonic/hypersonic
flight vehicles, reusable space transportation systems, and naval ships and submarine structures has been
manifested in the last decade. Some of the underlying reasons and motivation for this interest emerge, among
others, from (1) the possibility to integrate advanced fiber-reinforced composite materials in face sheets and
the core, their use being likely to provide increased bending stiffness without weight penalties, long fatigue life,
directional properties, as well as the capability of operating in a high-temperature environment, (2) the
possibility of providing sound insulation as well as a smooth aerodynamic surface in a higher speed flow
environment, and (3) extended operational life as compared to stiffened-reinforced structures that are
weakened by the appearance of stress concentration. Needless to say, the development of new manufacturing
techniques that make the use of sandwich structures economically feasible has contributed greatly to the
widespread use of such structures in the aerospace and marine industries.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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One of the problems related to advanced sandwich constructions that, in spite of its importance, has not yet
received the attention it deserves is that of their free vibration (see, in this sense, the most recent survey papers
and monographs on sandwich structures [1–6] as well as the study in Ref. [7]). Indeed, a good understanding of
the free vibration behavior of such structures is essential toward a reliable prediction of their dynamic
response to time-dependent external excitations, prevention of the occurrence of the resonance, evaluation of
their flutter instability, and toward their optimal design from the vibrational point of view. This study, which
is devoted to the free vibration problem of flat anisotropic sandwich panels, is intended to fill the existing gap
in the specialized literature. Interested readers who want to gain a perspective of this general area are referred
to Refs. [8a,b; 9].

2. Basic assumptions

The global middle plane of the sandwich structure s, selected to coincide with that of the core layer, is
referred to a curvilinear and orthogonal coordinate system xa ða ¼ 1; 2Þ. The through-the-thickness coordinate
x3 is considered positive when measured in the direction of the downward normal (see Fig. 1). For the sake of
convenience, the quantities affiliated with the core layer are identified by a superposed bar, while those
associated with the bottom and top face sheets are identified by single and double primes, respectively.
Consistent with this convention, the uniform thickness of the core is denoted as 2h, and those of the upper and
bottom face sheets as h00 and h0, respectively. As a result, the total thickness of the structure (see Fig. 1), and
the total thickness of the top and bottom face sheets are defined as

H ¼ 2hþ h0 þ h00 and ĥ ¼ h0 þ h00. (1a,b)

In developing the theory of flat sandwich panels, the following assumptions are adopted: (i) the face sheets
are laminated from orthotropic material laminae, the axes of orthotropy of the individual plies being rotated
with respect to the geometrical axes xa of the structure by the angle y referred to as the ply-angle; in this way,
the material of each layer of face sheets exhibits anisotropy of the monoclinic type; (ii) the material of the core
layer features orthotropic properties in the transverse shear directions, ðxa;x3Þ; (iii) the core layer is capable of
carrying transverse shear stresses only, and as a result we deal with a weak core; (iv) a perfect bonding between
the face sheets and the core, and between the constituent laminae of the face sheets is postulated; (v) the
assumption of core inextensibility in the transverse normal direction is adopted; (vi) the faces are assumed to
be thin, and as a result transverse shear effects are neglected in the face sheets; (vii) the structure as a whole, as
well as both the top and bottom laminated face sheets are assumed to exhibit mechanical and geometrical
symmetry properties with respect to both the mid-plane of the core layer, and about their own mid-planes.
Fig. 1. Geometry of the sandwich flat panel.
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3. Kinematics

3.1. The 3-D displacement field in the face sheets and the core

In agreement with the previously stipulated assumptions, the transverse displacement should be uniform
through the thickness of the laminate, thus implying

V 03ðx1;x2;x3; tÞ ¼ V 003ðx1;x2;x3; tÞ ¼ V3ðx1;x2;x3; tÞ � v3ðx1;x2; tÞ ¼ v3ðxa; tÞ. (2)

Based on statement (vi) indicated in the previous section, the 3-D distribution of the displacement field in the
face sheets and the core layer, fulfilling the interface kinematic continuity conditions, is follows [4,10–12].

In the bottom face sheets:

V 01ðxa;x3; tÞ ¼ x1ðxa; tÞ þ Z1ðxa; tÞ � ðx3 � aÞ
qv3

qx1
, (3a)

V 02ðxa; x3; tÞ ¼ x2ðxa; tÞ þ Z2ðxa; tÞ � ðx3 � aÞ
qv3

qx2
ðhpx3phþ h0Þ, (3b)

V 03ðxa; x3; tÞ ¼ v3ðxa; tÞ. (3c)

In the core:

V 1ðxa;x3; tÞ ¼ x1ðxa; tÞ þ ðx3=hÞ Z1ðxa; tÞ þ ðh=2Þ
qv3

qx1

� �
, (4a)

V2ðxa;x3; tÞ ¼ x2ðxa; tÞ þ ðx3=hÞ Z2ðxa; tÞ þ ðh=2Þ
qv3

qx2

� �
ð�hpx3phÞ, (4b)

V 3ðxa; x3; tÞ ¼ v3ðxa; tÞ. (4c)

In the top face sheets:

V 001ðxa;x3; tÞ ¼ x1ðxa; tÞ � Z1ðxa; tÞ � ðx3 þ aÞ
qv3

qx1
, (5a)

V 002ðxa;x3; tÞ ¼ x2ðx2; tÞ � Z2ðxa; tÞ � ðx3 þ aÞ
qv3

qx2
ð�h� h00px3p� hÞ, (5b)

V 003ðxa;x3; tÞ ¼ v3ðxa; tÞ. (5c)

In these equations, Viðxa;x3; tÞ are the 3-D displacement components in the direction of coordinate xi, while
xaðxo; tÞ and Zaðxo; tÞ that are defined as

xa ¼ ðV̊
0
a þ V̊ 00aÞ=2; Za ¼ ðV̊

0
a � V̊ 00aÞ=2 (6a,b)

denote the 2-D tangential average in-plane and half-difference of in-plane displacements, respectively, where
V̊ 0a and V̊ 00a stand for the in-plane displacements of the points of the mid-planes of the bottom and top face
sheets, respectively.

For a symmetric sandwich panel, h0 ¼ h00 � h define the thickness of the bottom and top face sheets, while
a0 ¼ a00 ¼ að� hþ h=2Þ are the distances between the global mid-plane of the structure and the mid-planes of
the bottom and top face sheets, respectively. For the case considered here, these distances are equal. In the
previous and next equations, Greek indices have the range 1, 2 while Latin indices have the range 1, 2, 3, and
unless otherwise stated, the Einstein summation convention over the repeated indices is employed.

One of the goals of this paper is to address the problem of determination of eigenfrequencies in the context
of this rather comprehensive structural model of flat sandwich structures that incorporates the directional
property of the materials of face sheets. In particular, as will be highlighted in numerical simulations, this
property of fibrous composites can be used to enhance the free vibrational behavior of these structures.
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To be reasonably self-contained, in the following sections, the basic equations of sandwich plate theory
incorporating the anisotropy of the individual face sheets and transverse shear effects in the core layer are
displayed only to the extent that they are needed in the treatment of the subject considered in this paper. For
more details related to the derivation of pertinent equations, the reader is referred to papers [4,10–13] where
only static problems have been studied.

3.2. Distribution of strains across the thickness of the sandwich panel

Based on the representation of the displacement field, Eqs. (3)–(5),, the components of the 3-D strain tensor
eij are as follows.

In the bottom face sheets:

e011 ¼ e011 þ ðx3 � aÞk011, (7a)

e022 ¼ e022 þ ðx3 � aÞk022, (7b)

2e012 ¼ g012 þ ðx3 � aÞk012, (7c)

In the weak core layer:

2e13 ¼ g13; 2e23 ¼ g23, (8a,b)

In the top face sheets:

e0011 ¼ e0011 þ ðx3 þ aÞk0011, (9a)

e0022 ¼ e0022 þ ðx3 þ aÞk0022, (9b)

2e0012 ¼ g0012 þ ðx3 þ a00Þk0012. (9c)

In these equations e11; e22; e12 ð� g12=2Þ and e13 ð� g13=2Þ; e23 ð� g23=2Þ denote the 2-D strain measures.
Expressions in terms of the 2-D displacement quantities are provided in the appendix.

4. Equations of motion and boundary conditions

Before addressing the problem of determination of the equations of motion and of the boundary conditions,
one essential remark should be made. This is related to the fact that, in the context of the assumptions of
symmetry and linearity of the structural model, the associated stretching and bending problems are decoupled.
Thus, being interested in the eigenfrequencies related to the bending problem only, equations involving the
stretching motion are discarded.

Hamilton’s principle is used to derive the equations of motion and the boundary conditions of the bending
theory of flat sandwich panels. It is formulated as

dJ ¼ d
Z t1

t0

ðU �W � TÞdt ¼ 0, (10)

where t0; t1 are two arbitrary instants of time, U denotes the strain energy, W denotes the work done by
surface tractions, edge loads and body forces, T denotes the kinetic energy of the 3-D body of the sandwich
structure, and d is the variation operator. In Eq. (10)

dU ¼
1

2

Z
s

Z hþh0

h

s0ijde0ij þ

Z þh

�h

sijdeij þ

Z �h

�h�h00
s00ijde00ij

" #
dx3 ds; ði; j ¼ 1; 2; 3Þ, (11)
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where sij denotes the stress tensor and s denotes the mid-plane area of the sandwich panel. In addition, as a
result of Hamilton’s condition, dV i ¼ 0 at t0 and at t1.Z t1

t0

dT dt ¼ �

Z t1

t0

dt

Z
s

Z hþh0

h

r0 €V
0

idV 0i dx3 þ

Z h

�h

r €VidVi dx3 þ

Z �h

�h�h00
r00 €V

00

i dV 00i dx3

" #
, (12)

dW ¼

Z
s

Z hþh0

h

r0H 0idV 0i dsdx3 þ

Z h

�h

rHidVi dsdx3 þ

Z �h

�h�h00
r00H 00i dV 00i dsdx3

" #
þ

Z
Os

s
�i
dVi dO. (13)

In Eq. (12) the superposed dots denote time derivatives, r denotes the mass density, s
�i
¼ s
�ij

nj denote the
components of the stress vector prescribed on part Os of the external boundary O, ni are the components of
the outward unit vector normal to O, and Hi denote the components of the body force vector.

From Eq. (10) considered in conjunction with Eqs. (11)–(13), and with the strain–displacement relationships
(used as subsidiary conditions), carrying out the integration with respect to x3 and integrating by parts
whenever feasible, using the expression of global stress resultants and stress couples (to be defined later), and
invoking the arbitrary and independent character of variations dZ1, dZ2, dv3 and dv3;n throughout the entire
domain of the plate and within the time interval ½t0; t1�; the equations of motion and the boundary conditions
are derived. By retaining only transversal load and transversal inertia, the equations of motion associated with
the bending problem are

dZ1 : L11;1 þ L12;2 �N13 ¼ 0,

dZ2 : L22;2 þ L12;1 �N23 ¼ 0,

dv3 : �N0
11v3;11 �N0

22v3;22 þM11;11 þ 2M12;12 þM22;22

þ ð1þ C1=hÞðN13;1 þN23;2Þ þ q3ðxa; tÞ �mo €v3 ¼ 0. ð14a2cÞ

In Eq. (14c), N0
11 and N0

22 are the normal edge loads considered to be positive in compression,

C1 ¼ ðh
0
þ h00Þ=4¼)h=2, (15)

where the expression of C1 corresponds to symmetric sandwich panels. In addition, ð Þ;a denotes partial
differentiation with respect to surface coordinates xa, while q3 denotes the distributed transversal load that,
within the context of the free vibration problem, should be discarded. Expressed in a condensed form, the
associated boundary conditions on the edge xn ¼ constant ðn ¼ 1; 2Þ are

Lnn ¼ L
�

nn or Zn ¼ Z
�

n;

Lnt ¼ L
�

nt or Zt ¼ Z
�

t;

Mnn ¼M
�

nn or v3;n ¼ v
�

3;n;

Mnn;n þ 2Mnt;t þ ð1þ C1=hÞNn3 ¼M
�

nt;t þN
�

n3 or v3 ¼ v
�

3;

ð16a2dÞ

where subscripts n and t are used to designate the normal and tangential in-plane directions to an edge, and
hence n ¼ 1 when t ¼ 2, and vice versa. It should be noted that in this special case of pure bending, four
boundary conditions have to be prescribed at each edge, implying that the equations governing the bending of
flat sandwich panels should be of eighth order.

In Eqs. (14) and (16) the global stress resultants and stress couples are defined as

N11 ¼ N 011 þN 0011 ð1#2Þ

N12 ¼ N 012 þN 0012,

L11 ¼ hðN 011 �N 0011Þ ð1#2Þ,

L12 ¼ hðN 012 �N 0012Þ,

M11 ¼M 0
11 þM 00

11 ð1#2Þ

M12 ¼M 0
12 þM 00

12. ð17a2fÞ
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The sign ð1#2Þ indicates that in Eqs. (17a,c,e) the expressions for stress resultants and stress couples not
explicitly supplied can be obtained from the ones displayed above, by replacing subscripts 1 by 2 and vice
versa. The same convention will be used throughout the paper. In Eqs. (17), the stress resultants and stress
couples associated with the bottom face sheets are

fN 0ab; M 0
abg ¼

XN

k¼1

Z ðx3Þk

ðx3Þk�1

ðs0abÞkf1; x3 � a0gdx3 ða;b ¼ 1; 2Þ (18)

while the transverse shear stress measures in the core are defined as

Na3 ¼

Z h

�h

sa3 dx3. (19)

The stress resultants and stress couples for the upper face can be obtained from Eqs. (16) by replacing single
primes by double primes, a0 by �a00, where, for the present case, a0 ¼ a00 ¼ a. Herein, N is the number of
constituent layers in the bottom face sheets, equal with that in the upper face sheets, while ðx3Þk and ðx3Þk�1
denote the distances from the global reference plane (coinciding with that of the core layer) to the upper and
bottom interfaces of the kth layer, respectively. Having in view that the top and bottom face sheets are
symmetric with respect to both their mid-planes and with the mid-plane of the entire structure, considering
that the materials of the face sheets exhibit monoclinic symmetry and that the core material is orthotropic, one
can obtain the constitutive equations. These equations associated with the bottom face sheets reduced to the
mid-plane of the structure are expressed in matrix form as

N 011

N 022

N 012

M 0
11

M 0
22

M 0
12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

A011 A012 A016 E011 E012 E016

A021 A022 A026 E021 E022 E026

A016 A026 A066 E016 E026 E066

E011 E012 E016 F 011 F 012 F 016

E021 E022 E026 F 021 F 022 F 026

E016 E026 E066 F 016 F 026 F 066

2
6666666664

3
7777777775

e011
e022
g012
k011
k022
k012

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
. (20)

The stiffness quantities appearing in Eq. (19) are defined as

fA0or; D0org ¼ fA
00
or; D00org ¼

Xn0

k¼1

Z ðx3Þk

ðx3Þk�1

ðQ̂
0

orÞðkÞð1;x
2
3Þdx3 ðo; r ¼ 1; 2; 6Þ. (21)

Q̂or is the reduced elastic moduli, where for a symmetric construction, Q̂
0

or ¼ Q̂
00

or, while

E0or ¼ a0A0or ¼ �E00or; F 0or ¼ D0or þ a02A0or ¼ F 00or � For. (22a,b)

The expression of stress resultants and stress couples for the upper facing can be obtained from their
counterparts associated with the bottom face sheets by replacing the single prime by double primes. For the
weak core layer considered as an orthotropic body (the axes of orthotropy coinciding with the geometrical
axes), the constitutive equations are

N̄13 ¼ 2h̄K̄
2
Q̄55ḡ13; N̄23 ¼ 2h̄K̄

2
Q̄44ḡ23, (23a,b)

where K̄
2
is the shear transverse correction factor, while Q55 ð� Q13Þ and Q44 ð� G23Þ are the transverse shear

moduli.
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5. Governing equations for flexural motion

The equations of flexural motion of sandwich plates expressed in terms of displacement quantities Z1; Z2 and
v3 are given by [12]:

dZ1 : A11Z1;11 þ A66fZ1;22 þ Z2;12g þ A12Z2;12 þ A16f2Z1;12 þ Z2;11g

þ A26Z2;22 � d1fZ1 þ av3;1g ¼ 0,

dZ2 : A22Z2;22 þ A66fZ2;11 þ Z1;12g þ A12Z1;12 þ A26f2Z2;12 þ Z1;22g

þ A16Z1;11 � d2fZ2 þ av3;2g ¼ 0,

dv3 : � F 11v3;1111 � F 22v3;2222 � 2F 12v3;1122 � 4F 16v3;1112 � 4F26v3;1222

� 4F 66v3;1122 þ d1afZ1;1 þ av3;11g þ d2afZ2;2 þ av3;22g

�N0
11v3;11 �N0

22v3;22 �m0 €v3 ¼ 0. ð24a2cÞ

In Eqs. (24)

fd1; d2g ¼ ð2K
2
=hÞfG13;G23g, (24d)

while m0 is the reduced mass per unit mid-plane area:

m0 ¼

Z �h�h00

�h

r00ðkÞ dx3 þ

Z h

�h

rdx3 þ

Z hþh0

h

r0ðkÞ dx3, (24e)

r being the mass-density of the constituent material. As is clear from Eq. (22a), due to the symmetry with
respect to the structural mid-plane, the stiffness quantities Eor exactly vanish.

6. Solution methodology

The problem of determination of eigenfrequencies of sandwich panels reduces to the solution of an
eigenvalue problem. Due to the intricacy of the governing equations and the boundary conditions, an
approximate solution methodology will be applied. The method will be illustrated for the case of rectangular
sandwich panels simply supported on x1 ¼ 0;L1, and x2 ¼ 0;L2. For the bending problem, the boundary
conditions along the edges xn ¼ 0, Ln, are

Zn ¼ 0; Zt ¼ 0; Mnn ¼ 0; v3 ¼ 0. (25a2d)

The strategy is to identically fulfil Eqs. (24a,b), and fulfil Eq. (24c) and the boundary conditions (25a,b) in
the Galerkin sense. To this end, we use, for the displacement quantities, the representations

v3ðx1;x2; tÞ ¼W mn sin lmx1 sin mnx2 expðiomntÞ, (26a)

Z1ðx1;x2; tÞ ¼ ½H
ðm;nÞ
1 cos lmx1 sin mux2 þH

ðm;nÞ
2 sin lmx1 cos mnx2� expðiomntÞ, (26b)

Z2ðx1;x2; tÞ ¼ ½I
ðm;nÞ
1 cos lmx1 sin mnx2 þ I

ðm;nÞ
2 sin lmx1 cos mnx2� expðiomntÞ;

X
m;n

,
. (26c)

In these equations W mn, H ðm;nÞ and I ðm;nÞ are arbitrary coefficients; i ¼
ffiffiffiffiffiffiffi
�1
p

, lm ¼ mp=L1, mn ¼ np=L2; L1 and

L2 are the panel length and width, respectively, omn are the natural frequencies, while the sign
P
m;n

,
indicates

that in Eqs. (26) there is no summation over indices m and n.
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Substituting representations (26) in Eqs. (24a,b) and identifying the coefficients of the same trigonometric
functions results in a system of equations expressed in matrix form as

U
ðm;nÞ
11 U

ðm;nÞ
12 U

ðm;nÞ
13 U

ðm;nÞ
14

U
ðm;nÞ
12 U

ðm;nÞ
11 U

ðm;nÞ
14 U

ðm;nÞ
13

U
ðm;nÞ
13 U

ðm;nÞ
14 U

ðm;nÞ
33 U

ðm;nÞ
34

U
ðm;nÞ
14 U

ðm;nÞ
13 U

ðm;nÞ
34 U

ðm;nÞ
33

2
666664

3
777775

H
ðm;nÞ
1

H
ðm;nÞ
2

I
ðm;nÞ
1

I
ðm;nÞ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

V
ðm;nÞ
1

0

0

V
ðm;nÞ
2

8>>>><
>>>>:

9>>>>=
>>>>;
. (27)

The elements U
ðm;nÞ
ij of the matrix are functions of the geometrical and mechanical characteristics of the

sandwich panel. Their expressions are not supplied here, while

V
ðm;nÞ
1 ¼ �d1amðL1=pÞW mn; V

ðm;nÞ
2 ¼ �d2anfðL1=pÞW mn. (28a,b)

From Eq. (27) one obtains the expressions of H ðm;nÞ and I ðm;nÞ that are non-zero, namely

H
ðm;nÞ
1 ¼ ~H

ðm;nÞ
1 W mn; I

ðm;nÞ
2 ¼ ~I

ðm;nÞ
2 W mn;

X
m;n

,
, (29a,b)

where

~H
ðm;nÞ
1 ¼

af½ðA12 þ A66Þd2 � A22d1�lmm2n � d1A66l
3
m � d1d2lmg

Dmn

,

~I
ðm;nÞ
2 ¼

af½ðA12 þ A66Þd1 � A11d2�l
2
mmn � d2A66m3n � d1d2mng

Dmn

(30a,b)

while

Dmn ¼ A11A66l
4
m þ ðd2A11 þ d1A66Þl

2
m þ ðA11A22 � 2A12A66 � A2

12Þl
2
mm

2
n

þ ðd1A22 þ d2A66Þm2n þ A22A66m4n þ d1d2. ð30cÞ

It should be remarked that Eq. (30b) can be obtained from Eq. (30a) by replacing d2 with d1 and vice versa,
and replacing lm with mn and vice versa, while Eq. (30c) remains invariant under these transformations.
Substituting displacement representations (26) into Eq. (10) (Hamilton’s principle), performing the required
integrations, and keeping in mind that Eqs. (24a,b) and the geometrical boundary conditions (25c,d) are
identically satisfied results in an eigenvalue problem that yields the following closed-form expression of
dimensionless eigenfrequencies:

O2
mn ¼ m4 þ

F22n4f4

F11
þ

2ðF12 þ 2F66Þm
2n2f2

F 11
þ

a2L2
1

F 11p2
ðd1m

2 þ d2n
2f2
Þ

þ
aL3

1

F11p3
ðd1m ~H

ðm;nÞ
1 þ d2nf ~I

ðm;nÞ
2 Þ � Kxðm

2p2 þ LRn2p2f2f
Þ. ð31Þ

Herein, the dimensionless eigenfrequencies, the normalized edge loads and the panel aspect ratio are defined as

O2
mn �

m0L
4
1

p4F11
o2

mn; Kx �
L2
1N

0
11

p4F11
; Ky �

L2
1N0

22

p4F11
; LR � N0

22=N0
11; f � L1=L2. (32a2e)

In spite of the evident complexity of the problem, the closed-form solution of eigenfrequencies of sandwich
panels with laminated anisotropic face sheets as expressed by Eq. (31) constitutes a remarkable result.

7. Numerical simulations

Before carrying out a numerical analysis enabling one to highlight the influence played by a number of
essential parameters proper to anisotropic sandwich structures, a validation of the analytical predictions
obtained as per the present structural model against those available in the literature is in order. To this end,



ARTICLE IN PRESS

Table 2

Eigenfrequency predictions

oij (Hz) Experiment [14] Exact [14] FEM [15] SFPM [16] Present

o1 ð¼ o11Þ – 23 23 23.30 23.40

o2 ð¼ o21Þ 45 44 44 44.48 44.64

o3 ð¼ o12Þ 69 71 70 71.36 71.51

o4 ð¼ o31Þ 78 80 80 78.81 79.27

o5 ð¼ o22Þ 92 91 90 91.90 92.2

o6 ð¼ o32Þ 125 126 125 125.16 125.97

Table 3

Critical Buckling Load

Layup ½y=� y=y=Core=y=� y=y�

y (deg) c ð� L1=L2Þ L1 in. (m) F11 lb in: (N/m) Kcr ðN0
11Þcr , lb=in: (N/m) ðN0

11Þcr, lb=in: (N/m)

[1] [Present]

47 1.11 24 (0.6096) 9.8685 (1728.2) 7110.28 11 865 ð2:08� 106Þ 11 866.34 ð2:08� 106Þ

44.1 1.00 24 (0.6096) 11.5027 (2014.5) 4913.96 9559 ð1:67� 106Þ 9558.94 ð1:67� 106Þ

38.6 0.833 24 (0.6096) 15.0207 (2630.6) 2734.11 6945.5 ð1:22� 106Þ 6945.17 ð1:22� 106Þ

31.5 0.714 24 (0.6096) 20.0690 (3514.7) 1664.60 5649 ð0:99� 106Þ 5649.53 ð0:99� 106Þ

19.8 0.625 24 (0.6096) 28.2660 (4950.2) 1056.09 5048.3 ð0:88� 106Þ 5048.27 ð0:88� 106Þ

Table 1

Material and geometric characteristics

Thickness Elastic Modulus Poisson’s Mass density Shear Modulus

in. (mm) lb=in:2 (GPa) ratio lb s2=in:4 ðNs2 m�4Þ lb=in:2 (GPa)

Upper face 0.016 (0.4064) 107 (68.95) 0.33 2:59� 10�4 (2768.93) 3:76� 106 (25.92) ðG12Þ

Lower face 0.016 (0.4064) 107 (68.95) 0.33 2:59� 10�4 (2768.93) 3:76� 106 (25.92) ðG12Þ

Core 0.250 (6.35) 0 0 1:14� 10�5 (121.83) 7500 (0.0517) 19500 (0.134)

ðG13Þ ðG23Þ
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the case of a three-layer rectangular sandwich panel (L1 ¼ 72 in. (1.828m), L2 ¼ 48 in. (1.219m)) whose faces
are of aluminum and a core of aluminum honeycomb is considered. Their geometric and elastic characteristics
are displayed in Table 1.

The various mode eigenfrequencies obtained in Ref. [14] via experiments and via an exact approach, in Ref.
[15] via FEM, and in Ref. [16] via the spline finite point method (SFPM) are compared with those derived via
the present closed-form solution, Eq. (31). The results are summarized in Table 2. The supplied results reveal
an excellent agreement of the actual predictions with those obtained by various methods.

Another validation concerns the buckling load of anisotropic sandwich panels obtained at such values of the
compressive edge load for which the eigenfrequencies vanish. In this connection, in Fig. 2, for the case of a
sandwich plate featuring the stacking sequence ½y=� y=y=core=y=� y=y�, the buckling loads are obtained for
selected panel aspect ratios f from the variation of the fundamental dimensionless eigenfrequency O1=2

11 vs. Kx.
Table 3 shows critical buckling loads ðKxÞcr obtained from Eq. (31) at such values of Kx for which O1=2

11

vanishes, as well as those obtained in Ref. [12], via a direct buckling approach. At this point one should recall
the fact (see e.g. Ref. [13]) that in conditions in which a compressive edge load exists, the requirement of zero
eigenfrequency results in static instability, generally referred to as the divergence corresponding, in this case, to
buckling. On the other hand, in Ref. [12], buckling was addressed as a problem per se, i.e. as the solution of an
eigenvalue problem. Also these results reveal an excellent agreement with predictions.
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Fig. 2. Variation of dimensionless eigenfrequency O1=2
11 vs. Kx for selected y and f1

ð� L1=L2Þ. The panel lay-up is

½y=� y=y=core=y=� y=y�, ĥ ¼ 0:02 in. (0.508mm). [- - -, y ¼ 47�; —–, y ¼ 44:1�; —–, y ¼ 38:6�; —– -—–, y ¼ 31:5�; —– - -, y ¼ 19:8�].
ðEÞ f ¼ 1:11; ð�Þ f ¼ 1:0; ðmÞ f ¼ 0:833; ð%Þ f ¼ 0:714; ðþÞ f ¼ 0:625.

Table 4

Material properties for the face sheets

Type Material E1, Msi (GPa) E2, Msi (GPa) G12, Msi (GPa) n12

F1 HS graphite epoxy 26.25 (180.99) 1.5 (10.34) 1.05 (7.24) 0.28

F2 IM7/977-2 11.6 (79.98) 10.9 (75.15) 1.4 (9.65) 0.06

Table 5

Material properties for the core

Type Core type, honeycomb Ḡ13, Msi (GPa) Ḡ23, Msi (GPa)

C1 Titanium 0.20835 (1.44) 0.09435 (0.651)

T. Hause, L. Librescu / Journal of Sound and Vibration 297 (2006) 823–841832
In these latter results as well as in forthcoming ones, material properties for the face sheets and the core are
listed in Tables 4 and 5. In addition, in all simulations included in Figs. 2–13, L1 ¼ 24 in. (0.6096m),
h ¼ 0:5 in. (0.0127m), and unless otherwise specified, the faces and the core are considered to be made up from
F1 and C1 materials, respectively. Their properties are supplied in Tables 4 and 5.

Moreover, with the exception of cases in Figs. 2, 12 and 13, where ĥ ¼ 0:02 in. ð0:508� 10�3 mÞ in the
remaining figures, ĥ ¼ 0:005 in. ð0:0127� 10�2 mÞ was considered.
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Following the validation of both the structural model and the solution methodology, numerical simulations
highlighting the implications of various effects on eigenfrequencies will be displayed. The effects of panel face
thickness considered in conjunction with that of distance a on the dimensionless fundamental eigenfrequency,
O1=2

11 are displayed in Fig. 3. From this figure the strong influence of face thickness ĥ and distance a on the
fundamental dimensionless eigenfrequency O1=2

11 can be considered. In the expression of O1=2
11 , the normalizing

quantity F11 that depends on both h3 and a2h is involved; thus the variation of O1=2
11 as a function of ĥ and a

reveals an opposite trend to that normally featured by its dimensional counterpart as a function of the same
geometrical parameters. In this sense, the results reveal a decay of O1=2

11 as a function of the increase of ĥ, and a
decrease that is more severe as a increases.

The effect of the directional property of the material of face sheets on dimensionless eigenfrequency O1=2
11 is

addressed in various contexts in Figs. 4–12. Fig. 4 displays the effect of the ply-angle of face sheets considered
in conjunction with that of the panel aspect ratio f on dimensionless fundamental eigenfrequency O1=2

11 . In this
case, the stacking sequence of the sandwich panel is ½y=core=y�. The face sheets and the core are made up from
materials F1 and C1, respectively.

It clearly appears that with the decrease of L2, i.e. with the increase of f, the increase of the ply-angle until
y ¼ p=2 is accompanied by the increase of O1=2

11 . In contrast to this trend, for the case face sheets made up of
material F2 that features a very low orthotropicity ratio, the behavior shown in Fig. 4 is replaced by that
shown in Fig. 5, where in addition to the rather reduced sensitivity of the variation of O1=2

11 with that of y, a
shift of their maxima towards y ¼ p=4 ply-angles is revealed. For the same stacking sequence as before, the
implications of the ply-angle of face sheets on various mode eigenfrequencies are given in Figs. 6 and 7. It
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clearly appears that in the case of face sheet materials F1 and F2, the trend of variation of dimensionless
eigenfrequencies vs. y follows those highlighted for O1=2

11 in Figs. 4 and 5, respectively.
Fig. 8 presents the effect of orthotropicity ratio l ð¼ E1=E2Þ coupled with that of ply-angle on the variation

of the dimensionless fundamental eigenfrequency O1=2
11 . In this case the stacking sequence of the structure is

½y=core=y�. The results shown in this plot reveal that an increase in the orthotropicity ratio, implying in this
case an increase in E1, plays a beneficial role in the increase of O1=2

11 , especially for values of y445�. Figs. 9a,b
correspond to the panel lay-ups ½45�=core=45�� and ½30�=core=30��, respectively, where the coupling effects of
both panel aspect ratio and orthotropicity ratio l are highlighted. The results in both plots reveal that the
panel aspect ratio has a strong effect on the variation of O1=2

11 . At the same time, these figures reveal that,
depending on the panel lay-up, the effect of the increase of the orthotropicity ratio can be beneficial, in the
sense of an increase in O1=2

11 (see Fig. 9a), or detrimental (see Fig. 9b), in the sense of a decrease in O1=2
11 . This

difference in trend is consistent with the results emerging from Fig. 8. However, as might be observed from the
results shown in Fig. 8 for another stacking sequence such as ½60�=core=60��, the increase of l coupled with
that of f can result in larger increases of O1=2

11 than those shown in Fig. 9a, while for the stacking sequence
½0�=core=0��, an exacerbation of the trend featured in Fig. 9b is expected to occur.

Figs. 10 and 11 show the implications of varying the core transverse shear ratio Z ð� G13=G23Þ on the first
dimensionless eigenfrequency O1=2

11 . It is assumed that G13 is fixed ð¼ 1:44GPaÞ and therefore, only G23 varies.
While in Fig. 11 the implications on O1=2

11 of the variation of both Z and y are highlighted, in Fig. 10 those of Z
and f are put into evidence. From these plots it becomes evident that for f42, the effect of Z becomes
increasingly accentuated. In this sense, it is seen that with its decrease, implying for this case an increase of G23,
an increase of O1=2

11 results. The coupling effect of the increase of y with the decrease of Z, that is with the
increase of G23, also provides a strong increase of O1=2

11 .
Finally, Figs. 12 and 13 highlight the effects of the normalized compressive edge load coupled with that of

the ply-angle y, and of the biaxial compressive edge load-ratio LR ð� Ky=KxÞ in conjunction with that of Kx
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on dimensionless ðOmnÞ
1=2, respectively. It should be noted that LR40, LR ¼ 0 and LRo0 correspond to

Ky40 (compression), Ky ¼ 0; or Kyo0 (tension), respectively. The results of Fig. 12 reveal that the ply-angle
y of face sheets plays an enormously beneficial role in the increase of both the eigenfrequencies and the
buckling load, corresponding to the values of Kx for which the eigenfrequencies vanish. It should be noted
that for the ply-angles y ¼ 60� and 90�, the minimum buckling loads correspond to m ¼ 2 and n ¼ 1, a fact
that was clearly indicated in Fig. 12. From the point of view of buckling instability, the results obtained from
this plot are in full agreement with those obtained in Ref. [12]. In the same context, the results of Fig. 13 reveal
that when LRo0, i.e. in the case of tensile loads applied on edges x2 ¼ 01;L2, there is a substantial increase of
eigenfrequencies and of buckling loads, as compared to the case where LRX0.

One should also point out that the results based on the model of sandwich structures developed in this paper
can be applied, as a special case, to symmetrically laminated anisotropic composite plates, for which an
elegant solution of the free vibration and dynamic response was provided in Ref. [17].

8. Conclusions

An analytical study of the flexural free vibration behavior of flat sandwich panels featuring laminated
anisotropic face sheets was presented. The closed-form solution obtained via implementation of the extended
Galerkin solution methodology has enabled one to highlight the implications of a number of effects, such as
orthotropicity ratio of the material of face sheets and core layer, ply-angle of the material of the faces,
structural lay-up, panel aspect ratio and compressive/tensile edge loads. Moreover, the adopted solution
methodology was validated against predictions obtained via experimental, analytical and numerical methods,
and an excellent agreement was obtained. The results have revealed the considerable potentially beneficial role
the directional property of face sheets material, transverse shear orthotropicity ratio of the core material and
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the lay-up of the structure can play toward the enhancement, without weight penalties, of the vibrational
behavior of sandwich panels.

Appendix

Expression of 2-D strain measures in terms of displacement quantities

For the bottom face sheets:

�011 ¼ Z1;1 þ z1;1 ð1$2Þ,

g012 ¼ Z1;2 þ Z2;1 þ z1;2 þ z2;1,

k011 ¼ �v3;11 ð1$2Þ,

k012 ¼ �2v3;12. ðA:1a2dÞ

In the core layer:

ḡ13 ¼
1

h̄
Z1 þ

1

2
hv3;1

� �
þ v3;1 ð1$2Þ. (A.2)

In the top face sheets:

�0011 ¼ Z1;1 � z1;1 ð1$2Þ,

g0012 ¼ Z1;2 þ Z2;1 � z1;2 � z2;1,

k0011 ¼ �v3;11 ð1$2Þ,

k0012 ¼ �2v3;12. ðA:3a2dÞ
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It should be remarked that the displacement measures xa and Za, as defined by Eqs. (3a,b), belong to the
stretching and bending problems, respectively. As per the linear theory of symmetric sandwich flat panels, the
governing equations involving xa are decoupled from those expressed in terms of Za and v3. For the present
problem, only the latter system of equations was considered.
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