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Abstract

A simple model of a high frequency piezoelectric transducer affixed to an elastic half-space is analysed. The problem is

reformulated as a modified matrix Wiener–Hopf equation, containing a kernel for which there is no known exact

factorisation. An approximate factorisation is obtained, and the resulting integral equation is solved by iteration, in limit

that the length of the transducer is very much larger than a typical wavelength.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Problems concerning the propagation, refraction and diffraction of waves are the subject of a great deal of
work by both theoretical and experimental scientists. The detection of cracks and other defects in solid bodies
is of vital importance in a wide variety of practical applications, such as ensuring reliability of components in
engines and gearboxes. In the field of non-destructive testing, one method to detect defects is to analyse the
scattering of the elastic waves generated by ultrasonic transducers. To gain understanding of the way in which
transducers (placed on a free surface of an elastic specimen) generate the elastic waves used to insonify the
defect, it is important to study in detail some simple models.

A property which differentiates the theory of elastic waves from acoustic and water waves is that elastic
bodies support two distinct types of body waves, which are either compressional (longitudinal) or shear
(transverse) in nature. These wave fields are typically coupled at the boundary or interface of an elastic body; a
wave of one type which is incident upon such a interface will undergo mode conversion and the resulting
reflected wave will be composed of both wave types. Furthermore, such interfaces may support surface waves
such as the Rayleigh wave.

A full mathematical model of the interactions between an elastic body and such a piezoelectric transducer,
such as that used by Rogers [1], requires consideration of a large number of parameters. In addition to the
properties of the body under examination, it would be necessary to model the elasticity of the transducer and
its electroelastic coupling with the driving electromagnetic force. Such a model is too difficult to investigate
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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using the analytical techniques of diffraction theory. However, if we are interested only in the wave field
induced by a transducer in the body under test, or the diffracting properties of a model defect, we may make
simplifying assumptions about the physical properties of the transducer/defect, and assuming the specimen to
be of infinite extent we may make progress toward finding the resulting acoustic wave field. Such an approach
has proved fruitful, and progress has been made in determining the wavefield using both analytic and
numerical techniques. We now briefly mention several key works looking at these basic models.

Lapwood [2] showed analytically that a general solution for elastic waves in a half-space could be expressed
in terms of Green’s functions for a pair of coupled Helmholtz equations, representing the solutions for a line
source of compressional and shear waves. These Green’s function solutions have been widely utilised.
Wickham [3,4] applied them to analyse a model transducer performing prescribed oscillations in the y-
direction, but lubricated such that the tangential stresses vanish across the entire surface. This approximation
was made purely for mathematical convenience, in order to obtain a tractable, scalar, integral equation
representation for the unknown normal stresses under the transducer. This problem was solved by iteration in
the high-frequency limit, with results showing good agreement with the Geometrical Theory of Diffraction, as
discussed by Achenbach et al. [5].

Within the context of soil/structure interaction, Flitman [6] studied the interaction between a seismic wave
and a rigid strip in smooth contact with the surface of an elastic half-space (i.e. the same simplified boundary
conditions as that used in Refs. [3,4]), and used the Wiener–Hopf technique to obtain a transient description of
the stress exerted on the base of the strip. Oien [7] extended that work to a strip in fully bonded contact (as in
this work), approximately solving a pair of coupled Fredholm integral equations using the Galerkin method to
obtain the equivalent influence functions.

The formulation of elastodynamical problems as integral equations has also led to novel numerical method
for their solution. In particular, the boundary element method [8] allows the problem’s dimensionality to be
reduced and numerical solutions to be found. However, as with other direct numerical schemes, such as finite
differences, the singular field near the transducer edges cannot be modelled accurately. An in-depth review of
the application of these methods may be found in Beskos [9]. More recently, the semi-numerical asymptotic
approach of Gridin and Fradkin [10], which captures the edge behaviour correctly, has allowed progress to be
made in evaluating the wavefield induced by a circular transducer in three dimensions.

This article offers an analytical (but approximate) technique to evaluate the elastic wave field generated by
a finite, planar transducer, and details are given for the simplest case of a rigid transducer. In our model
the transducer will be represented by a prescribed displacement field over a region of the surface of width
much greater than a typical body wavelength. The approach employed herein is the modified Wiener–Hopf
technique (see Noble [11]). We shall formulate this model as a three-part mixed boundary value problem for
the compressional and shear wave potentials. The coupling between these potentials means, after the
application of a suitable Fourier transform, that the resulting modified Wiener–Hopf equation has a
complicated matrix kernel. There is no known procedure for factorising this matrix kernel exactly into factors
with the properties necessary for the application of the Wiener–Hopf technique. However, Abrahams’ [12,13]
method of obtaining an approximate factorisation may be applied and appears to give very accurate results at
little numerical cost. This procedure, and the symmetry of the problem enables us to form a vector integral
equation, which in the high frequency limit, may be solved approximately by iteration. We thus obtain the
first two non-zero terms of a perturbation expansion, as well as offering a procedure for determining higher
order terms.

The paper is arranged as follows. In the next section the boundary value problem is specified in terms of two
elastic potentials. Fourier transforms are introduced in Section 3 and by their application the problem is
reduced to a modified matrix Wiener–Hopf equation, valid in a specified strip of the complex plane. The
solution of this equation relies on the successful factorization of the Wiener–Hopf kernel, which is
accomplished approximately in Section 4, as well as an asymptotic decomposition of two vector integral
equations described in Section 5. The latter relies on the transducer being long in comparison to the elastic
wavelengths. Simple forcing is studied in the preliminary sections, but the solution for arbitrary loading on the
finite strip is discussed in Section 6. Numerical solutions are offered in Section 7, together with an energy
balance calculation to indicate the accuracy of the present approach. Final remarks and suggestions for
further work are made in the concluding section of the paper.
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2. The boundary value problem

We model the body under inspection as a homogeneous, isotropic, elastic half-space occupying the region
yX0, �1ox; zo1, where ðx; y; zÞ are Cartesian coordinates. The induced displacement field u ¼ ðu; v;wÞ
(acting in the ðx; y; zÞ directions) can be shown (see Gould [14], for example) to satisfy Navier’s equation:

mr2uþ ðlþ mÞ grad div u ¼ r
q2

qt2
u, (1)

where r is the density, l;m the Lamé constants of the material and t is the time. The half-space is forced by a
transducer of length 2l which, for mathematical convenience, is represented by a perfectly rigid, finite width,
strip placed in contact with the surface of the half-space, as shown in Fig. 1. The transducer occupies the
region y ¼ 0, �loxol, and performs prescribed in-plane harmonic motion, with angular frequency o. Thus,
for jxjol, y ¼ 0 we have

u ¼ u0ðxÞe
�iot; v ¼ v0ðxÞe

�iot; w ¼ 0. (2)

The remainder of the surface is free, i.e. the normal and tangential stresses are identically zero. Denoting the
elements of the stress tensor as sij, we have, for y ¼ 0, jxj4l,

s12 ¼ m
qu

qy
þ

qv

qx

� �
¼ 0; s22 ¼ l= � uþ 2m

qv

qy
¼ 0. (3)

Since the forcing is in-plane, the entire displacement field is in-plane (i.e. w � 0). Hence, for time-harmonic
motion, the displacement field may be expressed in terms of complex-valued compressional and shear
potential functions, fðx; yÞ and cðx; yÞ, in the form

u ¼ Refûe�iotg ¼ Ref½gradfþ curlðcezÞ�e
�iotg, (4)

where ez is the unit vector in the z direction. Substitution of Eq. (4) into Eq. (1), results in a pair of Helmholtz
equations

r2fþ k2f ¼ 0, (5)

r2cþ K2c ¼ 0, (6)

where the wavenumbers k and K are given by

k2
¼

ro2

lþ 2m
and K2 ¼

ro2

m
. (7)

Eqs. (5) and (6) are coupled at the boundary y ¼ 0 such that the boundary conditions (Eqs. (2) and (3))
become

qf
qx
þ

qc
qy
¼ u0ðxÞ;

qf
qy
�

qc
qx
¼ v0ðxÞ; jxjol, (8)
Fig. 1. The elastic half-space with stress free and imposed displacement boundary conditions.
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2
q2f
qxqy

þ
q2c
qy2
�

q2c
qx2
¼ 0; jxj4l, (9)

K2

k2

q2f
qx2
þ

q2f
qy2

� �
� 2

q2f
qx2
� 2

q2c
qxqy

¼ 0; jxj4l. (10)

To guarantee a unique solution it is necessary to impose two further conditions. Firstly, we impose the
Sommerfeld radiation condition requiring that the radiated wave-field is outgoing in nature. Secondly, we
require that the displacements everywhere, (and in particular at x ¼ �l, y ¼ 0) remain finite. This boundary
value problem is to be solved approximately using the modified Wiener–Hopf technique, first utilised by
Jones [15].

3. Reduction to a modified matrix Wiener–Hopf equation

The boundary value problem may be reduced to a modified matrix Wiener–Hopf equation by expressing the
potentials in terms of Fourier integrals of the form

fðx; yÞ ¼
1

2p

Z
C

Fða; yÞe�iax da, (11)

cðx; yÞ ¼
1

2p

Z
C

Cða; yÞe�iax da, (12)

where the contour C is chosen as shown in Fig. 2, i.e. indented well away from the points �k, �K , for reasons
to be made clear in due course.

Using the well known inversion formulae for the Fourier transforms defined in Eqs. (11) and (12) and
exchanging the order of integration and differentiation, the equations of motion (5) and (6) may be rewritten
in terms of the transformed potentials F and C as

Fyy � ða2 � k2
ÞF ¼ 0; and Cyy � ða2 � K2ÞC ¼ 0, (13)

respectively. We assume that a lies in a strip D, of finite width, which also encloses the integration contour C.
The region in the a-plane above and including D, is denoted Dþ, whereas D� occupies the half-plane below
and including D.

The solutions of Eqs. (13) which satisfy the radiation condition (i.e. purely outgoing waves or decaying
solutions as y!1) are of the form

Fða; yÞ ¼ AðaÞe�gðaÞy; Cða; yÞ ¼ BðaÞe�dðaÞy, (14)
Fig. 2. The contour C in the complex a-plane, deformed away from the branch cuts and the Rayleigh poles, �k0.
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where the functions

gðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
and dðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � K2

p
(15)

are defined on the complex plane, C, cut from �k to �1 and from �K to �1 respectively. The Riemann
sheets on which these functions are defined are chosen such that gð0Þ ¼ �ik, dð0Þ ¼ �iK and g=jaj ! 1,
d=jaj ! 1 as jaj ! 1 on C. As shown in Ref. [16], the choice of these Riemann sheets is necessary to satisfy
the Sommerfeld radiation condition.

Applying the Fourier transform to the displacement boundary condition Eq. (8) gives

eialUþ þU0 þ e�ialU� ¼
�ia �d

g �ia

 !
A

B

� �
, (16)

where the vector functions

Uþ ¼

Z 1
l

eiaðx�lÞ
uðx; 0Þ

�vðx; 0Þ

 !
dx; U� ¼

Z �l

�1

eiaðxþlÞ
uðx; 0Þ

�vðx; 0Þ

 !
dx (17)

are as yet unknown and

U0 ¼

Z l

�l

eial
u0ðxÞ

�v0ðxÞ

 !
dx. (18)

It can be shown from the properties of such half-line integral transforms with finite displacements ðu; vÞ at
x ¼ �l, that functions with the þ and � subscripts are analytic and of algebraic growth in Dþ and D�,
respectively, (see Ref. [11, Chapter 1]). The vector function U0 is entire in a. Transforming the stress free
boundary conditions (Eqs. (9) and (10)) gives the vector equation

R1 ¼
1

m

S1
22

S1
12

 !
¼

2a2 � K2 �2iad

2iag 2a2 � K2

 !
A

B

� �
, (19)

where the entire functions S1
ij are the Fourier transforms of the normal (s22) and tangential (s12) stress on

y ¼ 0, given by

S1
ijðaÞ ¼

Z l

�l

eiaxsijðx; 0Þdx. (20)

Eliminating A and B from Eqs. (16) and (19) gives the modified, matrix Wiener–Hopf equation

eialUþ þ KR1 þ e�ialU� þU0 ¼ 0, (21)

with the matrix kernel KðaÞ given by

K ¼
1

RðaÞ

iað2a2 � K2 � 2gdÞ �K2d

K2g iað2a2 � K2 � 2gdÞ

 !
, (22)

where RðaÞ is the Rayleigh determinant,

RðaÞ ¼ ð2a2 � K2Þ
2
� 4a2gd. (23)

Eq. (21) is a so-called modified Wiener–Hopf equation as the kernel K multiplies an entire function, R1, rather
than one that is analytic in only one half-plane. Note that RðaÞ has exactly two zeros, �k0, in the a-plane cut as
shown in Fig. 2, and that these zeros lie on the real line with jaj4K . Their location corresponds to the
wavenumbers of the Rayleigh waves which may propagate along the free surface of the body. Note also that
the inverse matrix

K�1 ¼
1

a2 � gd

iað2a2 � K2 � 2gdÞ K2d

�K2g iað2a2 � K2 � 2gdÞ

 !
(24)
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has no poles on the chosen Riemann surface, corresponding to the fact that no surface waves are supported on
the interface between the elastic body and our model transducer.
4. Factorization of the matrix kernel

It is now necessary to perform a Wiener–Hopf product factorization on the matrix KðaÞ, that is, to reduce it
to a product KþðaÞK�ðaÞ where KþðaÞ, K�ðaÞ (and their respective inverses) are analytic and of algebraic
growth in overlapping upper and lower half planes, respectively. At present, there is no known method for
performing this decomposition exactly. However, using a method due to Abrahams [12,13], it is possible to
perform an approximate factorization.

The procedure for this approximate factorization proceeds in three steps. Firstly, a commutative
factorization is obtained by the Khrapkov–Daniele [17,18] method. This factorization is exact, but the factors
do not have the desired analyticity properties. Secondly, a specific scalar factor in this commutative
factorization is replaced with its Padé approximant. Finally, these approximate factors are multiplied by
meromorphic matrices defined such that each of the factors has poles only in one half-plane. This determines
explicit but approximate expressions for K�ðaÞ, of arbitrary accuracy in D�.

For convenience the exact factorization of the matrix kernel K is performed by first factorising the matrix
L ¼ �KJ ¼ LþL�, where

J ¼
0 �f ðaÞ

1=f ðaÞ 0

 !
and f ðaÞ ¼

ffiffiffiffiffiffiffiffiffi
dðaÞ
gðaÞ

s
. (25)

We write each of the factors L� in the form

L� ¼ r�ðaÞðcosðs�ðaÞÞIþ sinðs�ðaÞÞJÞ, (26)

where I is the 2� 2 identity matrix and explicitly multiply LþL�. Comparing coefficients of I and J it is simple
to derive the pair of scalar relationships

sþ þ s� ¼ �tan
�1 iað2a2 � K2 � 2gðaÞdðaÞÞ

K2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðaÞdðaÞ

p !
, (27)

½rþr��
2 ¼

gðaÞdðaÞ � a2

RðaÞ
. (28)

We may now perform the standard scalar Wiener–Hopf decompositions for rþ, r�, sþ and s�, in an identical
manner to Ref. [12], to derive explicit expressions for the kernel factors. Choosing a symmetric factorization
gives

rþðaÞ ¼ r�ð�aÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ k2

4ðK2 � k2
Þ

4

s
e�ip=4

ðaþ k0Þ
1=2

exp
1

4pi

Z �k

�K

log
SðxÞðx2 � gdÞ

RðxÞðx2 þ gdÞ

� �
dx

x� a

� �
ð29Þ

and

sþðaÞ ¼ �
a
2pi

Z
^

tan�1
ixð2x2 � K2 � 2gdÞ

K2
ffiffiffiffiffi
gd

p" #
dx

xðx� aÞ
¼ �s�ð�aÞ, (30)

where SðxÞ ¼ ð2x2 � K2Þ
2
þ 4x2gðxÞdðxÞ is the non-physical Rayleigh determinant and the contour ^ denotes

an integration path inD deformed so as to pass below a. The functions defined by these integrals may be easily
calculated numerically for any given value of a.
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The exact factorization above is not complete, in that L�ðaÞ both contain the finite cuts of f ðaÞ shown
in Fig. 2. We may construct approximate kernel factors

LN� ¼ r�ðaÞðcosðs�ðaÞÞIþ sinðs�ðaÞÞJN Þ; JN ¼
0 �f N

1=f N 0

 !
, (31)

where f N ðaÞ is a two-point ½2N=2N� Padé approximant of f ðaÞ, centred around a ¼ 0 and a ¼ 1. Such two
point approximants are used in order to guarantee that f NðaÞ has the same asymptotic behaviour as f ðaÞ for
large a. Further properties of Padé approximants may be found in Baker and Graves-Morris [19, Chapter 7.1]
and specific reference to two-point approximants is made in Abrahams [20]. Thus, since f ðaÞ ! 1 as a!1,

f N ðaÞ ¼
QN

n¼0ða
2 � p2

nÞQN
n¼0ða2 � q2

nÞ
’

ffiffiffiffiffiffiffiffiffi
dðaÞ
gðaÞ

s
, (32)

where the positive poles ðqnÞ and positive zeros ðpnÞ of f N lie on the real line between k and K. So, if we define
the approximate factors of K by eKNþ ¼ LNþ; eKN� ¼ LN�JN (33)

then eKNþ (respectively, eKN�) and its inverse are analytic inDþ (D�) except for poles at pn and qn (�pn and �qn).
The final step in the approximate Wiener–Hopf factorization is to construct a meromorphic matrix M such

that eKNþM and M�1eKN� are free of poles in Dþ and D� respectively. It is due to this step that the resulting
approximate factorization is non-commutative. In order to generate such a matrix M, we take the ansatz

M ¼

1þ
PN
n¼1

An

a� qn

þ
PN
n¼1

Bn

aþ qn

PN
n¼1

An

a� qn

þ
PN
n¼1

Bn

aþ qnPN
n¼1

Cn

a� pn

þ
PN
n¼1

Dn

aþ pn

1þ
PN
n¼1

Cn

a� pn

þ
PN
n¼1

Dn

aþ pn

0BBBB@
1CCCCA, (34)

which may be derived using the procedure given in Ref. [12]). For the desired analyticity properties, we require
the residue of the poles at pn and qn in each of the elements of KNþ to vanish, as must the residues of the poles
at �pn and �qn in the elements of K�1N�. Imposition of this condition creates a system of 8N algebraic
equations for the 8N unknowns in the matrix M (i.e. the coefficients A1; :::;Dn;A1; :::;Dn.) It can be confirmed
that this choice of coefficients also guarantees that K�1Nþ and KN� are similarly free of poles in Dþ and D�
respectively. Finally it can be shown that jMj ¼ 1 and so jKN�j ¼ r2�ðaÞ is independent of N.

In summary, explicit non-commutative factors of the Wiener–Hopf kernel function KðaÞ have been obtained
in this section. They are

KðaÞ ’ KNþðaÞKN�ðaÞ, (35)

where

KNþ ¼ LNþM; KN� ¼M�1LN�. (36)

Note that KNþ gives an accurate approximation to the exact factor Kþ in Dþ, but not near the singularities in
D�. If KNþ is required in D� then it is appropriate to write

KþðaÞ ’ KðaÞK�1N�ðaÞ; a 2 D�, (37)

where the singularities in D� have not been approximated. Similarly, K� ’ K�1NþK, a 2 Dþ. In the following
sections the details and method of approximation are not relevant to the analysis, and any alternative product
decomposition may be utilised. Thus the subscript N on the kernel factors will be omitted.

5. Solution of the boundary value problem

Having thus obtained an approximate matrix kernel decomposition, it is now possible to solve the modified
Wiener–Hopf equation in the manner proposed by Jones [15]. Pre-multiplying Eq. (21) by e�ialK�1þ and
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performing a Wiener–Hopf sum decomposition on each of the terms, gives

K�1þ Uþ þ ½e
�2ialK�1þ U��þ þ ½e

�ialK�1þ U0�þ

¼ �e�ialK�R1 � ½e
�2ialK�1þ U��� � ½e

�ialK�1þ U0��, ð38Þ

where ½ �� denotes the part of the sum decomposition analytic in D�, respectively.
By construction, the left-hand side of Eq. (38) is analytic and of algebraic growth in Dþ and the right-hand

side is analytic and of algebraic growth inD�. Hence, each side of Eq. (38) is the analytic continuation of some
function E which is entire and of algebraic growth in all of C. Thus, by the extended form of Liouville’s
theorem, each side is identical to a vector of polynomials. Consideration of the asymptotic behaviour of
the terms of Eq. (38) as jaj ! 1 (deduced from the local stress and displacement fields around the edges of the
transducer as discussed in Ref. [12]) shows that E! 0, and hence E � 0. Rewriting Eq. (38) using the
standard Wiener–Hopf decomposition formula, leaves us with an vector integral equation for Uþ in terms of
U� and U0, i.e.

K�1þ Uþ þ
1

2pi

Z
^

½e�2ixlK�1þ ðxÞU�ðxÞ þ e�ixlK�1þ ðxÞU0ðxÞ�
dx

x� a
¼ 0. (39)

It is convenient to consider the arbitrary forcing in terms of functions which are odd or even in x and use the
symmetry of the problem to rewrite U� in terms of Uþ. We shall consider the case where the forcing is by a
rigid transducer performing harmonic motion in the y direction only, i.e. ðu0; v0Þ ¼ ð0;�1Þ, and so

U0ðaÞ ¼
Z l

�l

eiax
0

1

� �
dx ¼

eial � e�ial

ia

0

1

� �
. (40)

From the symmetry of the forcing and the body, it is seen that uðx; yÞ ¼ �uð�x; yÞ; and vðx; yÞ ¼ vð�x; yÞ;
and thus

U�ðaÞ ¼
�1 0

0 1

� �
Uþð�aÞ. (41)

For a given forcing it is frequently possible to perform partially an explicit Wiener–Hopf sum decomposition.
In this case we may write the final term on the left-hand side of Eq. (39) as

1

2pi

Z
^

e�ixlK�1þ ðxÞU0ðxÞ
dx

x� a
¼

Z
^

e�2ixl � 1

2px
K�1þ ðxÞ

0

1

 !
dx

x� a

¼

Z
CK[Ck

e�2ixl

2px
K�1þ ðxÞ

0

1

 !
dx

x� a
�

i

a
fK�1þ ðaÞ � K�1þ ð0Þg

0

1

 !
, ð42Þ

with the integral taken around the cuts from �k and �K parallel to the imaginary axis in the lower half-plane
(as shown in Fig. 3). Here the contour C has been deformed onto a large semi-circular arc in the lower half
k
-k-K

Ck
CK

K

Fig. 3. Integration contour for Wiener–Hopf decomposition of U0.
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plane (plus indentations around the two branch-cuts) whose contribution to the total integral can, by Jordan’s
Lemma, be shown to tend to zero as the radius of the semi-circle increases. Further, by noting that K�1þ ¼
K�K

�1 and that K�1 is free of poles, it can be seen that K�1þ is similarly pole-free, containing only branch-cuts
in the lower half-plane, D�.

Substituting Eqs. (41) and (42) into Eq. (39) and deforming the integration contour of the second term onto
the path in Fig. 3, gives us an integral equation for Uþ, valid for all k, l , the solution of which will solve the
boundary value problem. Thus,

K�1þ Uþ þ
1

2pi

Z
Ck[CK

e�2ixlK�1þ ðxÞ
�1 0

0 1

 !
Uþð�xÞ

dx
x� a

¼
i

a
fK�1þ ðaÞ � K�1þ ð0Þg

0

1

 !
�

Z
Ck[CK

e�2ixl

2px
K�1þ ðxÞ

dx
x� a

0

1

 !
. ð43Þ

In order to generate a solution for this equation, we shall make the assumption that klb1, which is to say that
the transducer is long compared to a typical wavelength of the compressional body waves. Furthermore,
denoting

ffiffiffiffiffi
kl
p
¼ ��1, we may rewrite the potential as an asymptotic series in the small parameter, �. Assuming

the solution may be expressed as a perturbation expansion in the standard form, we write

Uþ ¼ U
ð0Þ
þ þ �U

ð1Þ
þ þ � � � þ �

nU
ðnÞ
þ þ � � � , (44)

and express the other unknowns with a similar notation. We may now rewrite the integral terms in Eq. (43) in
terms of the small parameter. Approximating the integrands in the neighbourhood of �k and �K by their
Taylor series expansions about these points we may write each of the integrals in the formZ

Ck

e�2ixlK�1þ ðxÞfðnÞ
dx

x� a
¼ �3P0fð�kÞ F

aþ k

k

� �
þOð�4Þ, (45)

where P0 is a constant matrix. For clarity of presentation, the elements of P0 and details of the derivation are
left for the appendix (see Eqs. (A.1)–(A.12)). A similar expression is derived for the integral over contour CK .
Note that since the region D is indented away from �k and �K , the function F, given in the appendix
(Eq. (A.9)), is Oð�0Þ in that region.

Eq. (45) is valid in the domain D containing the contour C over which the inverse Fourier integrals are
taken. Thus, the contribution to Eq. (43) from the integrals around the branch cuts is Oð�3Þ, whereas that from
the pole contribution is Oð�0Þ. Therefore we may substitute our asymptotic expression for Uþ and generate an
approximate solution to the integral equation by collecting terms in coefficients of �n. Substituting Eq. (44)
into Eq. (43) and considering only the coefficient of �0 gives us, as the first approximation to the solution

K�1þ ðaÞU
ð0Þ
þ ðaÞ ¼

i

a
fK�1þ ðaÞ � K�1þ ð0Þg

0

1

� �
. (46)

We may now calculate U
ð0Þ
þ ðkÞ and U

ð0Þ
þ ðKÞ explicitly, and use these to derive the next term in the asymptotic

series. By comparing the coefficients of powers of �, �2 and �3 we obtain further terms in the expansion. Thus,

K�1þ ðaÞU
ð1Þ
þ ðaÞ ¼ K�1þ ðaÞU

ð2Þ
þ ðaÞ � 0 (47)

and

K�1þ ðaÞU
ð3Þ
þ ðaÞ ¼

1

2pk
F

aþ k

k

� �
P0

�1 0

0 1

 !
KþðkÞK

�1
þ ð0Þ

0

1

 !

þ
1

2pK
F

aþ K

k

� �
P1

�1 0

0 1

 !
KþðKÞK

�1
þ ð0Þ

0

1

 !
, ð48Þ

where the constant matrices P0 and P1 are given in Eq. (A.12). In principle, any degree of accuracy may be
obtained: U

ðnÞ
þ may be used in the iteration procedure to generate higher order terms.
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Having thus constructed the first two non-zero terms in the asymptotic expansion Eq. (44), and outlined a
scheme to generate further terms to arbitrary accuracy, all that remains is to obtain the potential functions f
and c using the inverse Fourier transforms given in Eqs. (11) and (12). From Eqs. (14) and (16),

F

C

� �
¼

Ae�gy

Be�dy

� �
, (49)

where

A

B

� �
¼

1

a2 � gd

ia �d

g ia

 !
feialUþðaÞ þU0ðaÞ þ e�ialU�ðaÞg (50)

and we may define FðnÞ, CðnÞ by

FðnÞ

CðnÞ

 !
¼

1

a2 � gd

iae�gy �de�gy

ge�dy iae�dy

 !
feialU

ðnÞ
þ ðaÞ þ d0nU0 þ e�ialUðnÞ� ðaÞg. (51)

Hence, we can construct approximations to the solution by writing

f ¼ fð0Þ þ �fð1Þ þ � � � þ �nfðnÞ þ � � � ; fðnÞ ¼
1

2p

Z
C

e�iaxFðnÞða; yÞda. (52)

Note that since the steepest descent paths used to evaluate the fðnÞ need not remain in D, the fðnÞ are not
everywhere Oð�0Þ themselves. However, this does not cause problems for the analysis, since we require only
that the FðnÞ are Oð�0Þ for a 2 D.

Taking the first term in the asymptotic series we calculate the first approximation to the potential f by

fð0Þðx; yÞ ¼
1

2p

Z
C

e�iax�gy

a2 � gd
ðia;�dÞfeialU

ð0Þ
þ ðaÞ þU0ðaÞ þ e�ialUð0Þ� ðaÞgda

¼
1

2pi

Z
C

e�iax�gy

aða2 � gdÞ
ð ia;�d Þ eialKþðaÞ þ e�ial

1 0

0 �1

 !
Kþð�aÞ

( )
K�1þ ð0Þ

0

1

 !
da. ð53Þ

This leading order solution is composed of the sum of the solutions to two boundary value problems involving
semi-infinite transducers (i.e. the radiated field from each end) of the type solved in Ref. [12]. In order to derive
a uniformly valid asymptotic expansion for the far-field form of f we shall split Eq. (53) into three parts.
Defining gþðaÞ ¼ ðaþ kÞ1=2 and g�ðaÞ ¼ ða� kÞ1=2, with branches chosen such that gþðaÞg�ðaÞ � gðaÞ, we have

fð0Þ ¼
1

2pi

Z
C

e�iaðx�lÞ�gy ð
ia; �d Þ
aða2 � gdÞ

KþðaÞK�1þ ð0Þ
0

1

 !
�

1

agþð0Þg�ðaÞ

( )
da

þ
1

2pi

Z
C

e�iaðxþlÞ�gy ðia; dÞ
aða2 � gdÞ

Kþð�aÞK�1þ ð0Þ
0

1

 !
þ

1

agþð0Þg�ð�aÞ

( )
da

þ
1

2pigþð0Þ

Z
C

e�iax�gy eial

ag�ðaÞ
�

e�ial

ag�ð�aÞ

� �
da. ð54Þ

The integrands in the first two integrals in Eq. (54) are bounded on the interval ð�k; kÞ in the complex plane
and an asymptotic formula may be obtained using the method of steepest descent. Denoting the first integral
as

fð0Þl ðx; yÞ ¼
1

2pi

Z
C

e�iaðx�lÞ�gy ð
ia; �d Þ
aða2 � gdÞ

KþðaÞK�1þ ð0Þ
0

1

 !
�

1

agþð0Þg�ðaÞ

( )
da

¼
1

2pi

Z
C

e�iaðx�lÞ�gyf ðaÞda, ð55Þ

it may be evaluated asymptotically by using plane polar coordinates centred on x ¼ l, y ¼ 0 as shown in
Fig. 4. (Here and henceforth f�l , c�l indicate the contribution to the respective potentials from the cylindrical
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Fig. 4. Polar coordinates r1, r2, r, x1, x2 and x.
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waves generated at the edges x ¼ �l.) We therefore write

x� l ¼ �r1 sin x1; y ¼ r1 cos x1, (56)

and deform the contour C onto the half-parabola given parametrically by a ¼ k sinðx1 þ itÞ for �1oto1.
Without loss of generality we make the assumption that no singularities in f ðaÞ are encountered during such a
deformation. Hence, making the change of variable a ¼ k sinðx1 þ itÞ in the integrand givesZ

C

f ðaÞe�iaðx�lÞ�gyda ¼ �ik
Z 1
�1

cosðx1 þ itÞf ðk sinðx1 þ itÞÞeikr1 cosh tdt, (57)

and assuming that kr1b1, we may now apply the method of stationary phase to obtain the asymptotic
formula Z

C

f ðaÞe�iaðx�lÞ�gyda�� ik cos x1f ðk sin x1Þ

ffiffiffiffiffiffiffi
2p
kr1

r
eikr1þip=4, (58)

and thus,

fð0Þl ðr1; x1Þ� �
k cos x1ffiffiffiffiffiffiffiffiffiffiffiffi
2pkr1
p eikr1þip=4f ðk sin x1Þ. (59)

Similarly, writing

xþ l ¼ �r2 sin x2; y ¼ r2 cos x2, (60)

it can be seen from the symmetry, that the second integral in Eq. (54) becomes

1

2pi

Z
C

e�iaðxþlÞ�gy ð ia; d Þ
aða2 � gdÞ

Kþð�aÞK�1þ ð0Þ
0

1

 !
þ

1

agþð0Þg�ð�aÞ

( )
da

��
k cos x2ffiffiffiffiffiffiffiffiffiffiffiffi
2pkr2
p eikr2þip=4f ð�k sin x2Þ. ð61Þ
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The final term in Eq. (54) may be evaluated analytically. The integral

I ¼ g�ð0Þ
Z
C

e�iaðx�lÞ�gðaÞy

ag�ðaÞ
da, (62)

where C is indented below the origin, can be shown (see Ref. [11, Chapter 1.6]) to be expressible as a sum of
Fresnel functions in the form

I ¼ 2p1=2eip=4½eikyFð�
ffiffiffiffiffiffiffiffiffi
2kr1

p
sin 1

2
x1Þ � e�ikyFð

ffiffiffiffiffiffiffiffiffi
2kr1

p
cos 1

2
x1Þ� (63)

where FðzÞ is the complex Fresnel integral defined as

FðzÞ ¼

Z 1
z

eiu
2

du. (64)

Thus, using the identity

FðzÞ þFð�zÞ ¼
ffiffiffi
p
p

eip=4, (65)

we obtain the exact expression

1

2pigþð0Þ

Z
C

e�iax�gy eial

ag�ðaÞ
�

e�ial

ag�ð�aÞ

� �
da ¼

eip=4

k
ffiffiffi
p
p feikyðFð

ffiffiffiffiffiffiffiffiffi
2kr2

p
sin 1

2
x2Þ �Fð

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin 1

2
x1ÞÞ

� e�ikyðFð
ffiffiffiffiffiffiffiffiffi
2kr2

p
cos 1

2
x2Þ þFð

ffiffiffiffiffiffiffiffiffi
2kr1

p
cos 1

2
x1ÞÞg. ð66Þ

From the symmetry inherent in the model problem, it can be shown that the total potential is given by

fð0Þ� �
keip=4 cos xffiffiffiffiffiffiffiffiffiffi

2pkr
p eikrfeikl sin xf ðk sin xÞ þ e�ikl sin xf ð�k sin xÞg

þ
eikyeip=4

k
ffiffiffi
p
p ½Fð

ffiffiffiffiffiffiffiffiffi
2kr2

p
sin 1

2
x2Þ �Fð

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin 1

2
x1Þ�

�
e�ikyeip=4

k
ffiffiffi
p
p ½Fð

ffiffiffiffiffiffiffiffiffi
2kr2

p
cos 1

2
x2Þ þFð

ffiffiffiffiffiffiffiffiffi
2kr1

p
cos 1

2
x1Þ�, ð67Þ

where the radii r1, r2 and r and the angles x, x1 and x2 are as shown in Fig. 4. In the limit kr!1 the final
term in Eq. (67) may be approximated using the asymptotic expansion

FðzÞ�
i

2z
eiz

2

as z!1. (68)

The middle term of Eq. (67) may be rewritten as

gðr; xÞ ¼
eikyeip=4

k
ffiffiffi
p
p

Z ffiffiffiffiffiffiffi
2kr1
p

sin x1=2ffiffiffiffiffiffiffi
2kr2
p

sin x2=2
eiu

2

du, (69)

which, in the limit kr!1, can be shown to simplify to

gðr; xÞ�
sinðkl sin xÞ

sin 1
2
x

eikreip=4

k
ffiffiffiffiffiffiffiffiffiffi
2pkr
p . (70)

Thus, the leading order approximation to the radiated wave field is given by the asymptotic expansion

fð0Þ�
eikreip=4ffiffiffiffiffiffiffiffiffiffi
2pkr
p

sinðkl sin xÞ
k sin 1

2
x
�

i cosðkl sin xÞ
k cos 1

2
x
� k cos x½eikl sin xf ðk sin xÞ þ e�ikl sin xf ð�k sin xÞ�

( )
. (71)
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The first correction term, fð3Þ may be calculated in a similar fashion to that performed above. From Eq. (52)
we have

fð3Þ ¼
1

2p

Z
C

e�iaxFð3Þða; yÞda

¼
1

2p

Z
C

e�iax�gy

a2 � gd
ðia; �dÞfeialU

ð3Þ
þ ðaÞ þ e�ialUð3Þ� ðaÞgda. ð72Þ

Considering only the cylindrical wave radiated from the edge of the transducer at x ¼ l, i.e. the first term in
curly brackets in Eq. (72), we obtain

fð3Þl ¼
1

2p

Z
C

e�iaðx�lÞ�gy

a2 � gd
ðia; �dÞUð3Þþ ðaÞda, (73)

and we may again apply the method of stationary phase to obtain the asymptotic formula

fð3Þl ðr; yÞ ¼
ð�ik cos y; �dð�k cos yÞÞ

k2cos2yþ k sin yðK2 � k2cos2yÞ1=2
k sin yffiffiffiffiffiffiffiffiffiffi
2pkr
p eikr�ip=4U

ð3Þ
þ ð�k cos yÞ, (74)

where U
ð3Þ
þ ðaÞ is given in Eq. (48). From the asymptotic forms of F ðzÞ for large z (obtainable using the

definition given in Eq. (A.9)), it can be shown that fð3Þ is Oð�0Þ for all y except near y ¼ 0, where it is Oð��2Þ. It
can be deduced directly from Eq. (74) by considering the symmetry in geometry and forcing that the
contribution from fð3Þ to the cylindrical wave radiating from the left edge ðx ¼ �lÞ is given by

fð3Þ
�l ðr; yÞ ¼ fð3Þl ðr;p� yÞ. (75)

Identical procedures may be used to derive successive approximations to cðx; yÞ, which give the results

cð0Þl ¼
ðgð�K cos yÞ; �iK cos yÞ

K2cos2yþ iK sin ygð�K cos yÞ
tan yffiffiffiffiffiffiffiffiffiffiffi
2pKr
p eiKrþip=4Kþð�K cos yÞK�1þ ð0Þ

0

1

� �
(76)

and

cð3Þl ðr; yÞ ¼
ðgð�K cos yÞ; �iK cos yÞ

K2cos2yþ iK sin ygð�K cos yÞ
K sin yffiffiffiffiffiffiffiffiffiffiffi
2pKr
p eiKr�ip=4U

ð3Þ
þ ð�K cos yÞ, (77)

along with the symmetry relation

cðnÞ ¼ cðnÞl ðr; yÞ � cðnÞl ðr;p� yÞ. (78)

6. Waves generated by a transducer with arbitrary displacements

We may now consider the effect on the partition of energy into the different wave types, and the directivity
pattern of the wave-field, of specifying a different displacement field on the surface of the transducer. For
simplicity, we shall again restrict ourselves to symmetric boundary conditions only. Suppose, we impose the
displacement

uðx; 0Þ

vðx; 0Þ

 !
¼

0

gðxÞ

 !
; jxjol, (79)

where gðxÞ is an even function. Since we have examined the constant displacement case in Section 5 we may
assume, without loss of generality, that f ðlÞ ¼ 0. Thus, we may write gðxÞ as a Fourier series in x, of the form

gðxÞ ¼
X1
m¼0

am cos
ð2mþ 1Þpx

2l

� �
. (80)

Due to the linearity of the governing equations and boundary conditions, the solution of the specified boun-
dary value problem is given by the sum of the solutions for each of the sinusoidal forcings on the right-hand
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side of Eq. (80) with appropriate weights am. We shall therefore solve the general case when u0 ¼ 0,
v0 ¼ cosðð2mþ 1Þpx=2lÞ.

Substituting these boundary conditions into Eq. (18), and performing the procedure outlined above we
obtain the following expression for the first approximation to the transformed potential,

Uð0Þ ¼
i

2

eiðalþnp=2Þ

aþ np=2l
KþðaÞK�1þ �

np
2l

� 	 0

1

 !"

þ
e�iðalþnp=2Þ

aþ np=2l

1 0

0 �1

 !
Kþð�aÞK�1þ

np
2l

� 	 0

1

 !

þ
e�iðal�np=2Þ

a� np=2l

1 0

0 �1

 !
Kþð�aÞK�1þ �

np
2l

� 	 0

1

 !

þ
eiðal�np=2Þ

a� np=2l
KþðaÞK�1þ

np
2l

� 	 0

1

 !#
, ð81Þ

where n ¼ 2mþ 1. This potential has removable singularities at a ¼ �np=2l, and the solution takes different
forms depending on whether the singularities lie in the interval ½�K ;K �. The locations of these singularities
give the following separate cases:

6.1. npo2kl

When npo2kl the removable singularities in Uð0Þ, given in Eq. (81), lie in the interval ½�k; k�, and the
uniformly valid form of the far-field for both f and c must be written in terms of Fresnel functions, found by
employing the identityZ

C

sinðal � kl cosYÞ expð�iax� gyÞ

g�ðaÞða� k cosYÞ
da ¼ e�ikl cosYGðr; yÞ � eikl cosYGðr; yÞ, (82)

where

Gðr; yÞ ¼
ffiffiffi
p
p

e�ip=4

g�ðk cosYÞ
e�ikr cosðyþYÞF

ffiffiffiffiffiffiffi
2kr
p

cos
1

2
ðyþYÞ

� �
� e�ikr cosðy�YÞF

ffiffiffiffiffiffiffi
2kr
p

cos
1

2
ðy�YÞ

� �� �
(83)

and FðzÞ is the complex Fresnel function defined by Eq. (64).
Except in the special case when np is approximately �2kl, the second term in Eq. (83) may be approximated,

for large kr, using the asymptotic formula in Eq. (68). While the individual terms in Eq. (83) do not have
uniform asymptotic expansions of order ðkrÞ�1=2, their difference is order ðkrÞ�1=2. In this case, this asymptotic
formula is given byZ

C

sinðal � kl cosYÞ expð�iax� gyÞ

ða� k cosYÞ
da�e�ip=4eikr

ffiffiffiffiffiffi
2p
kr

r
sin y

sinðklðcos yþ cosYÞÞ
cos yþ cosY

. (84)

The effect of this, therefore, is that the diffracted compressional and shear potentials (respectively, f and c)
are Oð�0Þ except in the vicinity of the critical angles, respectively �Yc and �Ys, given by

Yc ¼ arccos
np
2kl

and Ys ¼ arccos
np
2Kl

. (85)

6.2. 2Klonp

For the case np42Kl the removable singularities in Uð0Þ, given in Eq. (81), lie outside the interval ½�K ;K�
and are, therefore, not near the stationary phase point of the integral which defines the inverse Fourier
transform. Thus, the approximation to the integral given by a direct application of the method of stationary
phase is uniformly valid except near to grazing angles y � 0;p. At the grazing angle the steepest descent
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contour passes near to the poles at �np=2l which, like the Rayleigh pole at �k0, gives rise to outward
travelling surface waves, whose magnitude decays exponentially in the y direction. However, for sufficiently
large kr this exponential decay is so rapid that these contributions can be neglected at leading order.

6.3. 2klonpo2Kl

When 2klonpo2Kl the removable singularities in Uð0Þ, given in Eq. (81), lie in the intervals ½�K ;�k�

and ½k;K�, and thus in the inversion integral for c this corresponds to a maximum in the wave field at the
angle Ys given in Eq. (85). In the inversion integral for f the singularity lies outside the possible range
of values for the stationary phase point, and therefore, as in Eq. (6.2) above, the contribution from the pole
is negligible.

6.4. Special cases

When the removable singularities at a ¼ �np=2l are very close to the branch cuts at �k or �K the nature of
the singularities in the Fourier inversion integrals changes, and the stationary phase asymptotic analysis
carried out above is no longer valid. In particular, for the case when np ¼ 2kl the pole and the branch cut
coalesce. If we consider the inversion integrals centred on x ¼ l and �l separately, we find each integrand has
an expansion in a neighbourhood of a ¼ �k, of the form

ðaþ kÞ�1c�1 þ ðaþ kÞ�1=2c�1=2 þ c0 þ ðaþ kÞ1=2c1=2 þ . . . , (86)

where the vectors cp are constant. Expansions for the two integrals must be derived separately.
For f, the separate inversion integrals for fl and f�l each diverge as cos yi approaches �1, but in this limit

the stationary phase points for the two integral coincide at �k and so the solution remains valid and bounded.
Contribution from the order ðaþ kÞ�1=2 term may be calculated directly from the method of stationary phase,
using Watson’s Lemma.

For c the simple poles at �k may be dealt with exactly as in case (6.1) above. The order ðaþ kÞ�1=2 term
must be removed, in an analogous manner to that in case (6.1) above, using the technique presented by
Bleistein [21]. The far-field may then be evaluated in terms of a uniformly-valid asymptotic expansion and an
integral of a form which can be written in terms of Weber functions. Qualitatively, local analysis both near
and away from the branch cut show that near the critical angles y ¼ �cos�1k=K the diffracted wave field is of
order ðkrÞ�1=4 and away from those angles the diffracted wave field is of order ðkrÞ�1=2. However, cancellation
between the contributions from the two distinct integration contours guarantees that the overall diffracted
wave field is again order ðkrÞ�1=2. This behaviour may be recovered from the asymptotic form of the solution
found using Bleistein’s method.

In each of these special cases the resulting radiated field is Oðkr�1=2Þ and the analysis above is required only
to determine the directivity coefficients at various observation angles.

7. Numerical results

7.1. Compressional and shear body waves

As shown above, the motion of a vibrating finite-strip transducer generates cylindrical body waves radiating
from the corners at x ¼ l and �l. Using the symmetry we may write

fðr; yÞ ¼ fð0Þðr; yÞ þ �3fð3Þl ðr; yÞ þ �
3fð3Þ
�l ðr; yÞ þOð�2Þ þOðkr�3=2Þ

�Dð0ÞðyÞ
eikrffiffiffiffiffi

kr
p þ �3Dð3ÞðyÞ

eikrffiffiffiffiffi
kr
p . ð87Þ

The leading order solution here is uniformly Oð�0Þ, whereas the first correction term is Oð�3Þ, except within an
angular distance Oð�Þ of the critical angles (y ¼ 0;p) where it is Oð�2Þ, due to the fact that Dð3Þ jumps order and
becomes order Oð��1Þ. The discarded terms are Oð�4Þ, except near the critical angles where again these change
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order to Oð�3Þ. The compressional wave diffraction coefficient Dð3ÞðyÞ is given by

Dð3ÞðyÞ ¼ k sin y
e�ip=4ffiffiffiffiffiffi

2p
p

ð ik cos y; dð�k cos yÞ Þ

k2cos2y� gðk cos yÞdðk cos yÞ
U
ð3Þ
þ ð�k cos yÞ (88)

and U
ð3Þ
þ is as given in Eq. (48). Similarly, we may write

cðr; yÞ ¼ cð0Þðr; yÞ þ �3cð3Þl ðr; yÞ þ �
3cð3Þ
�l ðr; yÞ þOð�2Þ þOðkr�3=2Þ

� ~Dð0ÞðyÞ
eikrffiffiffiffiffi

kr
p þ �3 ~Dð3ÞðyÞ

eiKrffiffiffiffiffiffi
Kr
p , ð89Þ

where the shear wave diffraction coefficient, ~Dð3Þ is given by

~Dð3ÞðyÞ ¼ K sin y
e�ip=4ffiffiffiffiffiffi

2p
p

ðgð�K cos yÞ; �iK cos yÞ
K2cos2y� gðK cos yÞdðK cos yÞ

U
ð3Þ
þ ð�K cos yÞ, (90)

and this is Oð�0Þ except near the critical angles y ¼ arccos k=K and y ¼ p� arccos k=K , where it is Oð��2Þ. The
magnitude of the functions Dð3Þ and ~Dð3Þ are shown in Fig. 5.

The compressional wave diffraction coefficient, Dð3Þ obtains its maximum value near y ¼ 0;p (see Fig. 5). In
the far-field, however, Fig. 6 reveals that the compressional wave potential is dominated by the contribution
from the Fresnel terms, and the correction terms are small enough that they may be neglected everywhere.
Noting that the ratio sinðkl sin xÞ=k sin 1

2x has a maximum value of 2l, it can be seen from the asymptotic form
given in Eq. (71) the maximum value for the diffraction coefficient behaves, for large l, like l

ffiffiffiffiffiffiffiffi
2=p

p
, and thus as

the length of the transducer increases, the compressional wave energy is increasingly focused in the direction
perpendicular to the surface.

Turning to the shear wave diffraction coefficient, ~Dð3Þ, it transpires that it has sharp peaks near the critical
values y ¼ cos�1k=K ;p� cos�1k=K , where the steepest descent contour is close to the branch cut at a ¼ �k.
When the correction term, �3 ~Dð3Þ, is combined with the first approximation, ~Dð0Þ, as shown Fig. 7, only these
peaks distinguish the corrected wave-field from the uncorrected wave-field.

7.2. The excited Rayleigh surface wave

As well as the body waves described above, the transducer also induces outgoing Rayleigh surface waves.
The magnitude of the excited wave may be determined by considering the contribution from the poles at k0

(for the left-going wave) and �k0 (for the right-going wave). Because of the symmetry we need consider only
the right-going wave, which exists in the region x4l. Writing the first approximation to this Rayleigh wave
0.5 1 1.5 2 2.5 3
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0.1

⏐D(3)⏐

⏐D(3)⏐ ~

Fig. 5. The first corrections, jDð3ÞðyÞj and j ~D
ð3Þ
ðyÞj, to the compressional and shear diffraction coefficients for a rigid transducer.
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Fig. 6. The corrected and uncorrected compressional diffraction coefficients, jDð0Þ þDð3Þj and jDð0Þj as a function of the polar angle x. The
correction term is small enough for the graphs to be indistinguishable.

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

Fig. 7. The corrected (dashed line) and uncorrected (solid line) shear diffraction coefficients, j ~D
ð0Þ
þ ~D

ð3Þ
j and j ~D

ð0Þ
j for the rigid

transducer, kl ¼ 10, n ¼ :25.
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term as

fð0ÞR ¼ C
ð0Þ
R eik0ðx�lÞ�g0y, (91)

we obtain

C
ð0Þ
R ¼
ðK

2 � 2k2
0; 2ik0d0 Þ

R0k0
K�1� ð�k0ÞK

�1
þ ð0Þ

0

1

� �
, (92)

where g0 ¼ gðk0Þ and d0 ¼ dðk0Þ. Similarly, we may show the first correction to the Rayleigh wave coefficient
to be

fð3ÞR ¼
�3

2piR0
ð2k2

0 � K2;�2ik0d0ÞK�1� ð�k0Þ

�
1

k
F

k � k0

k

� �
P0KþðkÞ þ

1

K
F

K � k0

k

� �
P1KþðKÞ

� �
K�1þ ð0Þ

0

1

 !
. ð93Þ
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The radiated Rayleigh wave coefficient, jCRj is plotted in Figs. 8 and 9 at leading order (dashed) and with first
correction (solid). The first figure indicates that edge interference effects alter the Rayleigh wave coefficient
from its constant value, and in the latter figure kl is fixed at 10 and Poisson’s ratio n is varied. The surface wave
amplitude decreases monotonically with Poisson’s ratio, and here we see that the correction term has little
effect on the overall trend.
7.3. Balance of energy per unit cycle

In order to obtain a check on the accuracy of the various approximations used in the solution of the
problem of a forced transducer, it is useful to perform an energy balance calculation. It is possible to obtain
expressions for the work done per unit cycle by the motion of the transducer against the stress field at the
surface and the energy radiated at a large distance by the excited waves. Since there are no sources of energy
10 15 20 25 30
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Fig. 8. Coefficient of the Rayleigh surface wave excited by the rigid transducer for the case n ¼ :25 and varying values of kl. The dashed

line is for an infinite transducer (leading order solution) and the solid line includes the first correction term.
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Fig. 9. Coefficient of the Rayleigh surface wave excited by the rigid transducer for the case kl ¼ 10 and varying values of Poisson’s ratio n.
The dashed line is for an infinite transducer (leading order solution) and the solid line includes the first correction term.
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within the half-space, these physical quantities must be equal, and the degree by which they differ in our
approximate solution is indicative of the accuracy of that solution.

By integrating over a semi-circular contour of large radius (see Fig. 10) it can be shown (see Ref. [22]) that
the energy radiated in a single period by outgoing compressional and shear waves of the form

f�
DcðyÞffiffiffiffiffi

kr
p eikr; c�

DsðyÞffiffiffiffiffiffi
Kr
p eiKr, (94)

is given by

EC ¼ pmK2

Z p

0

jDcðyÞj2 dy and ES ¼ pmK2

Z p

0

jDsðyÞj2 dy, (95)

respectively. Similarly, the energy radiated in a Rayleigh surface wave of amplitude AR is given by

ER ¼ pmK2jARj
2 k0ðd

2
0 þ g20Þ

2g0d
2
0

�
4k4

0 � K4

4k3
0d0

( )
. (96)

It can also be shown that the work done by the transducer over one period is given by

p Im
Z l

�l

uisijnjds

� �
¼ 0, (97)

where u and sij are the complex-valued velocity field and stress tensor. For the rigid transducer modelled in
Section 2 and solved in Section 5, the integrand in Eq. (97) vanishes on the free surface, for all xe½�l; l�.
Hence, for the unit forcing given in Eq. (40), it is clear from the definition in Eq. (20) that the integral is given
by

p ImðS1
22ð0ÞÞ ¼ �mpK2 ImðFð0; 0ÞÞ. (98)

The first approximation to Fða; 0Þ is given by

Fð0Þða; 0Þ ¼
ð ia; �d Þ
iaða2 � gdÞ

eialKþðaÞ � e�ial
�1 0

0 1

� �
Kþð�aÞ

� �
K�1þ ð0Þ

0

1

� �
, (99)

expanding the analytic terms in Eq. (99) as Taylor series about a ¼ 0 and formally taking the limit as a! 0
gives

Fð0Þð0; 0Þ ¼
2li

k
þ ð0; 2=kÞK0þð0ÞK

�1
þ ð0Þ

0

1

� �
, (100)
-l l

∂�

Fig. 10. Semi-circular closed loop qV.
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where K0þðaÞ denotes ðd=daÞKþðaÞ. Recalling the Khrapkov–Daniele form of the Wiener–Hopf factor Lþ,
given in Eq. (26), and that Kþ ¼ LþM, we can easily show

K�1þ ð0Þ ¼ r�1þ ð0ÞM
�1ð0Þ (101)

and can explicitly differentiate Kþ to obtain

K0þð0Þ ¼ r0þð0ÞMð0Þ � rþð0Þs
0
þð0ÞJð0ÞMð0Þ þ rþð0ÞM

0ð0Þ, (102)

where we have employed J0ð0Þ ¼ 0 since J is even in a. Differentiating the integral form of rþðaÞ found
in Eq. (29) gives

r0þð0Þ ¼
�1

2k0
þ gð0Þ

� �
rþð0Þ, (103)

where gðaÞ is given by

gðaÞ ¼
1

4pi

Z �k

�K

log
SðxÞðx2 � gdÞ

RðxÞðx2 þ gdÞ

� �
dx

ðx� aÞ2
. (104)

In the interval ½�K ;�k�, jSðxÞj ¼ jRðxÞj and jx2 � gdj ¼ jx2 þ gdj. Thus the integral in Eq. (104) is pure
imaginary, hence gðaÞ is real, and so r0þð0Þ has the same argument as rþð0Þ. Differentiating the Wiener–Hopf
sum decomposition for s� from Eq. (27), and substituting from Eq. (30), gives

s0þð0Þ þ s0�ð0Þ ¼ 2s0þð0Þ

¼
d

da
tan�1

�iað2a2 � K2 � 2gdÞ

K2
ffiffiffiffiffi
gd

p( )





a¼0

¼
2kK � K2

K2
ffiffiffiffiffiffiffi
kK
p . ð105Þ

Hence s0þð0Þ is also real. Finally, the singularities and zeros of the Padé approximant f N all lie on the real line.
Therefore, the coefficients in the meromorphic matrix M given in Eq. (34) are also real. This means that Mð0Þ
must be real; the same is true for Jð0Þ. It can now be seen that all the elements of the matrix K0þð0Þ have the
same argument as rþð0Þ, and hence all the elements of K0þð0ÞK

�1
þ ð0Þ are real. Therefore, the second term in

Eq. (100) does not contribute to the work done by the transducer, yielding

ImðFð0Þð0; 0ÞÞ ¼
2l

k
. (106)

The evaluation of Fð3Þð0; 0Þ is more straightforward and it can be seen from Eq. (51) that

ImðFð3Þð0; 0ÞÞ ¼ ð0; 1=kÞRefU
ð3Þ
þ ð0Þ þUð3Þ� ð0Þg. (107)

We can now determine the work done, which is shown in Fig. 11 over a range of kl. It transpires that, even
for moderate values of kl the first correction term does not make any significant contribution to the total
work done.

As can be seen from the numerical results presented in Tables 1 and 2 the error terms both with and without
the first correction term are of order �6 (� ¼ 10�1=2 for the given value of kl), which is consistent with the
largest neglected term being order �4 and the total work by the transducer being of order ��2. Although the
addition of the correction term to the solution does not improve the order of magnitude of the discrepancy in
the energy, it does provide an estimate of known accuracy for the multiply diffracted wavefield, as well as
capturing its key features.

8. Concluding remarks

This paper has outlined a procedure for determining the elastic field radiating from a two-dimensional flat
plate transducer into an elastic half-space. The major difficulty encountered in the analysis, namely the
factorization of the matrix Wiener–Hopf kernel, is due to the physical complexity of having mixed boundary
conditions on the faces of the elastic body. The Wiener–Hopf approximant matrix technique enables a fast
and accurate approximate factorization of a Wiener–Hopf kernel for which no exact factorization is known.
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Table 1

Non-dimensionalised energy partition for the leading order approximation to the solution for the finite rigid transducer

n Energy in Energy out % error

Total EC=m ES=m ER=m Total=m

0.1 141.372 133.345 5.402 2.584 141.331 0.03

0.25 188.495 179.039 6.551 2.719 188.309 0.10

0.4 376.991 360.322 12.591 3.711 376.624 0.09
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40
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60
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Fig. 11. The non-dimensionalised work done by the rigid transducer, ImfFð0Þð0; 0Þ þFð3Þð0; 0Þg and ImfFð0Þð0; 0Þg. The corrected value

cannot be distinguished from the first approximation. (n ¼ :25).

Table 2

Non-dimensionalised energy partition including the first correction term for the finite rigid transducer, kl ¼ 10

n Energy in Energy out % error

Total EC=m ES=m ER=m Total=m

0.1 141.379 133.288 5.353 2.638 141.279 0.07

0.25 188.511 178.923 6.471 2.862 188.257 0.13

0.4 377.060 359.641 12.689 3.905 376.235 0.22
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The method appears to give good accuracies even for modest Padé number and for transducers of lengths
larger than just a few wavelengths. The method of solution herein is designed to be adaptable to more
complicated one-dimensional models of the transducer, such as impedance surfaces or ones in which the
electric and elastic fields are coupled. The advantage of the present approach over direct numerical schemes is
that the essential analytical properties of the solution are not lost in the approximation procedure, and so
gross features and trends over parameter ranges are clearly discernible. The latter property is extremely useful
for the design of transducers to be used for non-destructive evaluative purposes.

The solutions of the diffraction problem considered is derived by exploiting the symmetry of the geometry
and forcing. These symmetric configurations were chosen for convenience and cases which are fully
asymmetric may also be analysed using similar methods. In asymmetric problems the modified matrix
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Wiener–Hopf technique results in a pair of coupled vector Fredholm integrations of the form:

WþðaÞ ¼ f1ðaÞ þ
Z

j1ðx; aÞW�ðxÞdx, ð108Þ

W�ðaÞ ¼ f2ðaÞ þ
Z

j2ðx; aÞWþðxÞdx. ð109Þ

These may be iterated by substituting the leading order solution for WþðaÞ from Eq. (108) into Eq. (109) and
vice versa.

The Wiener–Hopf approximant matrix technique lends itself to a wider variety of boundary value problems
than considered here. In formulating Wiener–Hopf functional equations from boundary value problems the
physics of the problem and the nature of the boundary conditions are contained within the singularity
structure of the Wiener–Hopf kernel. For example, some non-destructive evaluation techniques, such as the
acoustic microscope, immerse the specimen in fluid and insonify it using acoustic waves. The dispersion
relation for such a problem admits a propagating interfacial wave (the Schölte wave) as well as a leaky
Rayleigh wave. Application of the Wiener–Hopf approximant matrix technique to a Wiener–Hopf kernel
associated with such a boundary value problem would allow for quantitative predictions to be made about the
excitation of these waves.

Appendix A. Approximation of the branch-cut integrals

The integrals in Eq. (43) may be approximated by the use of Watson’s Lemma. Making a routine change of
variables, Z

Ck

e�2ixlK�1þ ðxÞfðxÞ
dx

x� a
¼ ike2ikl

Z 1
0

e�2z=�2Dkfð�k � ikzÞ
dz

aþ k þ ikz
(A.1)

and Z
CK

e�2ixlK�1þ ðxÞfðxÞ
dx

x� a

¼ ike2iKl

Z 1
0

e�2z=�2DK fð�K � ikzÞ
dz

aþ K þ ikz
, ðA:2Þ

where DK and Dk denote the jump in K�1þ from the left to the right side of the cuts vertically downwards from
�K and �k respectively.

The dominant contribution to each of these integrals comes from a neighbourhood of z ¼ 0, and we can
expand the integrand as a Taylor series about this point (i.e. around �k or �K as appropriate). We can write
the first coefficient in this series explicitly in terms of K�ð�kÞ and numerically calculate as many of the
remaining coefficients as required, by repeated differentiation of Eqs. (29) and (30) and substitution into
Eq. (26). We shall consider only the lowest order term.

Explicitly calculating the Taylor series for the elements of K�1, given in Eq. (24), gives

Dkð�k � ikzÞ ¼ K�ð�kÞK0z
1=2 þOðz3=2Þ; ðA:3Þ

DK ð�K � ikzÞ ¼ K�ð�KÞK1z
1=2 þOðz3=2Þ; ðA:4Þ

where

K0 ¼ 23=2
K2eip=4

k3

ikdðkÞ k2
� K2

�k2 ikdðkÞ

 !
(A.5)

and

K1 ¼ 23=2
e�3ip=4

ffiffiffiffiffiffiffi
kK
p

K2

�iKgðKÞ �K2

K2 � k2
�iKgðKÞ

 !
. (A.6)
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Hence, we may evaluate the integrals in terms of a series in increasing powers of �. For a 2 D.Z 1
0

e�2z=�2Dkfð�k � ikzÞ
dz

aþ k þ ikz

¼ K�ð�kÞK0fð�kÞ

Z 1
0

e�2z=�2 z1=2dz

aþ k þ ikz
þOð�5Þ, ðA:7Þ

and the integral in (A.7) may be rewritten as a special function:Z 1
0

e�2z=�2 ffiffiffi
z
p dz

aþ k þ ikz
¼

�3

23=2

Z 1
0

ffiffiffi
p
p

e�p dp

aþ k þ ik�2p=2

¼
�3

ik
ffiffiffi
2
p

1

�2
W 0 �

2i

�2
aþ k

k

� �� �� �
, ðA:8Þ

where 2W 0ðzÞ ¼
ffiffiffi
p
p

ez=2z�1=4W�3
4;
1
4
ðzÞ and W k;mðzÞ is a Whittaker function (see Abramowitz and Stegun

[23, Section 13.2]). If we define F ðzÞ by

F ðzÞ ¼
1

�2
W 0 �

2iz

�2

� �
, (A.9)

then, from the asymptotic form of W k;m, it can be seen that if z is Oð1Þ, then F ðzÞ is no larger than Oð�0Þ.
Expressions for the other branch cut integrals and for higher order terms in the asymptotic series may be
derived in exactly the same manner. Thus,Z

Ck

e�2ixlK�1þ ðxÞfðxÞ
dx

x� a
��3P0fð�kÞF

aþ k

k

� �
(A.10)

and Z
CK

e�2ixlK�1þ ðxÞfðxÞ
dx

x� a
��3P1fð�KÞF

aþ K

k

� �
, (A.11)

where

P0 ¼
e2iklffiffiffi
2
p K�ð�kÞK0 and P1 ¼

e2iKlffiffiffi
2
p K�ð�KÞK1. (A.12)

In D, the domain in which we wish to solve the integral equation, F ððaþ kÞ=kÞ and F ððaþ KÞ=kÞ are Oð1Þ
quantities.
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