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Abstract

This paper presents an original method for simulating ultrasonic wave reflection on a fluid-loaded plate. Geometrical

and material parameters used are relevant to the ‘‘axial transmission technique’’ (ATT) setup. Devices based on the ATT

are used for the assessment of cortical bone strength (estimate of a fracture risk). In this work, the cortical bone layer is

represented as a plate of infinite extent surrounded by fluid (soft tissues). A line source and a receiver are placed in the fluid.

Transient waves generated upon reflection at the plate–fluid interfaces are addressed. Analytic Green’s functions are

derived with the generalized ray/Cagniard-de Hoop method. The acoustic response is obtained upon convolution of

Green’s functions with a given source pulse. The method associates each wave amplitude in the time-domain (lateral waves,

reflected body waves, etc.) to a specific term of the final solution. The method is ideally suited to a detailed analysis

of the ultrasonic signal for various geometrical and mechanical parameters. The results presented highlight the potential

of the method for the understanding of wave phenomena involved in the ATT and similar setups. They also bring new

elements that reinforce our theoretical knowledge of the ATT.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Low bone mechanical strength increases the risk of having a fracture under minimal trauma such as falls in
daily life (low energy fractures). The rate of incidence of minimal trauma fractures is high in postmenopausal
women and expected to increase with the aging of the population; osteoporosis is one cause of the decrease of
bone strength. Fractures cause disability, which in some cases leads to death, and generates important health
care costs [1]. Hence it is a major public health concern to identify those individuals with low bone mechanical
properties so that preventive and/or therapeutic measures can be instituted.

The reference methods for the assessment of bone fragility are based on measurements of X-ray attenuation.
These techniques quantifies the amount of bone mineral, which is used for estimating bone strength in vivo and
the risk of minimal trauma fracture [1]. The definition of osteoporosis is presently based on measurements
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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with the dual energy X-ray absorptiometry (DXA) technique which integrates the mass of bone mineral and
the bone size. However, only 60–70% of the bone resistance to fracture—as determined in vitro on isolated
skeletal pieces—is correlated to the amount of bone mineral [2]: bone strength depends not only on bone mass
but also on bone geometry, microarchitecture, fatigue damage and bone tissues intrinsic mechanical
properties. X-ray methods are widely used and have proved some efficiency; however, they only give access to
mechanical properties in an indirect way. Other drawbacks of X-ray techniques is their cost and in some
situations the limitations in terms of X-ray radiation exposure.

Ultrasonic measurements are an alternative to X-ray-based methods. The ultrasonic signal is based on a
mechanical phenomenon—the interaction of elastic waves with matter—and conveys much information
related to the mechanical properties of bone tissue. At present, devices based on ultrasound propagation and
used for clinical purposes yield an estimate of the speed of sound in bone and an estimate of the ultrasonic
signal attenuation. Further research on the interaction of ultrasound waves with bone seems necessary
because: (i) other mechanics-related parameters than speed of sound and attenuation are expected to be
relevant for improving diagnosis (e.g. elastic parameters); (ii) the design and utilization of existing clinical
devices could be improved based on a better understanding of wave phenomena.

The present study is a contribution to the understanding of wave phenomena involved in the ultrasonic
‘‘axial transmission technique’’ (ATT) for the evaluation of bone. A schematic illustration of the technique is
given in Fig. 1. Devices based on the ATT are used to investigate the cortical layer of long bones for the
diagnosis of osteoporosis [3–5]. In a typical axial transmission experiment, the cortical layer is excited by a
ultrasonic pulse with center frequency between 0.5 and 2MHz [6,7]; a value of a ‘‘wave speed’’ in the cortical
bone is deduced from the arrival time of the first signal arrived at the receiver. Clearly, the interpretation of the
estimated ‘‘wave speed’’, in terms of material properties of bone, depends on the wave path associated with the
first arriving signal. The estimated value for the wave speed is very sensitive to material and geometrical
parameters of bone on the one hand [7] and to the center frequency of the pulse used by the device, on the
other hand [8].

The main purpose of this paper is to present an original method for simulating wave propagation in a model
representing the setup of the ATT. The first results obtained with the method are shown; they bring new
elements that reinforce the theoretical basis needed for the analysis of the ultrasonic signal generated with the
ATT. The general idea of the work is (i) to help interpret the wave signals obtained from current and future
devices based on the ATT; (ii) to help determine which mechanical parameters could possibly be measured
with the ATT, based on the sensitivity of the wave amplitudes and arrival times to the variations of these
parameters within the physiological range.

A two-dimensional (2D) idealized model of the ATT setup is considered: two semi-infinite ideal fluid media
(representing soft tissues) and a plate of infinite extent (representing the cortical bone layer), see Fig. 2. A line
source of pressure and a receiver are placed in the fluid medium. With this simple geometrical configuration,
the relative importance of some parameters governing the interaction of ultrasound waves with the cortical
layer should show up as clearly as possible.
coupling gel
soft tissue

receivertransmitter

Probe

Cortical layer of a long bone

Fig. 1. Schematic illustration of a typical device used for measurements with the axial transmission technique. The length of the probe is

2–5 cm.
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Fig. 2. Model geometry and coordinate system.
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Some of the wave phenomena involved in the ATT have been addressed in Refs. [6,7] using a similar model
configuration and with the help of numerical simulation based on the finite difference method. Results shown
in Ref. [9] suggest that 2D modeling of the ATT experiment addresses the main physical phenomena. For the
present study, an analytical method of solution based on the Cagniard–de Hoop technique was used instead.
This technique has been developed to solve problems of transient wave propagation in layered media [10–13].
In the present paper, the application of the method to a fluid-loaded plate configuration is reported for the first
time, as far as we know.

The main advantage of the analytical method used is that it yields Green’s functions of the problem; the
response to a given excitation pulse is then obtained by convolution of the pulse with the Green’s function.
The Green’s functions reveal all the wave phenomena irrespective of an excitation pulse—depending on the
duration and frequency content of an excitation pulse, a given phenomenon will show up or not in
the convolved response. Furthermore, Green’s functions are obtained for each waves, i.e., the various
contributions to the wave field can be distinguished and analyzed separately. The Cagniard–de Hoop method
yields exact Green’s functions, i.e., valid in near field as well as in far field, in a semi-explicit (in some cases,
explicit) form so that accurate numerical responses can be calculated rapidly (a few seconds on a standard
computer). As far as we know, the method proposed gives the algebraic solution in the most detailed form
possible. Note that Green’s functions for the present problem could also have been derived using a method
developed recently by Tadeu and António [14]. It is not the purpose of this paper to give a detailed
presentation of the Cagniard-de Hoop method. In the following, we expose the main lines of the method and
highlight its potential for the type of engineering application considered.

The present paper is organized as follows: after this introduction as background, Section 2 gives a
description of the configuration and a formulation of the basic equations. The method of solution is presented
in Sections 3 and 4: first, the solution is obtained in a Laplace–Fourier domain with the help of the generalized
ray theory; second, the transformation back to the space-time domain is performed with the Cagniard–de
Hoop technique. Some details on the implementation of the solutions and the evaluation of the acoustic
pressure at a receiver are given in Section 5. Section 6 is dedicated to numerical results. In the last section, the
potential use of the work in the context of the evaluation of bone mechanical properties by ultrasonic methods
is discussed.
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2. Formulation of the problem

2.1. Configuration and definitions

The model geometry is shown in Fig. 2. It consists in an infinite elastic plate immersed in an ideal fluid.
The position is specified through the coordinates ðx1; x2;x3Þ with respect to a Cartesian reference frame
RðO; x1;x2; x3Þ where O is the origin and ðx1; x2; x3Þ is an orthonormal basis for the space; the x3-axis is taken
perpendicular to the fluid–solid interface. The fluid occupies the half-spaces x3o0 and x34h.

The fluid and the solid are at rest for to0. At t ¼ 0, a cylindrical acoustic wave is generated in the fluid by a
line source parallel to ðO; x2Þ, placed at a distance hs from the fluid-solid interface. As a consequence of the
problem symmetry, all quantities are independent of x2; hence in what follows the analysis is conducted in the
plane ðO; x1;x3Þ; in the rest of the paper, the coordinate x2 is implicit when omitted in mathematical
expressions. In the following, the wave field is calculated at a receiver placed in the fluid, at a distance hr from
the interface. The distance along the interface between the source and the receiver is x1. In the paper, the
surface x3 ¼ 0 will be referred to as the ‘‘fluid–solid interface’’, and the surface x3 ¼ h will be referred to as
‘‘bottom surface’’.

The fluid and the solid are isotropic and have linearly elastic constitutive laws: the inverse of the fluid
compressibility, denoted by K, is used to characterize the fluid and the Lamé constants l and m are used to
characterize the solid. The mass density is denoted by rf in the fluid and by rs in the solid. The elastic wave
motion will be characterized in R by the particle velocity v and by the acoustic pressure p (in the fluid) or the
components sij of the Cauchy stress tensor (in the solid). The fluid flow is disregarded.

The wave speed in the fluid is defined by cf ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=rf

q
and the wave slowness by sf ¼ 1=cf . In the solid,

letters P and S are associated with longitudinal waves and transverse waves polarized in the direction x3,
respectively. Due to the nature of the source and the geometrical configuration, transverse waves polarized in

the ðx1; x2Þ plane are not excited. Wave speeds in the solid are defined by cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=rs

p
and cS ¼

ffiffiffiffiffiffiffiffiffiffi
m=rs

p
,

and waves slownesses by sP;S ¼ 1=cP;S. All through the paper, each time a comma appears between P and S

means that the quantities relative to P- or S-waves, respectively, must be used.

2.2. Governing equations, boundary and initial conditions

2.2.1. Equations in the fluid

In order to describe the wave motion in the fluid, the equation of motion and the constitutive equation are
taken in the form [15] (p. 44)

@ip ¼ �rf @tvi; i ¼ 1; 3 (1)

@tpþ K@ivi ¼ KfV ðtÞdðx1Þdðx3 þ hsÞ, (2)

where the volume density of body forces is neglected in the equation of motion. The term on the right-hand
side of Eq. (2) introduces a source of acoustic waves along a line parallel to ðO; x2Þ, with history @tfV ðtÞ.
Einstein summation convention is used. Derivatives with respect to t and xi are denoted @t and @i, respectively.
The Dirac function is denoted dðxÞ.

2.2.2. Equations in the solid

The equation of motion in the solid is

@jsij � r@tvi ¼ 0; i; j ¼ 1; 2; 3, (3)

where the volume density of body forces is neglected. The constitutive equation (HOOKE’s law)

sij ¼ cijkq

1

2
ð@quk þ @kuqÞ, (4)
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where cijkq is the stiffness tensor of fourth order. In this paper, where only the case of an isotropic material is
considered, the stiffness tensor takes the form

cijkq ¼ ldijdkq þ mðdikdjq þ diqdjkÞ,

where dij is the Kronecker symbol.

2.2.3. Boundary conditions

At the interfaces between the fluid and the solid on planes x3 ¼ 0 and x3 ¼ h, the following conditions are
assumed:

½½v3ðx1; x3; tÞ�� ¼ 0,

s33ðx1;x3; tÞ ¼ �pðx1;x3; tÞ; s13ðx1;x3; tÞ ¼ s23ðx1;x3; tÞ ¼ 0, ð5Þ

where ½½ �� denotes the jump of a quantity across the interface.

3. Solution in the transform domain

The equations given in Section 2.2 are subjected to a one-sided Laplace transform with respect to time. As
an example, the space-time domain particle velocity viðx; tÞ is transformed to its space-Laplace domain
counterpart v̂iðx; sÞ according to

v̂iðx; sÞ ¼

Z 1
0

expð�stÞviðx; tÞdt,

where the Laplace parameter s is real and positive. Subsequently, a Fourier transformation with respect to x1

is applied to the Laplace-transformed equations. The Fourier–Laplace domain counterpart or, shortly, the
transform domain counterpart ~vjðk;x3; sÞ of v̂jðx; sÞ is

~viðk; x3; sÞ ¼

Z 1
�1

expðiskx1Þv̂i dx1 ¼

Z 1
�1

expðsxx1Þv̂i dx1,

where k ¼ �ix is the real Fourier transform parameter. The inverse Fourier transformation is

v̂iðx; sÞ ¼
s

2p

Z 1
�1

expð�iskx1Þ~vi dk ¼
s

2ip

Z i1

�i1

expð�sxx1Þ~vi dx.

3.1. Solution in a fluid of infinite extent

The problem solution in the transform domain is arrived at through algebraic manipulations of the
transformed governing equations, with the generalized ray/Cagniard-de Hoop method.

The method has been extensively described elsewhere [12,13,16]. In order to give the reader an overview of
the procedure, the basic steps for the derivation of the solution are presented for a fluid of infinite extent, i.e.,
the fluid–solid interface in the configuration sketched in Fig. 2 is at an infinite distance from the source. The
solution obtained in a fluid of infinite extent is the contribution of the direct wave in the configuration of Fig. 2.

In the fluid, the problem is solved for the velocity ~v3 and the acoustic pressure ~p. A motion–pressure vector
is defined as bf ¼ ð~v3; ~pÞ. The transform domain counterparts of Eqs. (1) and (2) are manipulated and rewritten
as a system of equations:

@3bf ¼ �sAf bf þ F, (6)

where F ¼ ð ~fVdðx3 þ hsÞ; 0Þ
T is a vector containing the source term and Af is a 2� 2 matrix defined by

Af ¼
0

1

rf

s2f � x2
� �

rf 0

0
B@

1
CA.
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The eigenvalues of Af are �gf where gf ¼ ðs
2
f � x2Þ1=2. For the derivations to follow, it is necessary to restrict

the values of x to a single sheet of the Riemann surface; the sheet where Re½gf �X0 is chosen (where Re½:�
denotes the real part of the quantity between brackets)—this is equivalent to cutting the complex x-plane on
the real axis along � �1; sf ½ and �sf ; þ1½.

The eigenvalue matrix Df is defined such that D�1f Af Df is a diagonal matrix

Df ¼
�
gf

rf

gf

rf

1 1

0
@

1
A,

and

D�1f ¼

�
rf

2gf

1

2

rf

2gf

1

2

0
BBB@

1
CCCA.

Upon introducing wf such that bf ¼ Df wf , Eq. (6) becomes

@3wf ¼ �s
�gf 0

0 gf

 !
wf þ

�rf f̂V

2gf

dðx3 þ hsÞ

rf f̂V

2gf

dðx3 þ hsÞ

0
BBBBB@

1
CCCCCA. (7)

The homogeneous solution of Eq. (7) is

wf ¼
W� expðsgf x3Þ

Wþ expð�sgf x3Þ

 !
¼

w�f

wþf

 !
. (8)

where W� and Wþ are determined from the boundary conditions at the source. Finally, the solution for the
motion–pressure vector at a receiver at hrohs is

bf ¼

f̂V

2
expð�sgf ðx3 þ hsÞÞ

rf f̂V

2gf

expð�sgf ðx3 þ hsÞÞ

0
BBBB@

1
CCCCA. (9)

3.2. Wave contributions at the receiver

The motion–pressure vector corresponding to problem of wave reflection in the configuration sketched in Fig. 2
is derived with the generalized ray method. The method enables the construction of the wave field at the receiver
in an intuitive manner. It has been shown elsewhere that a solution constructed this way is the exact solution of
the problem [17,18] in a prescribed time window. A typical solution is a sum of several terms: the generalized rays;
each term represents the contribution of a specific wave. Depending on the time window of interest, more or fewer
wave contributions should be taken into account in the simulations; that is, the longer the time of observation, the
more rays corresponding to waves multiply reflected on the surfaces of the plate should be calculated.

In the present study, the contributions due to the multiply reflected waves are not taken into account, i.e.,
only the short-time response is investigated; however, the construction of a solution which includes multiply
reflected waves is straightforward with the method employed here. Three rays, or ray groups, are considered,
referred to with symbols (D), (R) and (R1):
�
 (D) the direct wave;

�
 (R) the wave reflected at the fluid-solid interface, referred to as the ‘‘reflected wave’’;
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�
 (R1) longitudinal and transverse waves generated into the solid, reflected once on its bottom surface, and
transmitted back to the fluid. This group is a collection of four contributions due to the conversion of
waves. Waves of this group will be referred to as ‘‘waves reflected on the bottom surface’’.

Schematic ray paths corresponding to the three ray groups investigated are shown in Fig. 3. In the following
we will use for various quantities an explicit subscript notation which indicates the geometrical ray path
associated with the quantity: letter f will indicate propagation in the fluid and letters P and S propagation in
the solid with longitudinal or transverse polarization, respectively. For example, a quantity with subscript ff is
associated with a path of two segments in the fluid; a quantity with subscript fPSf is associated with a path of
four segments, the first and the last in the fluid, the two others in the solid.

The pressure at the receiver, in the Laplace–Fourier domain, is

~p ¼ ~pD þ ~pR þ ~pR1, (10)

where the expression of each term is given below.
Direct wave (D): The pressure ~pD in the transform domain due to the direct wave is given by Eq. (9)

~pD ¼
rf f̂V

2gf

expð�sgf ðhs � hrÞÞ. (11)

Reflected wave (R): The pressure ~pR in the transform domain due to the wave reflected on the fluid–solid
interface is obtained by construction with the generalized ray theory: the expression for the direct wave
Eq. (11) is multiplied by the reflection coefficient at the fluid–solid interface Rff and a phase term is added

~pR ¼
rf f̂V

2gf

Rff expð�sgf ðhs þ hrÞÞ, (12)

where Rff is obtained from the interface conditions Eq. (5),

Rff ¼
4mgf DR � gPrf s2S

4mgf DR þ gPrf s2S
,

fluid

solid

source (transducer)

X1

X3
4 rays

fluid

receiver (transducer)

Fig. 3. Wave paths. The four types of wave paths are sketched: ... direct wave (D); — (thin line) reflected waves, except the head waves;

— (thick line) head waves (R); - - - waves reflected at the bottom surface (R1).
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where gP ¼ ðs
2
P � x2Þ1=2, gS ¼ ðs

2
S � x2Þ1=2, w ¼ 0:5s2S � x2 and DR ¼ gPgSx

2
þ w2. For the derivations to follow,

it is necessary to restrict the values of x to a single sheet of the Riemann surface corresponding to Re½gP;S�X0.
Waves reflected on the bottom surface (R1): The pressure ~pR1 in the transform domain due to the waves reflected

once on the bottom surface and transmitted back into the fluid is split into four contributions:
~pR1 ¼ ~pfPPf þ ~pfSPf þ ~pfPSf þ ~pfSSf , where the combinations of letters P and S indicate the polarization of the
wave, before and after reflection on the bottom interface. Each of the four wave contributions is obtained by
construction with the generalized ray theory: the expression for the direct wave Eq. (11) is multiplied by the
appropriate transmission and reflection coefficients and a phase term is added. The wave amplitudes are given by

~pfPPf ¼
rf f̂V

2gf

TfPRPPTPf exp½�sðgf ðhs þ hrÞ þ 2gPhÞ�,

~pfSPf ¼
rf f̂V

2gf

TfSRSPTPf exp½�sðgf ðhs þ hrÞ þ ðgP þ gSÞhÞ�,

~pfPSf ¼
rf f̂V

2gf

TfPRPSTSf exp½�sðgf ðhs þ hrÞ þ ðgP þ gSÞhÞ�,

~pfSSf ¼
rf f̂V

2gf

TfSRSSTSf exp½�sðgf ðhs þ hrÞ þ 2gShÞ�, ð13Þ

where Tab and Rab (a, b ¼ P, S or f) are coefficients of transmission at the fluid–solid interface and coefficients of
reflection at the bottom surface, respectively; subscript a indicates the polarization of the wave incident on the
interface and b of the wave transmitted or reflected; for example, TfP is the transmission coefficient of a wave in
the fluid transmitted in the solid as a P-wave and RPS is the reflection coefficient for an incident P-wave converted
into a S-wave after reflection on the bottom surface. These coefficients are obtained from the interface conditions
Eq. (5),

TfP ¼
4sPgf w

4gf mDR þ gPrf s2S
,

TfS ¼
4sSgPgf x

4gf mDR þ gPrf s2S

TPf ¼
4gPmcPrf ws2S

4gf mDR þ gPrf s2S

TSf ¼ �
4gPgScSxmrf s2S

4gf mDR þ gPrf s2S
, ð14Þ

RPP ¼
4gf mðgPgSx

2
� w2Þ þ gPrf s2S

4gf mDR þ gPrf s2S
,

RPS ¼
8cPsSgPgf xmw

4gf mDR þ gPrf s2S
,

RSP ¼ �
8cSsPgSgf xmw

4gf mDR þ gPrf s2S
,

RSS ¼
4gf mðgPgSx

2
� w2Þ � gPrf s2S

4gf mDR þ gPrf s2S
. ð15Þ

4. Solution in the space-time domain

The Cagniard–de Hoop method [10,11] is used to invert the transform domain solutions. The method is
applied to each generalized ray contribution, that is, to each term appearing in Eqs. (11)–(13). It is not the
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purpose of this paper to give a complete account of the method of solution—the Cagniard–de Hoop technique
has been presented in great details elsewhere [13,19]. For the sake of clarity, the method is briefly presented for
the contribution (R); only the final solutions are given for (D) and (R1).

4.1. Body waves and lateral waves

In Fig. 3, the reflected wave (R) is represented with two different paths which correspond to two wave
contributions—but a single generalized ray. In the transform domain, the two contributions are contained in
essence in Eq. (12). As the Cagniard–de Hoop method is used to invert the transform-domain solution, the
two contributions are separated. One contribution is the ‘‘body wave’’: the wave reflected at the fluid–solid
interface with an arrival time predicted by the laws of geometrical acoustics. The other contribution is the
‘‘lateral waves’’ (or ‘‘head waves’’): waves associated with energy propagated in the solid, close to interface, at
the speed of P- or S-waves and refracted back in the fluid. Any interaction of waves with an interface may give
rise to lateral wave contributions under certain conditions on the material properties. One important feature
of lateral waves is that they arrive at a receiver before the associated body wave. A theoretical presentation of
lateral wave phenomena may be found in the monograph by Brekhovskikh [20] (p. 260).

4.2. Contribution of the reflected wave (R)

Application of the inverse Fourier transform to Eq. (12) yields the Laplace transform of the reflected wave
contribution

p̂R ¼
�isrf f̂V

4p

Z i1

�i1

1

gf

Rff exp½�sðgf ðhs þ hrÞ þ xx1Þ�dx. (16)

In the subsequent operations, the integration contour (imaginary axis) will be changed so that the integral in
Eq. (16) takes the form of a forward Laplace transform. Once this is achieved, the inverse Laplace transform is
obtained by inspection. The change of integration contour is performed via the change of variable

t ¼ gf ðhs þ hrÞ þ xx1, (17)

where t is real and positive. The solution of Eq. (17) for x is

x ¼
tx1

r2
� i

hr þ hs

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2ff

q
, (18)

where r2 ¼ ðhr þ hsÞ
2
þ x2

1 and tff ¼ sf r is the arrival time of the body wave. The new integration contour, with
t as a parameter, is Eq. (18).

Due to the conditions specified above for the radicals gf , gP and gS, analytic continuation of the integrand
can only take place in a x-plane cut along the real axis: � �1; sf �, � �1; sS�, � �1; sP�, ½sP;þ1½, ½sS;þ1½ and
½sf ;þ1½.

The change of contour integration is performed based on Cauchy’s theorem, applied in the right half of the
complex plane. The closed contour for the application of Cauchy’s theorem is made of: (i) the original
integration contour on the imaginary axis (see Eq. (16)); (ii) two circular arcs centered on the origin and with
infinite radius which contributions vanish (Jordan’s lemma); (iii) the contour defined by Eq. (18).

For 0ototff , the Cagniard–de Hoop contour runs along the real axis. The contour becomes complex for
t4tff ; this transition occurs at xðtff Þ. For the material configurations considered in this paper, the condition
sPosSosf is always satisfied, hence sP is always the leftmost branch point. Furthermore, for the cases
considered in this paper, we always have xðtff ÞosS. In those cases where sPoxðtff ÞosS, the Cagniard–de Hoop
contour has a part along a branch cut, from x ¼ sP to xðtff Þ. This integration along the cut gives rise to a
contribution, in the space-time domain, which corresponds to a lateral wave; as expected, this contribution
arrives at the receiver before the body wave. The condition sPoxðtff Þ corresponds to the classical condition for
the occurrence of lateral waves (critical angle) and taking x ¼ sP in Eq. (17) yields the arrival time tl of the
lateral wave contribution.
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The final solution for the contribution of the reflected wave in the space-time domain is

if xðtff ÞosP; pR ¼

0; totff ;

@tfV �
�rf

2p
ffiffiffiffiffiffiffiffiffi
t2�t2

ff

p Re½Rff ðxÞ�; t4tff ;

8<
:

if xðtff Þ4sP; pR ¼

0; totl ;

@tfV �
rf

2p
ffiffiffiffiffiffiffiffiffi
t2
ff
�t2

p Im½Rff ðxÞ�; tlototff ;

@tfV �
�rf

2p
ffiffiffiffiffiffiffiffiffi
t2�t2

ff

p Re½Rff ðxÞ�; t4tff :

8>>>>><
>>>>>:

ð19Þ

where Im½:� denotes the imaginary part of the quantity between brackets and the time convolution is denoted
by �. In Ref. [21], de Hoop and van der Hijden investigated, in the general case, the reflection at a fluid–solid
interface with the Cagniard–de Hoop method. They presented a solution similar to Eq. (19), although in a
slightly different form due to a difference in the formulation of the basic equations.
4.3. Contribution of the direct wave (D)

The amplitude in the space-time domain of the direct wave is derived from Eq. (11) with the Cagniard–de
Hoop method, the final solution is

pD ¼

0; totD;

@tfV �
�rf

2p
ffiffiffiffiffiffiffiffiffi
t2�t2

D

p t4tD;

8<
: (20)

where tD ¼ sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ ðhs � hrÞ

2
q

is the arrival time of the direct wave.
4.4. Contributions of the waves reflected on the bottom surface (R1)

The amplitude of the four waves that contribute to pR1 are derived from Eqs. (13) with the Cagniard–de
Hoop method. In the general case, these amplitudes do not have an explicit analytic expression because the
Cagniard–de Hoop contours are not explicit.

The four amplitudes in the space-time domain are

pfPPf ¼

0; totPP;

@tfV �
1
4p Im

rf

gf
TfPRPPTPf @tx

h i
; t4tPP;

8<
:

pfPSf ¼

0; totPS;

@tfV �
1
4p Im

rf

gf
TfPRPSTSf @tx

h i
; t4tPS;

8<
:

pfSPf ¼

0; totSP;

@tfV �
1
4p Im

rf

gf
TfSRSPTPf @tx

h i
; t4tSP;

8<
:

pfSSf ¼

0; tominðtl ; tSSÞ;

@tfV �
1
4p Im

rf

gf
TfSRSSTSf @tx

h i
t4minðtl ; tSSÞ;

8<
: ð21Þ

where tab (ab ¼ P;S) is the arrival time of the body wave associated with a given ray. In each of these
expressions, xðtÞ is solution of an equation similar to Eq. (17) deduced from the phase term of the particular
ray (in the exponential terms in Eqs. (13)).
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5. Numerical calculations

The steps of the Cagniard–de Hoop method described in this paper have been implemented in the symbolic and
numerical software Mathematica. The expression of the generalized rays are generated upon combining the different
factors; the reflection and transmission coefficients are derived automatically from the boundary conditions.

The Cagniard–de Hoop contours for the contributions (R1) are calculated with the standard Mathematica
iterative method for solving equations. Convolutions are performed with the standard Mathematica
procedure for numerical integration; the procedure must take care of the discontinuities at the arrival times of
the direct wave and the reflected waves.

A finite element model of the ATT, corresponding to the configuration represented in Fig. 2 has been
developed in parallel to the present work. The solutions obtained with the Cagniard–de Hoop method have
been compared with the finite element solutions; when the finite element mesh is fine, the plots of the two
solutions are indistinguishable

Material properties: The fluid is modeled as water: rf ¼ 1000 kgm�3 and cf ¼ 1490m s�1. Except in Section
6.2.2, the following values are used for the mass density of bone rs ¼ 1850 kgm�3, velocity of transverse waves
cS ¼ 1800m s�1 and velocity of longitudinal waves cP ¼ 4000m s�1 in bone [7,22].

Receiver locations: Responses are calculated for various receiver locations. Receivers P1, P2 and P3 are
located at ðx1;x3Þ ¼ ð20;�2Þ; ð50;�2Þ and ð80;�2Þ (dimensions in mm), respectively (source-receiver distance
of 20; 50 and 80 cm, respectively). In Section 6.1.2, the close-field wave phenomena are addressed: responses
are calculated at receivers placed at less than 2 cm from the source. Note that in the devices based on the ATT,
the physical distance between source and receiver is 10–30mm [9].
6. Results

6.1. Green’s functions

6.1.1. Reflection at the fluid– solid interface (R)

The Green’s functions at receivers P1–P3, calculated according to Eq. (19), are shown in Fig. 4. Four instants,
each associated with a certain mode of propagation of the energy are marked with arrows on the figure:
�
 The lateral P-wave contribution arrives at tP
l . This contribution corresponds to energy propagated in the

fluid and, in the solid, close to the interface, with longitudinal polarization. The amplitude of the lateral
P-wave returns to zero at a time te defined by [21]

te ¼
x1ffiffiffi
2
p

cS

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2f � 0:5s2S

q
ðhr þ hsÞ. (22)

Note that this time does not depend on the longitudinal wave speed in the solid;

�
 The lateral S-wave contribution arrives at tS

l . This contribution corresponds to energy propagated in the
fluid and, in the solid, close to the interface, with transverse polarization;

�
 The contribution of the body wave reflected at the fluid-solid interface, with arrival time tff . This

contribution corresponds to energy propagated in the fluid only. Note that the amplitude of the Green’s
function is infinite at this arrival time.

�
 The contribution due to a pole in the reflection coefficient Rff is associated with the propagation of a

Scholte interface wave at the fluid-solid interface. Unless a receiver is placed on the interface, this
contribution does not have an arrival time in the usual sense of the word. However, the speed of the Scholte
wave cSch is defined as 1=xSch where xSch is solution of Rff ¼ 0; an ‘‘arrival time’’ for the Scholte wave
contribution can be defined as tSch ¼ x1=cSch [21].

6.1.2. Close field effects

The minimum wavelengths in the fluid (lf ) and the solid layer (lP;S) are, for the 1MHz pulse and the
material properties given above, lf ¼ 1:49mm, lP

¼ 4mm and lS
¼ 1:8mm. Considering the typical
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source–receiver distances of devices based on the ATT (1–3 cm), near field effects are expected to be involved
in ATT experiments [7].

At present, the evaluation of bone mechanical properties with the ATT are based on the first signal arriving
at the receiver. In many cases, this signal is due to the lateral P-wave. In Fig. 5, the part of the Green’s
functions corresponding to the lateral P-wave contribution is presented for receivers at 2px1p20 and hr ¼ 2
(dimensions in mm). Each Green’s function is plotted for tP

l otote, according to Eq. (19). In the near field, the
Green’s functions undergo strong amplitude decay with and increase of the ‘‘duration’’ of the lateral P-wave
contribution with the source–receiver distance.

6.1.3. Finite cortical thickness

The Green’s functions presented in Sections 6.1.1 and 6.1.2 correspond to the reflection of a wave at the
interface between a semi-infinite fluid medium and a semi-infinite solid medium, i.e., corresponding to an
infinite cortical thickness. Due to the finite thickness of the cortical layer, waves are reflected on the bottom
surface and bring energy back to the receiver placed in the fluid. In Fig. 6, Green’s functions of contributions
(R) and (R1) are shown together. Note that the plots corresponding to the contributions (R1) do not
correspond to a physical response, in particular they start from non-zero amplitude values. At short times, the
corresponding physical signal is the sum of the contributions (R) and (R1).

Fig. 7 shows the Green’s functions of the contributions (R) and (R1), for various values of the cortical
thickness, a short time after the arrival of first wave.

With the two wave contributions (R) and (R1) at hand, one can infer the way they are likely to interfere in
an ATT experiment, depending on the value of h. In particular, the influence of the arrival time and the shape
of (R1) can be estimated. Note in Fig. 7 that there is an important change in the shape of the contribution (R1)
in the interval 2oho5 (in mm).

Note that in a given time window, the exact Green’s function of the problem must include the contributions
of all the rays whose arrival times fall in the time window; hence summing the amplitudes of (R) and (R1) is
not, in the general case, the exact response.
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6.2. Acoustic pressure

The simulation of an axial transmission experiment consists in calculating the acoustic pressure to a given
excitation produced by a ultrasonic transducer. With the Cagniard–de Hoop method, the acoustic pressure is
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obtained by convolution of Green’s functions with a function @tfV ðtÞ which describes the source history. The
shape of the pressure source pulse used in the computations is shown in Fig. 8.

Three pulses were used in the present study, referred to by their center frequency: 0.5, 1, and 2MHz with
durations 4, 2 and 1 ms, respectively.
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6.2.1. Convolved responses

In Fig. 9, responses at P1–P3 are plotted for the three pulses at 0.5, 1, and 2MHz. The influence of the pulse
center frequency on the relative amplitudes of the waves (lateral waves, Scholte wave, etc.) is observed.

For the evaluation of bone mechanical properties, the signal of the direct wave (D) (which has not interacted
with bone) is useless. With the Cagniard–de Hoop method, the contribution of (D) can be isolated from the
rest of the response. An illustration of this is presented in Fig. 10: the acoustic pressure for a 1MHz pulse at
receivers P1–P3 are shown for (i) (D) only and (ii) the sum of ðDÞ þ ðRÞ. At P1–P3, it is manifest that the
contribution of the direct wave is localized in time around the arrival time of the reflected body wave, and that
(D) does not interfere with the lateral wave contributions.

6.2.2. Influence of the material parameters

In this subsection, we investigate the sensitivity of the near-field acoustic pressure due to lateral P-wave
contribution to the material parameters; contributions of (D) and (R1) are ignored in this section.

The effect of varying the longitudinal wave speed is addressed in Fig. 11. The arrival time of the lateral wave
is clearly dependent on the value of cP: it corresponds to energy which has travelled at the longitudinal wave
speed in the solid. The evolutions of the amplitudes of the various maxima of the signal are not linear with cP:
the three local maxima take their largest value for cP ¼ 3650m s�1.

According to the definition of te in Eq. (22) for the Green’s function of the reflected wave, the various plot in
Fig. 11 coincide some time after the arrival of the lateral wave: this is because te does not depend on cP.

Other calculations (results not shown) indicated that the influence on the acoustic pressure of the bone
density of mass ð1600orso2000 kgm�3Þ, all other parameters being kept constant (cP ¼ 4000m s�1 and
cS ¼ 1800m s�1), is small. The amplitude variations of the lateral P-wave part of the signal, for the 1 and
2MHz pulse, are 15% and 10%, respectively, in near field.

7. Discussion and conclusion

Modeling the axial transmission experiment (Figs. 1 and 2) is a challenging task with several aspects that
can be addressed separately in preliminary studies. One aspect of the problem is to model the ultrasound
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device and the interaction between the transducer and the coupling gel. Another is to model the interaction of
waves with bone and soft tissues. The present study is a contribution to the latter problem.

Several simplifications of the physical problem have been made. The model was derived based on the
following considerations: (1) The devices based on the ATT generate pulses at a center frequency between 0.5
and 2MHz; with these frequencies bone tissue can be modeled as a homogeneous medium. (2) Cortical bone is
transversely isotropic [1], the wave speeds in the transverse direction (direction x3) are about 50% those in the
longitudinal direction (direction x1); in the present work, the wave speeds in the solid correspond to the wave
speeds in the longitudinal direction of the transversely isotropic cortical layer. It can be inferred from the
results presented that, if taken into account in the model, the main effect of anisotropy would be to increase
the arrival time of waves reflected on the bottom surface (R1). (3) With the 2D model used, the curvature of
the bone layer in a direction normal to x3 ignored. It has been shown in Ref. [9] that the effect of the curvature
on the response is small and that 2D modeling is relevant. (4) Soft tissues were modeled by an ideal fluid
medium, thus disregarding the propagation of shear waves in these tissues. This is partially based on the
assumption that shear waves are highly attenuated in soft biological media. More importantly, the ATT
experiment consists in observing wave phenomena in a short time window after the arrival of the first signal.
The low velocity of shear waves in soft tissues prevents the arrival of the associated contributions in the time
window of interest.
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The results presented in Section 6 have been selected so as to highlight the potential of the method for the
understanding of wave phenomena involved in the ATT experiment. Future development of ATT-based
devices for the evaluation of bone mechanical properties should benefit from a deep understanding of these
phenomena which are complex and numerous.

Green’s functions (Fig. 4) and convolved responses (Fig. 9) plotted for points P1–P3 demonstrate some
typical features of wave reflection on a fluid–solid interface: arrival of lateral waves, followed by the body
wave and the Scholte wave. The influence of summing the direct wave contribution to the reflected wave
contribution can be inferred from plots such as Fig. 10.

The pulse duration (or center frequency) has a direct influence on the relative amplitudes of the wave
contributions. Fig. 9 shows that the lower frequency pulse used (0.5MHz center frequency) yields a larger
amplitude of the lateral P-wave (relative to other wave contributions at the same frequency).

Part of the work has focused on responses at receivers ‘‘close’’ to the source of waves (near field) and in a
short time window beginning at the arrival time of the lateral P-wave and ending 2–4ms later. This is the part
of the signal that is used at present in the ATT: the time of flight of a wave (between the source and the
receiver) is estimated based on the first arriving signal. Signal processing techniques used for the determination
of the arrival time are sensitive to the temporal shape of first arriving signal [7]. Results indicate that the shape
of the lateral P-wave contribution changes rapidly with the source–receiver distance (Fig. 5) and that the
amplitude of contribution (R1) is of the same order of magnitude as that of the lateral P-wave and may
strongly interfere, for realistic cortical thicknesses (Figs. 6 and 7).

In the present study, only the waves reflected once on the bottom layer have been taken into account. As a
consequence, responses calculated are exact only in a short time window after the first arriving signal.
Although there is no formal limitation on the number of generalized rays that can be calculated with
Cagniard–de Hoop, there is, in practice, a limitation because the time required to obtain a numerical solution
increases with the number of rays. Furthermore, when the response is the sum of many rays, it is often not
relevant to analyse their contribution separately. Hence the method is not suited to low frequency analyses
(long time of observation); its use should be limited to the analysis of responses including less than about ten
reflections on the bottom surface. On the other hand, it is well-known that bone tissue is a highly attenuating
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medium. Accordingly, it is expected that waves reflected on the bottom surface have smaller amplitudes than
predicted with the model that does not take attenuation into account. Some complex phenomena induced by
multiple wave reflections on the bottom layer have been addressed in Ref. [7] with the help of the finite
difference method.

This paper describes a method to derive Green’s functions in a model of the ATT. The convolution of a
Green’s functions with a source signal yields a response in terms of acoustic pressure. The method is based on
the generalized ray theory and the Cagniard–de Hoop technique. With the Green’s functions, the interaction
of waves with the cortical layer can be analyzed independent of a pulse duration or specific frequency. The
method also enables one to perform a time domain analysis of each wave contributions separately, even if they
are superimposed in time; this is not possible with purely numerical methods.

Theoretical developments and physical responses have been presented for an isotropic layer; the
investigation of wave reflection on a transversely isotropic cortical bone plate should now be conducted.
The use of the Cagniard–de Hoop method is only one step towards an efficient modeling of the ATT
experiment. Numerical methods of solution based on finite difference schemes are currently developed to take
into a account the complex geometry of bone and surrounding tissues. Qualitative agreement of in vitro and
simulated signals have been observed [9].
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