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Abstract

A density–based topology optimization method is developed for power flow problems in steady state using an adjoint

design sensitivity analysis (DSA) method. Design variables such as Young’s modulus, density, and damping factor are

parameterized using a bulk material density function. A generalized compliance of structures, defined as the inner product

of prescribed loading and response function, is selected as an objective function. The objective is to minimize the

generalized compliance within allowable material volume. Since already factorized system matrix obtained from the power

flow analysis is utilized to evaluate the adjoint response and sensitivity, computational cost for the DSA is trivial. Through

several numerical examples, the developed DSA method is verified to yield very accurate sensitivity, requiring only 0.15%

of CPU cost for finite difference sensitivity. Also, it turns out that the developed method can yield an optimal structural

layout to transmit the vibrational power effectively.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

For the dynamic analysis of structural systems in high frequency ranges, the finite-element method (FEM)
and boundary element method (BEM) to obtain the kinematic responses are not suitable due to mesh size
requirement that is closely related to the quality of analysis. Moreover, at high frequencies, the uncertainty of
system parameters gets increased and consequently the quality of analysis results becomes worse. Therefore, it
is desirable to employ the statistical methods that predict the modal- and frequency-averaged vibrational
behavior of systems. The statistical energy analysis (SEA) is one of the methods developed to overcome the
difficulties in high frequency ranges. However, the SEA is well suited only for high-frequency problems with
high modal density. Also, it fails to provide the spatial information of energy distribution. As an alternative, a
flow analysis (PFA) method regards ‘‘flow of vibrational energy’’ as ‘‘flow of heat’’ in thermal systems. Similar
to the thermal problems, the governing equation for the PFA is a parabolic partial differential equation. The
PFA which is originally devised by Belov et al. [1] enables to predict the spatial energy variation in structures.
Butlitskaya et al. [2] used the energy equation developed by Belov et al. to investigate the propagation of both
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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vibrational and acoustic energy in structures. Cremer et al. [3] showed that in an elastic medium, the time-
averaged dissipated power at a point is proportional to the time averaged potential energy density at that
point. Nefske and Sung [4] developed the equations which govern the flow of energy in homogeneous finite
beams and implemented the finite-element analysis of vibrational energy equation. Lase and Jezequel [5] derive
an equation which governs the spatially harmonic component of the energy density in rods. Bouthier and
Bernhard [6,7] derived for propagation of flexural waves and thus, a single plate can be analyzed with the
power flow analysis using space–time averaged potential energy density. Using a loss factor damping model,
the simplified models of energy distribution in membranes and transversely vibrating plates at high frequencies
are derived. Power flow finite element method (PFFEM) is used to obtain the vibrational response of plates
excited by point harmonic forces. The relation between dynamic problem and power flow problem and
loading and boundary conditions are well discussed in Refs. [6–9].

A topology optimization method enables designers to find a suitable material layout for the required
performances of systems. For instance, in solid mechanics problems, the objective function and constraint are
the compliance and material volume of system, respectively. The material property in each element is selected
as the design variable. The objective of topology optimization is to find an optimal material layout within the
allowed material volume by varying the material property of each element. Ever since Bendsøe and Kikuchi
[10] introduced the topology optimization method using a homogenization approach, many topology
optimization methods have been developed for both linear and nonlinear structural problems in many
disciplines such as solid mechanics, thermal, eigenvalue, and acoustic problems. Nowadays, the density
method [11] is preferred due to its simple implementation compared with the homogenization method. The
density method defines a bulk material density, regarded as the design variables varying from zero (void state)
to unity (solid state), to distribute the material in the continuum design domain. Unfortunately, there is little
literature regarding the topology optimization of power flow problems. For the similar problem that is
analogous to the power flow problem, Li et al. [12] performed a topology optimization of heat conduction
problems using evolutionary structural optimization method.

Since the topology optimization necessarily involves many design variables, the sensitivity of performance
measures with respect to the design variables should be determined in a very efficient way. The DSA method
computes the variation of the structural response with respect to design variables [13]. In continuum approach,
the design sensitivity expressions are obtained by taking the first-order variation of continuum variational
equation that represents the structural system. Among various DSA methods, the adjoint variable method is
computationally efficient especially for the problems that have many design variables but small number of
performance measures because their design sensitivity can be computed in a selective manner. Thus, the
adjoint DSA method is widely used in the topology optimization problems. In this paper, a continuum method
for the non-shape problems like material property DSA is considered for the PFA in steady state. Kim et al.
[14] derived the continuum-based design sensitivity expressions for the general PFA problems. As similar
studies on the heat conduction problems, Tortorelli et al. derived the shape design sensitivity for nonlinear
transient thermal systems using the Lagrange multiplier method [15] and the adjoint method [16]. Sluzalec and
Kleiber [17] employed the Kirchhoff transformation to derive the shape design sensitivity expressions for
linearized heat conduction problems using the adjoint variable approach.

In Section 2, the governing equation and weak formulation for the PFA are briefly reviewed. In Section 3,
the direct differentiation and adjoint methods are discussed to formulate a continuum-based DSA method. In
Section 4, a design parameterization method is discussed and the topology optimization of power flow
problems is formulated using the adjoint sensitivity and a gradient-based optimization method. In Section 5,
some numerical examples are demonstrated to verify the accuracy and efficiency of the developed analytical
DSA method compared with finite difference sensitivity. Also, the topology design optimization is performed
to verify the applicability of the developed method for several power flow problems.
2. Review of power flow analysis

Consider a structural body occupying an open domain O bounded by a closed surface G as shown in Fig. 1.
All the material properties are assumed homogeneous and isotropic in the domain O. Boundaries are
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Fig. 1. Structural body in space.
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composed of an energy (essential) boundary Ge and a flux (natural) boundary Gq such that Ge [ Gq and
Ge \ Gq ¼ f.

A governing equation for power flow problems in steady state is written by

�
c2g

Zo
r2eþ Zoe ¼ p, (1)

where e, Z, o, p , and cg are the time- and space-averaged energy density function, hysteresis damping factor,
excitation frequency, the rate of internal energy generation, and group velocity, respectively. For plate
structures, the group velocity is defined by

cg ¼ 2�

ffiffiffiffiffiffiffiffiffiffi
o2D

rh

4

s
,

¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2Eh2

12r 1� n2ð Þ

4

s
, ð2Þ

where r, n, h, E, and D are the density, Poisson’s ratio, thickness, Young’s modulus, and flexural rigidity of
plate, respectively. A prescribed energy e0 on Ge and a prescribed flux q0 on Gq in the inward normal direction
are imposed as

e ¼ e0 on Ge (3)

and

q ¼ q0 on Gq (4)

The d-dimensional space Z for the trial solution is defined as

Z ¼ fe 2 H1ðOÞ
� �d

: e ¼ e0 on Geg (5)

and Z̄ for the virtual field as

Z̄ ¼ fē 2 H1ðOÞ
� �d

: ē ¼ 0 on Geg. (6)

Using the virtual field ē, the weak form of Eq. (1) is written asZ
OG
�

c2g

Zo
r2eēþ Zoeē

 !
dO ¼

Z
O
pēdO for all ē 2 Z̄. (7)

Using the divergence theorem and Eq. (3), Eq. (7) can be rewritten asZ
O

c2g

Zo
re � rē

 !
dOþ

Z
O
Zoeēð ÞdO ¼

Z
O
pēdO�

Z
Gq
�

c2g

Zo
re

 !
� nēdG for all ē 2 Z̄. (8)
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Defining a time-and space-averaged intensity I as

I ¼ �
c2g

Zo
re (9)

and a flux q as

q ¼ I � n. (10)

Eq. (8) is reduced to Z
O

c2g

Zo
re � rēþ Zoeē

 !
dO ¼

Z
O
pēdO�

Z
Gq

qēdG for all ē 2 Z̄. (11)

Defining a bilinear form

aðe; ēÞ �

Z
O

c2g

Zo
re � rēþ Zoeē

 !
dO (12)

and a linear form

‘ðēÞ �

Z
O
pēdO�

Z
Gq

qēdG. (13)

Eq. (11) can be rewritten, in abstract form, as

aðe; ēÞ ¼ ‘ðēÞ for all ē 2 Z̄. (14)

3. Continuum-based design sensitivity analysis

3.1. Direct differentiation method (DDM)

For the given design u, Eq. (14) can be rewritten as

auðe; ēÞ ¼ ‘uðēÞ for all ē 2 Z̄, (15)

where the subscript u indicates the dependence of the abstract form on the design variations. The variational
equation corresponding to the perturbed design uþ tdu is written as

auþtduðet; ēÞ ¼ ‘uþtduðēÞ for all ē 2 Z̄. (16)

The first-order variations of each term in Eq. (15) with respect to its explicit dependence on the design variable
u are defined as

a0duðe; ēÞ �
d

dt
auþtduð~et; ēÞ

����
t¼0

(17)

and

‘0duðēÞ �
d

dt
‘uþtduðēÞ

����
t¼0

, (18)

where the ‘�’ denotes that the dependence on design variations is suppressed. Note that ē is independent of t.
Define the first-order variation of the solution of Eq. (15) as

e0 �
d

dt
eðuþ tduÞ

����
t¼0
¼ lim

t!0

eðuþ tduÞ � eðuÞ

t
. (19)

Using the chain rule of differentiation and Eq. (17), the following holds

d

dt
auþtduðeðuþ tduÞ; ēÞ½ �

����
t¼0
¼ a0duðe; ēÞ þ auðe

0; ēÞ. (20)



ARTICLE IN PRESS
S. Cho et al. / Journal of Sound and Vibration 298 (2006) 206–220210
Using Eqs. (18) and (20) and taking the first-order variation of Eq. (15) lead to

auðe
0; ēÞ ¼ ‘0duðēÞ � a0duðe; ēÞ for all ē 2 Z̄. (21)

Next, consider a general performance functional that may be written, in integral forms, as

c ¼
Z
O

g1 u; e;reð ÞdOþ
Z
G

g2 u; e;reð ÞdG. (22)

Taking the first-order variation of Eq. (22), one has the following expression.

c0 ¼
d

dt

Z
O

g1 uþ tdu; e uþ tduð Þ;re uþ tduð Þ
� �

dOþ
Z
G

g2 uþ tdu; e uþ tduð Þ;re uþ tduð Þ
� �

dG
� �����

t¼0

¼

Z
O

g1;uduþ g1;ee0 þ g1;rere0
	 


dOþ
Z
G

g2;uduþ g2;ee0 þ g2;rere0
	 


dG. ð23Þ

Once finding e0 from Eq. (21), one trivially obtains the design sensitivity of performance measure from
Eq. (23).

3.2. Adjoint variable method

First of all, define an adjoint equation for the power flow problems. Replace the implicit dependence terms
in Eq. (23) by a virtual energy density l̄ and equate the terms involving l̄ to the bilinear form auðl; l̄Þ to yield
the adjoint equation as

auðl; l̄Þ ¼
Z
O

g1;el̄þ g1;rerl̄
	 


dOþ
Z
G

g2;el̄þ g2;rerl̄
	 


dG for all l̄ 2 Z̄, (24)

where the adjoint response l satisfies the homogeneous boundary conditions. Since ē 2 Z̄ and l 2 Z̄, Eq. (21)
can be rewritten as

au e0; lð Þ ¼ ‘0du lð Þ � a0du e; lð Þ for all l 2 Z̄. (25)

Since e0 2 Z̄, Eq. (24) can be rewritten as

auðl; e0Þ ¼
Z
O

g1;ee0 þ g1;rere0
	 


dOþ
Z
G

g2;ee0 þ g2;rere0
	 


dG for all e0 2 Z̄. (26)

Now that auð�; �Þ is a symmetric operator, the following holds:

auðe
0; lÞ ¼ auðl; e0Þ. (27)

Eqs. (25) and (26) are equivalent so that one can write the following equation:Z
O

g1;ee0 þ g1;rere0
	 


dOþ
Z
G

g2;ee
0 þ g2;rere0

	 

dG ¼ ‘0duðlÞ � a0duðe; lÞ. (28)

Substituting Eq. (28) into Eq. (23), one finally obtains

c0 ¼
Z
O

g1;ududOþ
Z
G

g2;ududGþ ‘
0
duðlÞ � a0duðe; lÞ. (29)

To evaluate Eq. (29), one needs not only the original response e but also adjoint response l. The efficiency and
accuracy of Eq. (29) will be demonstrated in section 5.

4. Formulation of topology design optimization

The objective of topology optimization method is to find an optimal material distribution that minimizes
the energy stored in the system under prescribed loadings. The material distribution can be represented using a
normalized bulk material density function u that has a continuous variation from zero to one, taking the value
of 1.0 for solid material and 0.0 for void. For the topology optimization using the FEM, the structural
domain is discretized into NE finite elements. The bulk material density is assumed constant in each element.
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The material properties involved in the power flow analysis are the Young’s modulus E, Poisson’s ratio n,
hysteresis damping factor Z, and density r, as shown in the following expression derived from Eqs. (1) and (2).

p ¼ �
c2g

Zo
r2eþ Zoe

¼ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2Eh2

3r 1� n2ð Þ

s
r2e

Zo
þ Zoe. ð30Þ

Through parametric studies, it turns out that the variation of Poisson’s ratio affects little impact on the
performance of systems. The design variable that is the bulk material density of each element is associated with
the Young’s modulus, hysteresis damping factor, and density as

Ei ¼ u
p
i E0, (31)

Zi ¼ ur
iZ0, (32)

and

ri ¼ us
i r0, (33)

where

0oumin � ui � 1; ði ¼ 1; 2; . . . ;NEÞ: (34)

E0, Z0, r0 denote the original material properties. p, r, and s are the penalty parameters used to enforce the
concentrated distribution of material volume. The lower bound of material, umin, is introduced to avoid
numerical singularity. Substituting the continuous form of Eqs. (31)–(33) into Eq. (30), one obtains the
following expression:

p ¼ �2uðp�2r�sÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2E0h

2

3r0 1� n2ð Þ

s
r2e

Z0o
þ urZ0oe. (35)

Note that the numerous combinations of penalty parameters are possible depending on the assumption about
the material parameterization model. If one makes an assumption that the first and second terms in Eq. (35)
have the same contribution on the governing equation as the bulk material density varies, the condition for
parameters is derived as

p� 4r� s ¼ 0. (36)

Using the aforementioned density approach, a topology optimization problem is stated as

Minimize P ¼
Z
O
pedO�

Z
Gq

qe dG, (37)

Subject to

Z
O

udO � Vallowable, (38)

where
Q

and Vallowable are a so called ‘‘generalized compliance’’ and an allowable volume, respectively. The
notion of generalized compliance in the power flow problems is extended from the well-known structural
compliance that is the inner product of external load and displacement field. The physical meaning of
minimization of generalized compliance is to find a material layout that stores minimal energy density for the
prescribed external loadings. For the required sensitivity of objective function, one has the adjoint sensitivity
expression for the generalized compliance functional, using Eq. (29), as

c0 ¼
Z
O

g1;ududOþ
Z
G

g2;ududGþ ‘
0
duðlÞ � a0duðe; lÞ

¼ �

Z
O

2cgc0gZ� c2gZ
0

Z2o
re � rlþ Z0oel

 !
dO. ð39Þ



ARTICLE IN PRESS
S. Cho et al. / Journal of Sound and Vibration 298 (2006) 206–220212
The adjoint equation is written, using Eq. (37), as

auðl; l̄Þ ¼
Z
O
pl̄dO�

Z
Gq

ql̄dG for all l̄ 2 Z̄. (40)

Comparing Eq. (40) with Eq. (11), the following holds since l̄; ē 2 Z̄:

l ¼ e. (41)

Thus, Eq. (39) can be finally written as

c0 ¼ �
Z
O

2cgc0gZ� c2gZ
0

Z2o
re � reþ Z0oee

 !
dO. (42)

For the topology optimization, it is very important to make the problem convex to obtain a unique optimal
solution regardless of initial design. Otherwise, it may have many local minima and thus the optimal result
depends on its initial design significantly. If the Hessian of the unconstrained function composed of objective
function and constraints is positive definite, the optimization problem is convex. In this topology optimization
formulation, only linear constraints with respect to the design variables are considered so that the Hessian of
objective function affects the convexity of problem. Consider a state equation in matrix form, which is
equivalent to Eq. (14) as

t u; eðuÞ½ � ¼ f int � fext

¼ Ke� fext ¼ 0, ð43Þ

where fint, fext, K, and e are the internal load, external load, system matrix, and the response vector that is the
energy density function, respectively. Taking derivative of Eq. (43) with respect to the response e leads to

qt
qe
¼ K. (44)

Also taking derivative of Eq. (43) with respect to the design variable u yields

dt

du
¼

qt
qu
þ

qt
qe

de

du
¼ 0 (45)

or

de

du
¼ �K�1

qt
qu

. (46)

Taking derivative of Eq. (43) with respect to the design variable u yields

dK

du
eþ K

de

du
¼ 0. (47)

Substituting Eq. (46) into Eq. (47) yields

qt
qu
¼

dK

du
e. (48)

In the power flow problems, the generalized compliance functional is defined by

Y
¼

Z
O
pedO�

Z
Gq

qe dG ¼
1

2

Z
O

c2g

Zo
re � reþ Zoee

 !
dO

or

P ¼ fTexte ¼
1

2
eTKe. (49)
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Taking derivative of the compliance functional with respect to the design variable u leads to

dP
du
¼ eTK

de

du

� �
þ

1

2
eT

dK

du
e. (50)

Using Eqs. (46) and (48), Eq. (50) can be rewritten as

dP
du
¼ �

1

2
eT

qt
qu

� �
. (51)

Taking derivative of Eq. (51) again with respect to the design variable u yields

d2P
du2
¼ �

1

2

de

du

� �T qt
qu

� �
�

1

2
eT

d

du

qt
qu

� �
. (52)

Using Eqs. (46) and (48), Eq. (52) can be rewritten as

d2P
du2
¼

1

2

qt
qu

� �T

K�1
qt
qu

� �
�

1

2
eT

d

du

dK

du
e

� �
. (53)

The last term of Eq. (53) is rewritten as

�
1

2
eT

d

du

dK

du
e

� �
¼ �

1

2
eT

d2K

du2
e�

1

2
eT

dK

du

de

du
. (54)

Using Eqs. (46) and (48), Eq. (54) can be rewritten as

�
1

2
eT

d

du

dK

du
e

� �
¼ �

1

2
eT

d2K

du2
eþ

1

2

qt
qu

� �T

K�1
qt
qu

� �
. (55)

Thus, Eq. (53) is rewritten as

d2P
du2
¼

qt
qu

� �T

K�1
qt
qu

� �
�

1

2
eT

d2K

du2
e. (56)

Assuming that the parameters obey the rule in Eq. (36), Eq. (35) is rewritten as

p ¼ �ur 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2E0h

2

3r0 1� n2ð Þ

s
r2e

Z0o
� Z0oe

2
4

3
5. (57)

Thus, the resulting system matrix K is dependent upon ur. Eq. (56) can be expressed in terms of the design
variable u as

d2P
du2

i

¼
qt
qui

� �T

K�1
qt
qui

� �
�

1

2
rðr� 1Þdije

T ~Kðuðr�2Þj Þe, (58)

where ~K is the second-order derivative of the system matrix K with respect to the design variable u. If the
penalty parameter ‘‘r’’ is equal to zero or one, the second term in Eq. (58) vanishes so that the problem is
convex. Otherwise, it may have many local minima.

5. Numerical examples

5.1. Example 1: verification of sensitivity of energy density

The objective of this example is to verify the accuracy of the DSA method in energy density field. Note that
all the examples from now on show the flexural wave cases not in-plane ones. Consider a rectangular plane
structure that is 4m long, 1m wide, and 0.01m thick. The structure is modeled using four node plate elements
and subjected to the prescribed loading and boundary conditions on its bottom and top sides as shown in
Fig. 2. The material properties are Young’s modulus of E ¼ 195 � 109 ðN=m2Þ, density of
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Prescribed input power, 10W/m

Element 101
Node 226

Prescribed energy density, e = 0   J / m2Element 1

Element 399

Fig. 2. Rectangular plate subjected to prescribed input power.

Fig. 4. Sensitivity of energy density at node 226 with respect to material properties: (a) young’s modulus; (b) density; (c) damping factor.

Fig. 3. Distribution of energy density e.
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r ¼ 7; 800ðkg=m3Þ, damping factor of Z ¼ 0:01, and Poisson’s ratio of v ¼ 0:28. Along the top side, the input
power of 10 (W/m) with excitation frequency of 1000Hz is applied. On the essential boundaries along the
bottom side, the energy density of e ¼ 0 is prescribed. The design variable and performance measure are
selected as the material properties of each element and the energy density at node 226, respectively. For this
model, the energy density is initially distributed as shown in Fig. 3.

The design sensitivity of energy density at node 226 with respect to the various material properties of each
element is contoured in Fig. 4. The variation of Poisson’s ratio is not considered during the optimization since
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Table 1

Comparison of design sensitivity

Material property Design variable de226
dui

De226
Dui

de226
dui

.
De226
Dui

(%)

Young’s modulus E1 �0.761054E-17 �0.761054E-17 100.00

E101 �0.214625E-15 �0.214625E-15 100.00

E399 �0.923153E-18 �0.923153E-18 100.00

Density r1 0.190263E-09 0.190256E-09 100.01

r101 0.536312E-08 0.536314E-08 100.00

r399 0.230908E-10 0.230908E-10 100.00

Damping factor Z1 0.295777E-04 0.295777E-04 100.00

Z101 0. 791392E-03 0. 791392E-03 100.00

Z399 �0. 188783E-04 �0. 188783E-04 100.00
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it is not significantly affecting the analysis results. For the elements around the node 226, the increase of
Young’s modulus results in the increase of the energy density. On the other hand, the increases of density and
damping factor result in the decrease of the energy density.

The obtained analytical sensitivity is compared with the finite difference one. In Table 1, the sensitivity of
energy density at node 226 with respect to the bulk material density of each element (ui) is compared. de226=dui

stands for the analytical sensitivity using either the DDM or the adjoint variable method (AVM). Those
methods yield an identical result. De226=Dui represents the central finite difference sensitivity. The last column
shows the percent agreement between the finite difference and the analytical sensitivities. Excellent agreements
are observed everywhere.

In Table 2, the CPU costs required for the computation of design sensitivity are summarized. Only 0.078 s is
required for the AVM and 10.9 s for the DDM whereas 55.125 s for the FDM. In general, the DDM requires
approximately 19.77% of CPU time for the FDM. However, the AVM does only 0.15% of CPU time for the
FDM. Comparing the DDM and AVM, the AVM just requires approximately 0.7% of CPU time necessary
for the DDM.
5.2. Example 2: validation of topology optimization results

The purpose of topology optimization in the power flow problems is to find an optimal material layout that
yields low energy density distribution in the structure under the prescribed loading and boundary conditions.
In other words, the topology optimization helps to find a material layout hard to increase the energy density in
the structure for the given input power and boundary conditions. The structure is modeled using four node
plate elements and subjected to the prescribed loading and boundary conditions as shown in Fig. 5(a). The
material properties are the same as the ones used in the previous example.

The topology design optimization is carried out under the constraint of allowable material volume of 40%,
minimizing the generalized compliance. Vibrational power is coming into the middle of top side at the rate of
10 kW/m and out of both ends of bottom side at the rate of 1.4 kW/m. Regard the bulk material density of
each element as the design variable and recall Eqs. (35) and (36) for the penalization of bulk material. Taking
p ¼ 5, s ¼ 1, and r ¼ 1, one obtains a linear variation of bulk material density u as

p ¼ � uðp�2r�sÞ=22
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The optimal material distribution is shown in Fig. 5(b).
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Fig. 5. Models for validation of topology optimization results: (a) before optimization and (b) after optimization.

Fig. 6. Comparison of energy density distributions: (a) before optimization and (b) after optimization.

Table 2

Comparison of CPU time

FDM DDM (DDM/FDM %) AVM (AVM/FDM %)

55.12500 10.81250 (19.77%) 0.078125 (0.15%)
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5.2.1. Distribution of energy density

To validate the effectiveness of topology optimization, two models at the excitation frequency of 1000Hz
are prepared. The one has uniformly distributed material properties whose magnitudes are reduced by 40% of
the original ones, as shown in Fig. 6(a). The other is the one obtained after the topology optimization shown in
Fig. 6(b), which keeps the original material properties. The model in Fig. 6(b) is constructed, based on the
optimization result, removing the void region of the original model to meet the volume constraint, 40% of the
original material volume.

In Fig. 6, the distributions of energy density in the models are compared. As expected, the optimal model (b)
yields low energy density distribution throughout the whole domain, using an identical amount of material.
The energy density distributions are approximately 4.71�9.68 J/m2 for the model (a) and 4.72�7.57J/m2 for
the model (b). The optimal result shows that the energy density is evenly distributed and its maximum is
reduced by 22%.
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Fig. 7. Comparison of intensity distributions: (a) before optimization and (b) after optimization.

Fig. 8. Optimal design with void region and interface: (a) energy density and (b) intensity.
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5.2.2. Distribution of intensity

The intensity distributions are compared in Fig. 7. The intensity I is defined as a vector that indicates the
propagation direction of time-and space-averaged energy density flow. Comparing the intensity in the original
model (a) with that in the optimal model (b), the optimization process is performed in such a way that the
regions of less intensity are removed.

5.2.3. Validation of optimal design

To validate the topology optimization method, two models are considered. One is the optimal model with
the void regions removed, as shown in Fig. 5(b). The other is the optimal model without the void regions
removed. The void regions have less than 1% of the original bulk material density. Interface conditions
between the void and solid regions are considered in this example. The boundary conditions using diffuse
power transmission and reflection coefficients are used between void and solid regions [9]. The optimal model
without void regions has the distribution of energy density ranging 4.72�7.57 J/m2 whereas the optimal model
with void regions 4.67�7.47 J/m2. The difference is only 1.1�1.3% so that the material layout obtained from
the topology optimization can provide useful information for the layout design of structural systems (Fig. 8).

5.3. Example 3: topology optimization of rectangular plates

The design domain, boundary and loading conditions for three models using four node plate elements are
illustrated in Fig. 9. Material properties, design variables, penalty parameters, and allowable volume fraction
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Fig. 9. Topology optimization with various loading and boundary conditions: (a) model A; (b) model B; (c) model C.

Table 3

Comparison of optimization cost

Model A Model B Model C

Number of iterations 99 172 175

Number of sensitivity evaluations 10 14 14

CPU time (s) 248.40 1739.8593 1527.56
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are the same as the ones used in the previous examples. The final material distributions after the topology
optimization are shown in Fig. 9 as well. For model A, an input power p of 1000 kW/m2 is applied at the
center of model and the prescribed energy density conditions are imposed at the middle of four sides. For
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model B, different boundary conditions are imposed. For model C, additional loadings are applied at the
middle of top and bottom sides. Through numerical examples, one can notice that the optimal material layout
requires a shortest distance between the loading and boundary to effectively release the stored energy density.
In Table 3, the computational costs required for the models are compared. The topology optimization uses the
modified method of feasible direction algorithm and requires 10–14 sensitivity evaluations. The CPU cost for
the whole optimization process takes less than 1 h on a Pentium IV personal computer as shown in Table 3.

6. Conclusions

Weak formulation for the power flow problems in steady state is derived and continuum-based DSA
methods are developed in both direct differentiation and adjoint approaches. Also, a topology design
optimization method for the power flow problems is developed utilizing the adjoint DSA method. Since the
already factorized tangent matrix is utilized in the adjoint method, the computing cost is trivial compared with
the finite difference method. For the topology design optimization, the design variables of material properties
are parameterized using a bulk material density function. Through numerical examples, the accuracy and
efficiency of the DSA method are verified by comparing with the finite difference sensitivity. Comparing the
efficiency of developed method, it just requires only 0.15% of CPU cost for the finite difference method.
Comparing the energy density distributions before and after the topology optimization, significantly reduced
energy density distribution is observed everywhere. The material layout obtained from the topology
optimization can provide useful information for the layout design of structural systems.
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