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Abstract

The double tuned mass dampers (DTMD), consisting of one larger mass block (i.e. one larger tuned mass damper

(TMD)) and one smaller mass block (i.e. one smaller TMD), have been proposed to seek for the mass dampers with high

effectiveness and robustness for the reduction of the undesirable vibrations of structures under the ground acceleration.

The structure is represented by the mode-generalized system corresponding to the specific vibration mode that needs to be

controlled. In light of the developed dynamic magnification factors (DMF) of the DTMD structure system, the criterion

used for assessing the optimum parameters and effectiveness of the DTMD is selected as the minimization of the minimum

values of the maximum DMF of the structure with the DTMD. With resorting to the maximum DMF of both the larger

and smaller TMDs in the DTMD, the stroke of the DTMD is simultaneously investigated too. It is highlighted that a novel

optimum objective function has been proposed in order to acquire high robust control system. Consequently, the two types

of optimum goal functions (including the optimum goal function commonly used) have been applied for the optimum

searching of the DTMD. The numerical results indicate that the DTMD designed in terms of the second type of optimum

objective functions (i.e. the novel optimum objective function) practically provides the same effectiveness and robustness to

the changes in the drift frequency ratio (DFR) as the multiple tuned mass dampers (MTMD) with the distributed natural

frequencies with the total number of the TMD units equal to five and with equal total mass ratio. Likewise, the DTMD

designed with resort to the second type of optimum objective functions can practically attain the same effectiveness as the

TMD with equal total mass ratio. More importantly, in the robustness to the changes in the DFR, the DTMD is

significantly better than the TMD, whereas in the robustness to the natural frequency tuning (NFT), measured by the

frequency band width coefficient (FBWC), the DTMD is significantly better than the MTMD, thus manifesting that the

DTMD is an advanced control device.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, mitigating the dynamic responses of civil engineering structures to environmental loads such
as earthquakes and wind loads has drawn the interest of many researchers. Many control devices, passive,
semi-active, as well as active, have been developed. Among these available devices, the tuned mass damper
(TMD) is one of the simplest and the most reliable control devices, which consists of a mass, a spring, and a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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viscous damper attached to the structure that is to be controlled. Its mechanism of attenuating undesirable
vibrations of a structure is to transfer the vibration energy of the structure to the TMD and to dissipate the
energy through the damping of the TMD. It is well known that however, the inherent limitations of a single
TMD are the very narrow band of suppression frequency and the sensitivity to the fluctuation in tuning the
frequency of the TMD to the controlled frequency of the structure, and the offset in the optimum damping of
the TMD. The mistuning or off-optimum damping will reduce the effectiveness of the TMD significantly.
Iwanami and Seto [1] proposed the dual tuned mass dampers (2TMD) and made research on the optimum
design of 2TMD for harmonically forced oscillation of the structure. It was shown in their papers that 2TMD
are more effective than a single TMD. However, the effectiveness was not significantly improved. Employing
more than one TMD with different dynamic characteristics has then been proposed to further improve the
effectiveness and robustness of the TMD. The multiple tuned mass dampers (MTMD) with the distributed
natural frequencies were proposed by Xu and Igusa [2] and also studied by, for example, Yamaguchi and
Harnpornchai [3], Abe and Fujino [4], Abe and Igusa [5], Kareem and Kline [6], Jangid [7,8], Joshi and Jangid
[9], Bakre and Jangid [10], Kamiya et al. [11], Li [12], Li and Liu [13], Li and Li [14], Han and Li [15], Park and
Reed [16], Gu et al. [17], Chen and Wu [18], Yau and Yang [19,20], Kwon and Park [21], Lin et al. [22], Wang
and Lin [23], and Li and Qu [24]. The MTMD is shown to possess better effectiveness and higher robustness in
mitigating the oscillations of structures with respect to a single TMD.

Recently, based on the various combinations available of the stiffness, mass, damping coefficient, and
damping ratio in the MTMD, the five MTMD models have been presented by Li [25]. Through the
implementation of both the minimization of the minimum values of the maximum displacement dynamic
magnification factors (i.e. min.min.max.DDMF) and minimization of the minimum values of the maximum
acceleration dynamic magnification factors (i.e. min.min.max.ADMF) of structures with the MTMD, it has
been shown that the MTMD with the identical stiffness (i.e. kT1 ¼ kT2 ¼? ¼ kTn ¼ kT) and damping
coefficient (i.e. cT1 ¼ cT2 ¼? ¼ cTn ¼ cT) but unequal mass (i.e. mT1 6¼mT2 6¼? 6¼mTn) and damping ratio (i.e.
xT1 6¼xT26¼? 6¼xTn) provides better effectiveness and wider optimum frequency spacing (identical to higher
robustness against the change or the estimation error in the structural controlled natural frequency) with
respect to the rest of the MTMD models [25]. Likewise, the studies conducted by Li and Liu [26] have
disclosed further trends of both the optimum parameters and effectiveness and further provided suggestion on
selecting the total mass ratio and total number of the MTMD with the identical stiffness and damping
coefficient but unequal mass and damping ratio. More recently, based on the uniform distribution of system
parameters, instead of the uniform distribution of natural frequencies, the eight new MTMD models have
been, for the first time, proposed in order to seek for the MTMD models without the near-zero optimum
average damping ratio. Found are the six MTMD models without the near-zero optimum average damping
ratio. The optimum MTMD with the identical damping coefficient (i.e. cT1 ¼ cT2 ¼? ¼ cTn ¼ cT) and
damping ratio (i.e. xT1 ¼ xT2 ¼? ¼ xTn ¼ xT) but unequal stiffness (i.e. kT1 6¼kT2 6¼?6¼kTn) and with the
uniform distribution of masses is found able to render better effectiveness and wider optimum frequency
spacing with respect to the rest of the MTMD models [27]. Likewise, it is interesting to find out that the two
abovementioned MTMD models can approximately reach the same effectiveness and robustness [27]. The
abovementioned review clearly shows that much progress has been extended in recent years in terms of the
studies on the MTMD for the vibration control of structures.

However, to date, most researchers working on the MTMD system have assumed that the total number of
the TMD units constituting the MTMD is an odd number, referred to as the odd number based MTMD, by
targeting at the central natural frequency. The arbitrary integer based MTMD have been proposed by Li and
Zhang [28] for the purpose of convenience in application of the MTMD by abandoning the central natural
frequency hypothesis. Evidently, the idea of arbitrary integer, compared with odd number, should be more
versatile in accommodating the requirements in practical situations. Likewise, the dual-layer multiple tuned
mass dampers, referred to as the DL-MTMD, consisting of one larger TMD and several smaller TMDs with
the total number of TMD units being the arbitrary integer and with the uniform distribution of natural
frequencies have been further proposed by Li [29] to seek for the mass dampers with high effectiveness and
robustness for the reduction of the undesirable vibrations of structures under the ground acceleration. The
numerical results indicate that the DL-MTMD can render better effectiveness and higher robustness to the
change in the natural frequency tuning (NFT), in comparison with the MTMD with the distributed natural
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frequencies with equal total mass ratio [29]. In fact, the DL-MTMD will degenerate into the double tuned
mass dampers (DTMD) when the total number of the smaller TMD units in the DL-MTMD is set to be equal
to unity. The investigations by Li [29] have manifested that the DL-MTMD has a little better effectiveness
with respect to the DTMD; but they practically reach the same level of robustness to the change in the NFT.
The DTMD consists of one larger mass block (i.e. larger TMD) and one smaller mass block (i.e. smaller
TMD), thus implying that it is significantly simpler to manufacture the DTMD in comparison with the
DL-MTMD. With a view to the engineering design and practical applications, it is imperative and of practical
interest to carry on further investigations on the DTMD. Therefore, the main objective of this paper is focused
on evaluating the performance of the DTMD (including assessing the stroke of both the larger and smaller
TMDs in the DTMD) in order to demonstrate that the DTMD is an advanced control device in the mitigation
of undesirable oscillations of structures under ground acceleration, using the two types of optimum objective
functions, further designated as the first type of optimum goal functions commonly used, such as the study by
Li and Qu [30] and second type of optimum goal functions (namely the novel optimum goal function proposed
in the present paper).

2. Transfer functions (TFs) of the DTMDs structure system

In this paper, the DTMD are taken into account for the suppression of the specific vibration mode to be
controlled of an MDOF structure. By use of the mode reduced-order method, the MDOF structure is modeled
as an SDOF system, characterized by the mode-generalized stiffness (ks), damping coefficient (cs), and mass
(ms), respectively. Larger TMD (m1) and smaller TMD (m2) in the DTMD also are, respectively, modeled as
an SDOF system. As a result, the total number of degrees-of-freedom of the DTMD structure system is equal
to 3, as shown in Fig. 1. The following analysis to be carried out is based on this combined system.
The equations of motion for the DTMD structure system subjected to the ground motion can be expressed
as follows:

ms €xs þ ½cs _xs þ c1ð _xs � _x1Þ� þ ½ksxs þ k1ðxs � x1Þ� ¼ �ms €xgðtÞ,

m1 €x1 þ ½c1ð _x1 � _xsÞ þ c2ð _x1 � _x2Þ� þ ½k1ðx1 � xsÞ þ k2ðx1 � x2Þ� ¼ �m1 €xgðtÞ,

m2 €x2 þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ ¼ �m2 €xgðtÞ. ð123Þ

Here, xs is the displacement of the main structure with reference to the ground; x1 represents the displacement
of larger TMD in the DTMD with reference to the ground; x2 denotes the displacement of smaller TMD in the
DTMD with reference to the ground; m1, k1, and c1 are, respectively, the mass, stiffness, and damping
Fig. 1. Schematic diagram of the main structure with the double tuned mass dampers (TMDs) consisting of one larger TMD and one

smaller TMD (referred to in the present paper as the DTMD) subjected to the ground acceleration.
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coefficient of larger TMD in the DTMD; while m2, k2, and c2 are, respectively, the mass, stiffness, and
damping coefficient of smaller TMD in the DTMD; and €xgðtÞ refers to the ground acceleration.

Transfer Eqs. (1–3) into the frequency domain form with resorting to the Laplace transform, namely
ZðsÞ ¼ L½zðtÞ�, which can be written, respectively, as follows:

ðmsX sÞs
2 þ ½csX s þ c1ðX s � X 1Þ�sþ ½ksX s þ k1ðX s � X 1Þ� ¼ �ms

€X g,

ðm1X 1Þs
2 þ ½c1ðX 1 � X sÞ þ c2ðX 1 � X 2Þ�sþ ½k1ðX 1 � X sÞ þ k2ðX 1 � X 2Þ� ¼ �m1

€X g,

ðm2X 2Þs
2 þ ½c2ðX 2 � X 1Þ�sþ ½k2ðX 2 � X 1Þ� ¼ �m2

€X g. ð426Þ

in which

X s ¼ X sðsÞ ¼ L½xs�,

X 1 ¼ X 1ðsÞ ¼ L½x1�,

X 2 ¼ X 2ðsÞ ¼ L½x2�,

€X g ¼ €X gðsÞ ¼ L½ €xgðtÞ�. ð7210Þ

Introduce the following parameters:

m1 ¼
m1

ms

; m2 ¼
m2

ms

; l1 ¼
o1

o0
; l2 ¼

o2

o0
;

zs ¼
cs

2mso0
; z1 ¼

c1

2m1o1
; z2 ¼

c2

2m2o2
;

o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
; o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p

in which o0 is the design natural frequency of the main structure. Evidently, the design natural frequency of
the main structure is always changing due to external excitations, and hence the natural frequency which
deviates the design value is designated herein as os. In view of this, the drift frequency ratio (DFR) bounded to
the range from 0.5 to 1.5 is then introduced, which has the following form:

g ¼
os

o0
. (11)

It is worth pointing here out that the different DFR, g is taken into consideration in the present paper;
and then for the purpose of convenience, we further introduce the notation: G ¼ ½g1; g2; . . . ; gn�1; gn�, referred
to as the drift frequency ratio vector (DFRV). In fact, the DFR, g may be set to be equal to any gi

ði ¼ 1; 2; . . . ; nÞ.
Eqs. (4–6) may then be rewritten as

X ss
2 þ ½2o0zsX s þ 2l1o0z1m1ðX s � X 1Þ�sþ ½g2o2

0X s þ m1l
2
1o

2
0ðX s � X 1Þ� ¼ � €X g,

ðm1X 1Þs
2 þ ½2l1o0z1m1ðX 1 � X sÞ þ 2l2o0z2m2ðX 1 � X 2Þ�s

þ ½m1l
2
1o

2
0ðX 1 � X sÞ þ m2l

2
2o

2
0ðX 1 � X 2Þ� ¼ �m1 €X g,

ðm2X 2Þs
2 þ ½2l2o0z2m2ðX 2 � X 1Þ�sþ ½m2l

2
2o

2
0ðX 2 � X 1Þ� ¼ �m2 €X g. ð12214Þ

Eqs. (12–14) can be rewritten into the matrix equation form as follows:

AðsÞ BðsÞ 0

BðsÞ F ðsÞ GðsÞ

0 GðsÞ IðsÞ

2
64

3
75

X s

X 1

X 2

2
64

3
75 ¼

�1

�m1
�m2

2
64

3
75 €X g. (15)
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Solving Eq. (15) then results in the TFs of the DTMD structure system, such that

TFsðsÞ ¼
X s

€X g

¼
m1½BðsÞIðsÞ� � m2½BðsÞGðsÞ� þ ½GðsÞGðsÞ� � ½F ðsÞIðsÞ�
½AðsÞF ðsÞIðsÞ� � ½AðsÞGðsÞGðsÞ� � ½BðsÞBðsÞIðsÞ�

,

TFm1ðsÞ ¼
X 1

€X g

¼
�m1½AðsÞIðsÞ� þ m2½AðsÞGðsÞ� þ ½BðsÞIðsÞ�

½AðsÞF ðsÞIðsÞ� � ½AðsÞGðsÞGðsÞ� � ½BðsÞBðsÞIðsÞ�
,

TFm2ðsÞ ¼
X 2

€X g

¼
m1½AðsÞGðsÞ� � m2½AðsÞF ðsÞ� � ½BðsÞGðsÞ� þ m2½BðsÞBðsÞ�
½AðsÞF ðsÞIðsÞ� � ½AðsÞGðsÞGðsÞ� � ½BðsÞBðsÞIðsÞ�

. ð16218Þ

In which TFs(s) denotes the TF of the main structure with the DTMD; TFm1(s) is the TF of the larger TMD in
the DTMD; and TFm2(s) refers to the TF of the smaller TMD in the DTMD. As(s), B(s), F(s), G(s), and I(s)
may be calculated, respectively, as follows:

AðsÞ ¼ s2 þ ð2o0zs þ 2l1o0z1m1Þsþ g2o2
0 þ m1l

2
1o

2
0,

BðsÞ ¼ ð�2l1o0z1m1Þs� m1l
2
1o

2
0,

F ðsÞ ¼ m1s2 þ ð2l1o0z1m1 þ 2l2o0z2m2Þsþ m1l
2
1o

2
0 þ m2l

2
2o

2
0,

GðsÞ ¼ ð�2l2o0z2m2Þs� m2l
2
2o

2
0,

IðsÞ ¼ m2s2 þ ð2l2o0z2m2Þsþ m2l
2
2o

2
0.

3. Dynamic magnification factors (DMF) of the DTMDs structure system

Express the DMF of the DTMD structure system through setting s ¼ io as follows:

DMFðos;oÞ ¼ DMFðgo0;oÞ ¼ o2
s ½TFsðioÞ�

�� �� ¼ ðg2o2
0Þ ½TFsðioÞ�
�� ��,

DMFm1ðos;oÞ ¼ DMFm1ðgo0;oÞ ¼ o2
s ½TFm1ðioÞ�

�� �� ¼ ðg2o2
0Þ ½TFm1ðioÞ�
�� ��,

DMFm2ðos;oÞ ¼ DMFm2ðgo0;oÞ ¼ o2
s ½TFm2ðioÞ�

�� �� ¼ ðg2o2
0Þ ½TFm2ðioÞ�
�� ��. ð19221Þ

In which DMFðos;oÞ ¼ DMFðgo0;oÞ denotes the DMF of the main structure with the DTMD;
DMFm1ðos;oÞ ¼ DMFm1ðgo0;oÞ represents the DMF of the larger TMD in the DTMD; and
DMFm2ðos;oÞ ¼ DMFm2ðgo0;oÞ refers to the DMF of the smaller TMD in the DTMD.

4. Two types of optimum objective functions—first type of optimum objective functions commonly used and

second type of optimum objective functions (namely the novel optimum objective function)

Introduce the following two non-dimensional parameters:
Total mass ratio of the total mass of the DTMD to the mode-generalized mass of structures:

m ¼ m1 þ m2, (22a)

mass ratio of the smaller to larger TMD mass:

mH ¼
m2

m1
¼

m2
m1

. (22b)

In order to design the DTMD with high robustness, the several natural frequencies of the main structure
with the DTMD will be taken into consideration, which have the following form:

Go0 ¼ ½g1; g2; . . . ; gn�1; gn�o0,

G ¼ ½g1; g2; . . . ; gn�1; gn�, ð23Þ

where each gi is set within the range from 0.5 to 1.5.
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Then, a novel optimum objective function, namely the second type of optimum goal functions, of the
DTMD structure system is given by

R ¼ min :
Xn

i¼1

ai � ½max :DMFðgio0;oÞ�
� �

¼ min :½ab� (24)

in which

a ¼ ½a1; a2; . . . an�1; an�,

b ¼

½max :DMFðg1o0;oÞ�

½max :DMFðg2o0;oÞ�

..

.

½max :DMFðgn�1o0;oÞ�

½max :DMFðgno0;oÞ�

2
6666666664

3
7777777775
, ð25; 26Þ

where ai is a weighting factor. Evidently, larger weighting factor ai corresponds to attaching much importance
to the maximum DMF of the main structure with the DTMD at gio0, namely ½max :DMFðgio0;oÞ�. Besides,
the external excitation frequency o is set within the range from 0.4gio0 to 4.4gio0. When a and b
simultaneously meet with Eqs. (32,33), Eq. (24) will degenerate into the first type of optimum objective
functions commonly used.

The implementation of Eq. (24) will then yield the optimum values of l1, l2, z1, z2, and mH. It is worth
pointing here out that when using Eq. (24), there is a need for meeting with

l1; l2X�; mHX�;

z2 2 ½0; 1Þ; z1 2 ½0; 1Þ ð27229Þ

in which �40 is a non-negative scalar, which approaches zero. Introduction of this number is to
avoid the occurrence of singular stiffness matrix and/or singular mass matrix in the numerical
optimality.

Subsequently, the DTMD stroke can be simultaneously evaluated through assessing the maximum DMF of
both the larger and smaller TMDs in the DTMD using the optimum parameters of the DTMD obtained in
light of the optimum criterion in Eq. (24), which has the following forms:

Rm1ðos;oÞ ¼ Rm1ðgio0;oÞ ¼ max :½DMFm1ðgio0;oÞ�,

Rm2ðos;oÞ ¼ Rm2ðgio0;oÞ ¼ max :½DMFm2ðgio0;oÞ�. ð30; 31Þ
5. Numerical studies

5.1. Designing the DTMD with the first type of optimum objective functions commonly used

In the case where the structural controlled natural frequency keeps unchanged, namely the DFR is set to be
equal to unity, the parameters in the optimum criterion (Eq. (24)) can be set as follows:

a ¼ ½0 � � � 0 1 0 � � � 0�,

G ¼ ½1 � � � 1 1 1 � � � 1�. ð32; 33Þ

It is worth mentioning herein that the optimum goal function (Eq. (24)), which meets with
Eqs. (32,33), is referred to as the first type of optimum goal functions, which is commonly used, such as
Ref. [30].
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With resorting to the optimum criterion (Eq. (24)), we obtain the optimum parameters of the DTMD with
the total mass ratio equal to 0.03 as follows:

l1 ¼ 1:0086,

l2 ¼ 0:9321,

z1 ¼ 0:0000,

z2 ¼ 0:1987,

mH ¼ 0:0830. ð34Þ

Fig. 2 shows the frequency response function (FRF) of the main structure, respectively, with the DTMD,
TMD, and MTMDwith the total mass ratio equal to 0.03, in the case of DFRV, G ¼ ½0:8 0:9 1:0 1:1 1:2�,
using the first type of optimum goal functions commonly used, namely Eq. (24) but simultaneously meeting with
Eqs. (32,33). It is worth pointing herein out that the MTMD in Fig. 2 directly uses that in Ref. [12], with the total
number of the TMD units equal to five. It is seen clearly from Fig. 2 that both the effectiveness and robustness to
the changes in the DFR for the DTMD are higher than those for both the MTMD and TMD.

Table 1 gives the Max.DMF of the main structure with the DTMD, MTMD, and TMD designed using the
first type of optimum objective functions commonly used; whereas Table 2 lists the Max.DMF of every TMD
unit in both the DTMD and MTMD, as well as the TMD designed using the first type of optimum objective
functions commonly used. Drawn from Tables 1 and 2, what worth noting is that the optimum damping ratio
of the larger TMD equals zero, thus no need of the dampers between the larger TMD in the DTMD and the
structure. Notwithstanding this, the maximum DMF of the larger TMD, used for estimating the stroke,
always remains at a lower level. For different DFR values, the max.DMF of both the larger and smaller
TMDs in the DTMD, every TMD unit, ordered increasingly in light of the natural frequencies, in the MTMD,
as well as the TMD is listed in Tables 1 and 2 for the purpose of comparisons. From Tables 1 and 2, the
Fig. 2. Frequency response function (FRF) of the main structure respectively with the DTMD, TMD, and MTMD in the case of DFRV,

G ¼ ½0:8 0:9 1:0 1:1 1:2� using the first type of optimum goal functions commonly used: DTMD ( ); TMD ( ); MTMD

( ).

Table 1

The Max.DMF of the main structure respectively with the DTMD, TMD, and MTMD designed in terms of the first type of optimum

objective functions commonly used

DFR, g 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Max.DMF of the main structure with the DTMD 15.363 17.564 16.409 10.004 5.347 11.425 19.888

Max.DMF of the main structure with the TMD 14.884 16.630 15.691 11.400 6.546 10.926 15.343

Max.DMF of the main structure with the MTMD 15.344 17.927 18.307 13.140 6.131 8.902 15.938
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Table 2

The Max.DMF of every tuned mass damper unit in the DTMD and MTMD, as well as the TMD designed in terms of the first type of

optimum objective functions commonly used

DFR, g 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Larger tuned mass damper (m1) in the DTMD 24.7 36.7 48.9 45.2 32.3 39.2 44.5

Smaller tuned mass damper (m2) in the DTMD 39.3 69.7 110.8 117.9 89.4 70.3 63.4

m in the TMD 23.7 32.8 41.3 42.7 34.0 25.4 23.9

First tuned mass damper (m1) in the MTMD 27.4 43.4 72.3 106.5 84.4 62.5 55.3

Second tuned mass damper (m2) in the MTMD 25.1 37.2 54.0 61.2 75.0 59.1 50.5

Third tuned mass damper (m3) in the MTMD 23.4 33.3 44.5 44.2 65.8 59.7 48.4

Fourth tuned mass damper (m4) in the MTMD 22.2 30.5 38.7 35.6 51.3 62.9 48.3

Fifth tuned mass damper (m5) in the MTMD 21.2 28.5 34.8 30.5 37.8 72.1 64.8
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following main conclusion can be obtained:
(1)
 The stroke of the larger TMD is significantly smaller than that of the smaller TMD; likewise the former is close
to the TMD in terms of the stroke, whereas the stroke of the latter approaches the maximum stroke of the
MTMD. Considering that the smaller TMD possesses higher optimum damping ratio, the vibration energy in
the DTMD is mainly dissipated through the relative motion between both the larger and smaller TMDs. The
large stroke of the smaller TMD will not pose much technological trouble in practical applications. The reason
for this is attributed to its small mass, which can be explicitly demonstrated by the following expression:

m2 ¼
m2

ms

¼ m
mH

1þ mH

� �
� mmH . (35)
(2)
 In the case of DFRV, G ¼ ½0:7 0:8 0:9 1:0 1:1 1:2�, namely when the DFR changes within the large
range from 0.7 to 1.2, the smaller TMD always maintains larger stroke, which means that the DTMD can
always render the capacity of vibration energy dissipation on a desirable level.
(3)
 For the case of great changes in the DFR, the TMD units, whose natural frequencies are away from the
controlled natural frequency of the structure, possess lower stroke. For instance, when the DFR changes
within the range from 0.6 to 0.9, the stroke of the fifth TMD unit with the natural frequency approximately
equal to 1.114o0 is smaller than the rest of same column in Table 2, thus, in practical terms, playing a
negligible role in reducing the vibration of structures and then indicating that the effective tuning mass of
the MTMD will decrease due to dispersion of the tuning frequency band of the MTMD.
Fig. 3. presents the max.DMF of the main structure with the DTMD, TMD, and MTMD, respectively, with
respect to the DFR, using the first type of optimum objective functions commonly used. It is seen that near
DFR, g ¼ 1, the robustness of the DTMD to the changes in the DFR is very close to that of the MTMD, but
both higher than the TMD in terms of the robustness. It is also shown that the DTMD renders higher
effectiveness than both the TMD and MTMD. However, when the DFR keeps increasing from g ¼ 1, the
DTMD will be worse than both the TMD and MTMD in terms of the effectiveness; when the DFR goes
decreasing from g ¼ 0:8, the DTMD in terms of the effectiveness will be worse than the TMD but better than
the MTMD. Therefore, the first type of optimum objective functions commonly used cannot render the
DTMD with high robustness to large changes in the DFR.

It is importantly pointed herein out that when meeting with any one of the following five requirements:

z1X0:000,

z1X0:001,

z1X0:005,

z1X0:010,

z1X0:050. ð36Þ
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Fig. 4. Employing the first type of optimum objective functions commonly used, max.DMF of the main structure with the DTMD with

different lower bounds of the damping ratio of the larger tuned mass damper with respect to the drift frequency ratio (DFR): z1X0.0

( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).

Fig. 3. Employing the first type of optimum objective functions commonly used, max.DMF of the main structure respectively with the

DTMD, TMD, and MTMD with respect to the drift frequency ratio (DFR): DTMD ( ); TMD ( ); MTMD ( ).
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The implementation of the optimum criterion (Eq. (24)) always yields lower bounds of the damping ratio (z1)
of the larger TMD.

Employing the first type of optimum objective functions commonly used and considering different lower
bounds of the damping ratio of the larger TMD, Figs. 4–6, respectively, show the max.DMF of the main
structure with the DTMD, the larger TMD, and smaller TMD with respect to the DFR. As can be seen, the
optimum damping ratio of the larger TMD is always equal to the lower bounds of the damping ratio, implying
that the DTMD behaves quite insensitively to the changes in the damping ratio of the larger TMD, within the
range from 0.0 to 0.001 or from 0.005 to 0.01. However, the max.DMF of both the larger and smaller TMDs
fluctuates significantly with the lower bounds of the damping ratio rising to a higher level, such as 0.05.

5.2. Designing the DTMD with the second type of optimum objective functions (namely the novel optimum

objective function)

In order to acquire higher robustness against large changes in the DFR, the importance should be attached
to the structural DMF at different DFR; but much importance should be yet attached to the contribution of
the DMF at the structural controlled natural frequency to the performance index (Eq. (24)).
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Fig. 5. Employing the first type of optimum objective functions commonly used, max.DMF of the larger tuned mass damper (m1) in the

DTMD with different lower bounds of the damping ratio of the larger tuned mass damper with respect to the drift frequency ratio (DFR):

z1X0.0 ( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).

Fig. 6. Employing the first type of optimum objective functions commonly used, max.DMF of the smaller tuned mass damper (m2) in the

DTMD with different lower bounds of the damping ratio of the larger tuned mass damper with respect to the drift frequency ratio (DFR):

z1X0.0 ( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).
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Letting

a ¼ ½1 1 5 1 1�,

G ¼ ½0:8 0:9 1:0 1:1 1:2�, ð37; 38Þ

the optimal parameters of the DTMD with resorting to the optimum criterion (Eq. (24)) as follows:

l1 ¼ 1:1048,

l2 ¼ 0:9634,

z1 ¼ 0:0000,

z2 ¼ 0:3514,

mH ¼ 0:2010. ð39Þ

Fig. 7 shows the FRF of the main structure with the DTMD, TMD, and MTMD, respectively, in the case
of DFRV, G ¼ ½0:8 0:9 1:0 1:1 1:2�, using the optimum criterion (Eq. (24) under the condition of
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Fig. 7. Frequency response function (FRF) of the main structure respectively with the DTMD, TMD, and MTMD in the case of DFRV,

G ¼ ½0:8 0:9 1:0 1:1 1:2� using the second type of optimum goal functions (namely the novel optimum goal function): DTMD

( ); TMD ( ); MTMD ( ).

Fig. 8. Employing the second type of optimum objective functions (namely the novel optimum goal function), max.DMF of the main

structure respectively with the DTMD, TMD, and MTMD with respect to the drift frequency ratio (DFR): DTMD ( ); TMD ( );

MTMD ( ).
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Eqs. (37,38)), referred herein to as the second type of optimum goal functions. It is seen from Fig. 7 that the
DTMD designed using the second type of optimum objective functions may further enhance the robustness to
the changes in the DFR. Fig. 8 presents the max.DMF of the main structure with the DTMD, TMD, and
MTMD, respectively, with respect to the DFR using the second type of optimum objective functions. It is seen
from Fig. 8 that near the structural controlled natural frequency, the max.DMF of the main structure with the
MTMD possesses larger value. For instance, at g ¼ 1, the max.DMF of the main structure with the MTMD
equals 6.131 using the first type of optimum objective functions; whereas the max.DMF of the main structure
with the MTMD equals 7.248 using the second type of optimum objective functions. A possible explanation of
such a phenomenon for the MTMD is that in a certain frequency band which could be tuned by the DTMD,
MTMD, and TMD, the MTMD in terms of the effective tuning mass is smaller than both the DTMD and
TMD due to using the discretized TMD units to control different natural frequencies distributed near the
structural controlled natural frequency, thus rendering relatively lower level of vibration suppression.
However, when large changes in the DFR happen, the effectiveness of both the DTMD and TMD decreases
rapidly. Notwithstanding large changes in the DFR, the effectiveness of the MTMD practically keeps
unchanged because its wide tunable frequency band prevents the effectiveness from the rapid drop. Therefore,
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it can be accounted that the MTMD is the best among three devices in the narrow natural frequency band
width with the center at g ¼ 1:0 (about within the ranges from g ¼ 0:9 to 1.0 and from g ¼ 1:0 to 1.1). But at
g ¼ 1:0, the DTMD can provide the highest effectiveness. However, when the DFR varies within the range
from 0.6 to 0.85, the effectiveness of the MTMD drops rapidly due to smaller effective tuning mass than that
of both the DTMD and TMD. What is more important is that the DTMD practically attains the same
effectiveness and robustness as the MTMD with the total number of the TMD units equal to five (see Fig. 9)
via further modifying the weighting factors in the second type of optimum objective function as follows:

a ¼ ½2 2 6 3 3 13 5 4 4 3 3�,

G ¼ ½0:8 0:85 0:9 0:9125 0:95 1:0 1:025 1:05 1:1 1:15 1:2�.

Table 3 presents the Max.DMF of the main structure respectively with the DTMD, MTMD, and TMD
designed using the second type of objective functions; while Table 4 renders the Max.DMF of each TMD unit
in the DTMD and MTMD, as well as the TMD designed using the second type of objective functions. It is
once again indicated in Tables 3 and 4 that the effective tuning mass is excessively impaired when large
changes in the DFR happen. For example, when the DFR, g ¼ 0:6, 0.7, 0.8, 0.9, 1.0, the limited stroke of the
fifth TMD unit in the MTMD means that it plays a negligible role in vibration reduction in practical terms.
The level of vibration reduction rendered by every TMD unit, except for the fifth TMD unit, is not that
satisfactory with the DFR above unity. The TMD provides lower level of vibration suppression due to smaller
stroke at the DFR, g ¼ 1:1, 1.2. However, the stroke of the smaller TMD in the DTMD is always relatively
large, which may account for its good effectiveness and robustness.

Table 5 shows the Max.DMF of both the larger and smaller TMDs in the DTMD as well as the TMD in the
case of further modifying weighting factors in the second type of goal functions. Notwithstanding this further
modification, the stroke of both the larger and smaller TMDs in the DTMD as well as the TMD does not yield
Fig. 9. Employing the second type of optimum objective functions (namely the novel optimum goal function) but further modifying the

weighing factors in the optimum goal functions of both the DTMD and TMD, max.DMF of the main structure respectively with the

DTMD, TMD, and MTMD with respect to the drift frequency ratio (DFR): DTMD ( ); TMD ( ); MTMD ( ).

Table 3

The Max.DMF of the main structure respectively with the DTMD, TMD, and MTMD designed in terms of the second type of optimum

objective functions (namely the novel optimum objective function)

DFR, g 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Max.DMF of the main structure with the DTMD 14.964 16.435 14.468 9.938 6.112 8.672 13.241

Max.DMF of the main structure with the TMD 14.779 16.333 15.213 11.078 6.668 10.437 14.569

Max.DMF of the main structure with the MTMD 15.127 17.242 15.756 9.351 7.285 8.381 13.305



ARTICLE IN PRESS

Table 4

The Max.DMF of every tuned mass damper unit in the DTMD and MTMD, as well as the TMD designed in terms of the second type of

optimum objective functions (namely the novel optimum objective function)

DFR, g 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Larger tuned mass damper (m1) in the DTMD 23.3 32.4 38.8 37.1 29.2 28.2 32.8

Smaller tuned mass damper (m2) in the DTMD 33.5 51.5 66.9 66.6 52.3 40.1 38.8

m in the TMD 23.4 31.8 38.7 38.6 30.6 24.2 22.9

First tuned mass damper (m1) in the MTMD 28.4 45.4 72.1 79.8 51.1 40.1 37.1

Second tuned mass damper (m2) in the MTMD 25.1 36.7 48.1 49.3 55.9 39.8 34.2

Third tuned mass damper (m3) in the MTMD 23.0 31.8 37.7 30.2 55.2 44.4 33.7

Fourth tuned mass damper (m4) in the MTMD 21.6 28.7 32.0 23.7 40.4 53.7 38.9

Fifth tuned mass damper (m5) in the MTMD 20.5 26.6 28.5 20.1 27.6 54.6 60.6

Table 5

The Max.DMF of both the larger and smaller tuned mass dampers in the DTMD, as well as the TMD in the case of modifying weighting

factors in the second type of optimum goal functions (namely the novel optimum objective function)

DFR, g 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Larger tuned mass damper (m1) in the DTMD 23.9 33.1 37.9 32.2 27.1 29.5 36.6

Smaller tuned mass damper (m2) in the DTMD 37.0 59.4 76.7 69.7 53.4 43.4 40.3

m in the TMD 23.2 31.0 36.7 35.7 28.0 23.2 21.9

Fig. 10. Employing the second type of optimum objective functions (namely the novel optimum goal function), max.DMF of the main

structure with the DTMD with different lower bounds of the damping ratio of the larger tuned mass damper with respect to the drift

frequency ratio (DFR): z1X0.0 ( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).
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significant change. Here, it is once again confirmed that the optimum damping ratio of the large TMD in the
DTMD yet equals zero though on the basis of the second type of optimum goal functions (namely the novel
optimum goal function).

Employing the second type of optimum objective functions, Figs. 10–12, respectively, present the max.DMF
of the main structure with the DTMD, the larger and smaller TMDs in the DTMD with different lower
bounds of the damping ratio, with respect to the DFR. Similarly, the implementation of the optimality meets
with any one of the five requirements (Eq. (36)). Figs. 10–12 once again manifests that though using the second
type of optimum goal functions, the optimum damping ratio of the larger TMD yet equals the lower bounds
of the damping ratio, indicating that the DTMD behaves quite insensitively to the changes in the damping
ratio of the larger TMD, within the range from 0.0 to 0.001 or from 0.005 to 0.01. However, the max.DMF of
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Fig. 11. Employing the second type of optimum objective functions (namely the novel optimum goal function), max.DMF of the larger

tuned mass damper (m1) in the DTMD with different lower bounds of the damping ratio of the larger tuned mass damper with respect to

the drift frequency ratio (DFR): z1X0.0 ( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).

Fig. 12. Employing the second type of optimum objective functions (namely the novel optimum goal function), max.DMF of the smaller

tuned mass damper (m2) in the DTMD with different lower bounds of the damping ratio of the larger tuned mass damper with respect to

the drift frequency ratio (DFR): z1X0.0 ( ); z1X0.001 ( ); z1X0.005 ( ); z1X0.01 ( ); z1X0.05 ( ).
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both the larger and smaller TMDs fluctuates significantly with the lower bounds of the damping ratio rising to
a higher level, such as 0.05.

5.3. Comparison between two types of optimum objective functions

Table 6 lists the minimum max.DMF (i.e. min.max.DMF) of the structure with the DTMD, MTMD, and
TMD using the first type of optimum objective functions commonly used and second type of optimum
objective functions (namely the novel optimum objective function) as well as modifying the weighting factors
in the second types of optimum objective functions for both the DTMD and TMD, when the DFR is equal to
unity. From Table 6 (see also Fig. 13), the following conclusions are obtained:
(1)
 The DTMD can provide higher effectiveness with respect to the MTMD and TMD designed using the first
type of optimum objective functions. Likewise, the DTMD is very close to the MTMD in terms of the
robustness against the change in the DFR.
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Fig. 13. Frequency response function (FRF) of the main structure with the DTMD using the second type of optimum goal functions

(namely the novel optimum goal function), but the TMD and MTMD utilizing the first type of optimum objective functions commonly

used in the case of DFRV, G ¼ ½0:8 0:9 1:0 1:1 1:2�: DTMD ( ); TMD ( ); MTMD ( ).

Table 6

The minimum max.DMF (min.max.DMF) of the main structure respectively with the DTMD, MTMD, and TMD in terms of the first

type of optimum objective functions commonly used and second type of optimum objective functions (namely the novel optimum

objective function) as well as modifying the weighting factors in the second type of optimum objective functions for both the DTMD and

TMD

Types of the optimum goal functions used in the

design

min.max.DMF of

main structure with

the DTMD

min.max.DMF of

main structure with

the MTMD

min.max.DMF of

main structure with

the TMD

Employing the first type of optimum objective

functions

5.347 6.131 6.546

Employing the second type of optimum objective

functions

6.112 7.285 6.668

Modifying the weighting factors in the second type

of optimum objective functions for both the

DTMD and TMD

6.996 7.285 7.208
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(2)
 Employing the second type of optimum goal functions, the effectiveness of both the TMD and MTMD
tends to diminish. But, both of them possess a significantly increasing robustness to the changes in the
DFR. Although the DTMD is better than the MTMD in terms of the effectiveness, the former is worse
than the latter in terms of the robustness to the changes in the DFR.
(3)
 Via further modifying the weighting factors in the second type of optimum objective functions, the DTMD
and MTMD can approximately attain the same level of vibration suppression, especially the same level of
robustness to the changes in the DFR. However, the TMD cannot closely match the MTMD in the
effectiveness and robustness to the changes in the DFR through further modifying the weighting factors in
the second type of optimum objective functions.
6. Comparison between the MTMD and DTMD in terms of the frequency band width coefficient (FBWC)

All the TMD units in the MTMD form a subordinate system. The total number of the TMD units equals
that of the resonance natural frequencies, namely the tuned natural frequencies of this subordinate system.
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Table 7

The frequency band width coefficient (FBWC) of both the DTMD and MTMD in terms of the first type of optimum objective functions

commonly used and second type of optimum objective functions (namely the novel optimum objective function)

Types of the optimum goal functions used

in the design

FBWC of the

DTMD for

m ¼ 0:01

FBWC of the

DTMD for

m ¼ 0:03

FBWC of the

MTMD for

m ¼ 0:01

FBWC of the

MTMD for

m ¼ 0:03

Employing the first type of optimum goal

functions

0.165 0.279 0.129 0.228

Employing the second type of optimum

goal functions

0.313 0.453 0.120 0.285

Modifying the weighting factors in the

second type of optimum goal functions for

the DTMD

0.256 0.404 0.120 0.285
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Suppose the total number of the TMD units is taken as n, it is evident that the MTMD will possess n

resonance frequencies, while the total number of the natural frequencies of this subordinate system also equals
n. The resonance frequencies of this subordinate system distribute around the structural controlled natural
frequency, thus covering this controlled natural frequency. When the input excitation frequency is close to that
of the main structure, high level of vibration reduction will be attained by large-amplitude motion of the
MTMD.

Further, the ratio of the outcome of subtracting the minimum from the maximum of the natural frequencies
to the structural controlled natural frequency is referred herein as the FBWC. The FBWC reflects the width of
input excitation frequencies in which the MTMD will render a desirable level of vibration suppression. For
example, for the MTMD with the total number of the TMD units equal to five and with the total mass ratio
being 0.03, the ratios of the resonance frequencies of subordinate system to the structural controlled natural
frequency, respectively, equal 0.871, 0.920, 0.969, 1.018, 1.067, thus FBWC ¼ 0.196. After the main structure,
a linear constant system reaches the steady state of vibration, its natural frequency approximately matches
that of the input excitation. The main structure will generate the driving force, whose natural frequency equals
that of the input excitation, to vibrate the subordinate system attached on it. Given that the input frequency is
close to those n resonance frequencies, the vibration amplitude of subordinate system is relatively large; on the
contrary, that of the main structure is smaller. If the frequencies of the input excitation are within the FBWC
of the MTMD, the subordinate system will in resonance then lead to high level of vibration suppression. The
DTMD, in fact, being a two-order subordinate system consisting of one larger TMD and one smaller TMD,
possesses two resonance natural frequencies, which could be obtained in light of the mass and stiffness
matrices of the DTMD. These two resonance natural frequencies will cover the structural controlled natural
frequency in that those two frequencies distribute around the structural controlled natural frequency.
Similarly, the ratio of the outcome of subtracting the smaller frequency from the larger one to the controlled
natural frequency of the structure is FBWC. For instant, with the total mass ratio equal to 0.03, the ratios of
the resonance frequencies of two-order subordinate system to the structural controlled natural frequency are,
respectively, 0.8399 and 1.1192, consequently FBWC ¼ 0.2793. The DTMD can then render high level of
vibration reduction in the case where the input excitation frequencies are within this FBWC. Evidently,
besides good robustness, the DTMD possesses convenient maintenance as well as simplified configuration in
comparison with the MTMD. Table 7 provides the FBWC of both the DTMD and MTMD with the total
mass ratio respectively equal to 0.01 and 0.03. It is evident that the DTMD is larger than the MTMD in terms
of the FBWC, thus demonstrating that the DTMD possesses significantly better robustness to the NFT than
the MTMD.

7. Conclusion

The DTMD consists of one larger TMD and one smaller TMD. The vibration energy dissipation way of the
DTMD is different from that of both the TMD and MTMD. The DTMD possesses better effectiveness and
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higher robustness to the changes in the DFR in comparison with the TMD. The DTMD designed using the
second type of optimum objective functions, namely the novel optimum objective function proposed in this
paper, practically provides the same effectiveness and robustness to the changes in the DFR as the MTMD
with the total number of the TMD units equal to five and with equal total mass ratio (from Ref. [12]).
Likewise, the DTMD possesses significantly higher robustness to the changes in the DFR than the TMD. On
the other hand, the FBWC of the DTMD is larger than that of the MTMD with the total number of the TMD
units equal to five with equal total mass ratio, thus manifesting that the DTMD possesses significantly higher
robustness to the NFT than the MTMD. Furthermore, the numerical computation indicates that the optimum
damping ratio of the larger TMD equals zero, thus no need of the dampers between the larger TMD in the
DTMD and the structure, which implies that the DTMD possesses considerable convenient maintenance as
well as simplified configuration in comparison with the MTMD. Therefore, the DTMD is an advanced control
device with respect to both the TMD and MTMD.

Generally, the optimum damping ratio (z2) of the smaller TMD in the DTMD is significantly larger than
that of the traditional TMD. The vibration of the smaller TMD may thus be suppressed effectively. However,
the physical principle of the DTMD is different from that of the TMD. The DTMD suppresses the vibration
of structures through large relative motion between the larger and smaller TMDs to activate the dashpot of
the smaller TMD with high damping ratio to dissipate the vibration energy, consequently attenuating this
large relative motion. Another important feature of the DTMD is that no dashpot is to be required between
the larger TMD and a structure; while the dashpot is required between the TMD and a structure. However, it
is worth pointing out here that sometimes the dashpot between the TMD and a structure plays a negative role
in suppressing the vibration of structures. For example, the dashpot accelerates the vibration of structures,
when _xsð _xs � _xTMDÞp0, in which _xs and _xTMD refer to the velocities of the main structure and TMD with
respect to the ground, respectively.

The two types of optimum goal functions all include the variables (the tuning frequency ratios l1 and l2,
damping ratios z1 and z2, and mass ratio mH) to be optimized, and thus the control performance of the DTMD
is dependent on the mass ratio (mH). Evidently, the mass ratio (mH) is concerned with the total mass ratio (m)
selected in designing the DTMD. Generally, the total mass ratio is within the range from 0.01 to 0.03 in
practical applications; consequently, the optimum mass ratio (mH) is within the range from 0.028 to 0.083
when using the first type of optimum goal functions. However, the optimum mass ratio (mH) obtained using
the second type of optimum goal functions is significantly larger than that using the first type of optimum goal
functions.
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