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Abstract

The pseudo-excitation method (PEM) and the precise integration algorithm are combined to compute the non-

stationary random ground vibration caused by loads moving along a railway track at constant speed. The rails are

modeled as a single infinite Euler beam connected to sleepers and hence to ballast. This ballast rests on the ground, which is

assumed to consist of layered transversely isotropic soil. The equations of motion of the system are established in a

Cartesian coordinate system which moves with the loads. The non-stationary power spectral density and the time-

dependent standard deviation can be derived conveniently by means of PEM, while the precise integration algorithm

for two-point boundary value problems is applied to the solution of the equations of motion in the frequency/wavenumber

domain. By virtue of the transverse isotropic property of the layered soils, the threefold iteration process in the

frequency/wavenumber domain is reduced into a twofold iteration process. Hence the computational efficiency is

improved considerably.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Because traffic is becoming faster, traffic-induced ground vibration is receiving increased attention. Since
vehicles cause moving random loads they induce non-stationary random vibration at any specific ground
location and hence the problem is in general quite difficult to solve.

Due to the limitations of available methods, this problem has been investigated by means of random
vibration theory and a variety of different simplifications. The assumption of stationary response was adopted
in Refs. [1–3] by neglecting the motion of the loads. Andersen et al. [4] studied a single-degree-of freedom
vehicle moving along an infinite beam with random surface irregularities on a Kelvin foundation, with the
equations of motion for the system formulated in a coordinate system which moved with the vehicle. Sun and
Greenberg [5] presented a follow-up spectral analysis procedure to deal with the dynamic responses of linear
systems subjected to moving stochastic sources. Here the responses were assumed to be stationary in
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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a coordinate system which follows the loads and a brief physical explanation was also given. Lombaert et al.
[6] proposed a stochastic solution procedure in order to compute the non-stationary free field responses due to
a moving load. They derived the autocorrelation function and the time-dependent spectral density at a fixed
point in the free field via the Wigner–Ville method. However, when the correlation of loads is taken into
account the computational cost becomes very high. The relatively recently developed pseudo-excitation
method (PEM) [7–9] provides a new way to solve such problems.

It is known that PEM transforms stationary random analysis into deterministic harmonic analysis, and
transforms non-stationary random analysis into deterministic transient analysis. Such transforms are not only
highly efficient, but also accurate. For example, Zhong et al. [10] and Gao et al. [11] have studied the
propagation of random seismic waves by using PEM. In the present paper the non-stationary PSD functions
and the time-dependent standard deviations of the dynamic responses of such a rail system as that described
above will be derived by using PEM.

Another issue of interest is how to simulate the propagation of ground waves in stratified soils
near the railway track. The transmission of vibration in the vicinity of a rectangular vertical harmonic load
located on an elastic layer overlying an infinite elastic half-space was investigated by using a semi-analytical
approach [12,13]. Jones and Block [14] proposed an FEM-based scheme to solve Navier’s
elastodynamic equations. Based on Refs. [12–14], Sheng et al. [15,16] developed a flexibility matrix
approach to the solution of the propagation of vibration in ground due to a harmonic load moving along a
railway track structure. Recently, Sheng et al. [17] further developed a theoretical model for train-excited
ground random vibration due to vertical track irregularities, in which FFT with respect to time was
applied so that another sort of PSD was obtained, which does not vary with time. Dieterman and
Metrikine [18] and Metrikine and Popp [19] proposed the use of a frequency-dependent ‘‘equivalent
spring stiffness’’ as a substitute for the elastic half-space. As an extension of this, Vostroukhov and
Metrikine [20] studied the closed-form solutions of the steady-state dynamic responses of a railway track
due to a moving train. Lombaert et al. [21] used the Betti–Rayleigh reciprocal theorem to study ground
vibration and presented an integral transformation method to improve the computational efficiency.
A conventional means for solving wave propagation in stratified media is to transform the partial differential
equations into ordinary differential equations (ODEs) in the frequency/wavenumber domain. Zhong [22]
proposed use of the precise integration algorithm [23] when investigating this problem and hence he obtained
accurate numerical solutions.

PEM is an efficient and exact method for random vibration analysis and the precise integration method is
also accurate for solving the ODE. Combining them to analyse the random ground vibration generated by the
moving loads yields accurate results. Unfortunately the computational efficiency is still not very satisfactory
for complex problems, because of the threefold iteration process in the frequency/wavenumber domain. To
overcome this shortcoming, an improved computational procedure is proposed in the present paper, which
takes advantage of the transverse isotropic property of the layered soil to reduce the threefold iteration process
into a twofold one, by means of a coordinate rotation, while inverse fast fourier transform (IFFT) is applied to
obtain the responses in the spatial domain.

2. Non-stationary PSD and time-dependent standard deviation of dynamic responses of a linear system subjected

to moving loads

Dynamic properties of linear systems can be characterized by an impulse response function. The impulse
response function, hðx; n; t; sÞ, represents the dynamic response at the point, or location x (which consists of
three right-handed Cartesian coordinates) at time t when the system is subjected to an impulse at location n
and time s. For a time-independent system, the impulse response function degenerates to hðx; n; t� sÞ.

Assume that pðtÞ is a stationary random load moving along direction n (again consisting of three right-
handed Cartesian coordinates) at speed v and that V represents the domain occupied by the system. According
to the principle of superposition, the transient dynamic response of the system can be written as

uðx; tÞ ¼

Z t

0

Z
V

hðx; n; t� tÞGðn� nvtÞpðtÞdn dt (1)



ARTICLE IN PRESS
F. Lu et al. / Journal of Sound and Vibration 298 (2006) 30–4232
where Gð�Þ is a unit step function

GðxÞ ¼
1 x 2D

0 xeD

(

where D denotes the finite domain of the load distribution. Using the transformation n0 ¼ n� n vt, Eq. (1) can
be rewritten as

uðx; tÞ ¼

Z t

0

h0ðx; t; tÞpðtÞdt (2)

in which h0ðx; t; tÞ ¼
R
D

hðx; n0 þ nvt; t� tÞdn0. By letting each side of Eq. (2) be multiplied by itself and taking
the expectation, it is not difficult to obtain the spatial-time correlation function

Ruðx; t1; t2Þ ¼ E½uðx; t1Þuðx; t2Þ� ¼

Z t1

0

Z t2

0

h0ðx; t1; t1Þh
0
ðx; t2; t2ÞRpðtÞdt1 dt2 (3)

Here E½d� is the expectation operator, t ¼ t1 � t2, and RpðtÞ is the autocorrelation functions of pðtÞ.
According to Wiener–Khintchine theorem, the relationship between the PSD SpðOÞ and the autocorrelation
function RpðtÞ is

E½pðt1Þpðt2Þ� ¼ RpðtÞ ¼
Z þ1
�1

SpðOÞeiOðt1�t2Þ dO (4)

in which O is the frequency and Sp reflects the energy distribution of a stationary random process in the
frequency domain. Substituting Eq. (4) into (3), the spatial-time correlation function can be expressed as

Ruðx; t1; t2Þ ¼

Z þ1
�1

SpðOÞI�ðx;O; t1ÞIðx;O; t2ÞdO (5)

Iðx;O; tÞ ¼
Z t

0

h0ðx; t; tÞeiOt dt (6)

where the asterisk denotes complex conjugate.
By letting t1 ¼ t2 ¼ t, Eq. (5) becomes the time-dependent variance

Ruðx; tÞ ¼ s2uðx; tÞ ¼
Z þ1
�1

SpðOÞI�ðx;O; tÞIðx;O; tÞdO (7)

where Ruðx; tÞ is variance and suðx; tÞ is standard deviation. Obviously, the integrand in Eq. (7) is the non-
stationary PSD. It can be regarded as the time-dependent distribution of the vibration energy versus frequency
at a fixed-point, where

Suðx;O; tÞ ¼ SpðOÞI�ðx;O; tÞIðx;O; tÞ (8)

It is evident from Eq. (6) that Iðx;O; tÞ is the response of the system due to a unit moving harmonic
load eiOt. Therefore if a pseudo-excitation ~pðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
SpðOÞ

p
eiOt is used, the corresponding response will be

~uðx;O; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
SpðOÞ

p
Iðx;O; tÞ. Thus

Suðx;O; tÞ ¼ ~u�ðx;O; tÞ ~uðx;O; tÞ ¼ SpðOÞI�ðx;O; tÞIðx;O; tÞ (9)

Thus, the non-stationary PSD of random responses has been derived by PEM.
If steady-state responses are required, solutions can be obtained by changing the lower limit of the

integration in Eq. (1) from 0 to �1. Because the loads are moving, the responses at fixed locations are still
non-stationary. Once the deterministic pseudo responses have been worked out, Eqs. (7) and (9) enable the
non-stationary PSD functions and time-dependent standard deviations to be obtained both easily and
accurately.
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3. The equations of motion of the ground and railway track

The structural model is similar to that used in Ref. [16], see Fig. 1. The rails are regarded as a single infinite
Euler beam with mass per unit length of track mr and bending stiffness EI . The sleepers are modeled as a
distributed mass ms per unit length of track. The rail pads are represented by a distributed vertical spring
stiffness kp and the ballast is modeled as an elastic layer with mass mB and vertical stiffness kB per unit length
of track. The damping properties of all of these track components are accounted for by using complex stiffness
parameters.

The ground consists of n layers of soil overlying a rigid foundation. The material constants of the jth layer
are identified by Young’s modulus Ej , Poisson’s ratio nj , density rj , loss factor Zj and thickness hj .

When a vehicle moves along a track, its wheelsets are subjected to loads with different time histories. Since
such loads are generated by the same track surface, it can reasonably be assumed that if such wheelsets have
very similar parameters, the loads will have identical PSD except for certain time lags. In fact, all these loads
can be regarded as a generalized single excitation [9]. When dealing with such fully correlated excitations,
PEM is still accurate and very efficient. Now, assume that two loads, P1 and P2, are moving at speed v along
the railway track, and let dðx� vt� x1Þ, dðx� vt� x2Þ represent their locations. Both loads have the same
PSD SPðOÞ but with a certain time lag t ¼ ðx1 � x2Þ=v. According to PEM [7–9], the pseudo-excitations can be
constituted as

~P1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SPðOÞ

p
expðiOtÞ; ~P2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SPðOÞ

p
expð�iOtÞ expðiOtÞ (10a)

which can be rewritten as the vector

f ~Pg ¼
~P1

~P2

( )
¼

1

expð�iOtÞ

( ) ffiffiffiffiffiffiffiffiffiffiffiffiffi
SPðOÞ

p
expðiOtÞ. (10b)

In Eq. (10) the item expð�iOtÞ can be regarded as cross-correlation between P1 and P2, and so it is a
constant. Therefore it does not increase the computation time. Thus the inclusion of cross-correlation
V Rail

Rail pad

Sleepers

Ballast x

y

z

Ground surface

Ground layers

Random loads

Fig. 1. Model of railway track and ground.
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information in PEM is very simple and efficient. For more loads, similar pseudo-excitations can also be
constituted. Next, the wave propagation problem due to the deterministic pseudo-excitations of Eq. (10),
instead of a few random excitations, needs to be solved.

The railway track is aligned in the x direction and has a contact width 2b with the ground. Furthermore, the
contact forces are assumed to be normal to the ground surface and uniformly distributed over the width of the
track. Referring to Fig. 1, the vertical displacements of the beam, the sleepers and the ground surface directly
beneath the beam are denoted by, respectively, ŵ1ðx; tÞ, ŵ2ðx; tÞ and ŵ3ðx; tÞ. Similarly, the forces at the rail/
sleeper, sleeper/ballast and ballast/ground interfaces are denoted by F̂ 1ðx; tÞ; F̂ 2ðx; tÞ and F̂ 3ðx; tÞ, while the
displacements of the jth soil layer in x, y and z directions are ûjðx; y; z; tÞ; v̂jðx; y; z; tÞ and ŵjðx; y; z; tÞ.

A local right-hand Cartesian coordinate system which follows the moving loads is introduced by the
transformation w ¼ x� vt. Due to convection the partial derivative with respect to time in the moving frame
of reference includes a spatial derivative

q
qt

����
w
¼

q
qt

����
x

þ v
q
qw

(11)

Now let _w ¼ qŵ=qt
��
w and €w ¼ q2ŵ=qt2

��
w. Then the differential equations of the system (except for the

ground) in the local coordinates are given by Eqs. (12)–(14) which apply, respectively, to the beam, the sleepers
and the ballast layer, for which a consistent mass approximation is used.

EI
q4ŵ1

qw4
þmr

€̂w1 � 2v
q _̂w1

qw
þ v2

q2ŵ1

qw2

 !
þ F̂1 ¼ ~P1ðtÞdðw� x1Þ þ ~P2ðtÞdðw� x2Þ. (12)

F̂1 ¼ kpðŵ1 � ŵ2Þ

ms
€̂w2 � 2v

q _̂w2

qw
þ v2

q2ŵ2

qw2

 !
� F̂ 1 þ F̂2 ¼ 0 (13)

mB

6

2 1

1 2

� � €̂w2

€̂w3

( )
� 2v

q _̂w2=qw

q _̂w3=qw

( )
þ v2

q2ŵ2=qw2

q2ŵ3=qw2

( ) !
þ kB

1 �1

�1 1

� �
ŵ2

ŵ3

( )
þ
�F̂2

F̂3

( )
¼ 0 (14)

Meanwhile, the differential equations of the jthlayer of the ground are

ðlj þ GjÞ
qDj

qw þ Gjr
2ûj ¼ rj

€̂uj � 2v
q _̂uj

qw þ v2
q2ûj

qw2

� �
;

ðlj þ GjÞ
qDj

qw þ Gjr
2v̂j ¼ rj

€̂vj � 2v
q _̂vj

qw þ v2
q2 v̂j

qw2

� �
;

ðlj þ GjÞ
qDj

qw þ Gjr
2ŵj ¼ rj

€̂wj � 2v
q _̂wj

qw þ v2
q2ŵj

qw2

� �
;

(15)

where r2 is the Laplace operator, lj and Gj are the Lamé constants and

lj ¼
njEjð1þ iZj sgnðOÞÞ

ð1þ njÞð1� 2njÞ
; Gj ¼

Ejð1þ iZj sgnðOÞÞ

2ð1þ njÞ
,

Dj ¼
qûj

qw
þ

qv̂j

qy
þ

qŵj

qz
.

Transforming Eqs. (12)–(15) into the frequency/wavenumber ðO; kw; kyÞ domain gives

EIk4w � o2mr þ kp �kp 0

�kp kp þ kB � o2ðms þmB=3Þ �ðkB þ o2mB=6Þ

0 �ðkB þ o2mB=6Þ ðkB � o2mB=3Þ

2
664

3
775

w1

w2

w3

8><
>:

9>=
>; ¼

P

0

�F3

8><
>:

9>=
>; (16)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SPðOÞ

p
½expð�ikwx1Þ þ expð�ikwx2Þ expð�iOtÞ�
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K22q
00 þ ðK21 � K12Þq

0
� ðK11 � ro2IÞq ¼ 0 (17)

K22 ¼

Gj 0 0

0 Gj 0

0 0 lj þ 2Gj

2
664

3
775

K21 ¼ �K
T
12 ¼ ikw

0 0 Gj

0 0 0

lj 0 0

2
664

3
775þ iky

0 0 0

0 0 Gj

0 lj 0

2
664

3
775

K11 ¼ k2w

lj þ 2Gj 0 0

0 Gj 0

0 0 Gj

2
664

3
775þ k2y

Gj 0 0

0 lj þ 2Gj 0

0 0 Gj

2
664

3
775

þ kwky

0 lj þ Gj 0

lj þ Gj 0 0

0 0 0

2
664

3
775

in which: I is the (3� 3) identity matrix; q ¼ uj ; vj ;wj

� �T
, o ¼ O� vkw (O is the frequency of vibration in the

fixed frame of reference whereas o can be regarded as the circular frequency in the moving frame of reference)
and ð#Þ0 ¼ qð#Þ=qz represents differentiation with respect to z. Eqs. (16) and (17) are the governing equations
of the coupling system. In the following section, Eq. (17) will be solved by using the precise integration
method.

4. Solution of the coupling system

4.1. The interval formulation for the ground

Assume that the jth layer of the ground is in the interval ½za; zb� and define a dual vector

p ¼ txz; tyz;sz

� �T
¼ K22q

0 þ K21q (18)

which represents the traction vector. Then Eq. (17) can be rewritten in the state space as

v0 ¼ Hv; H ¼
AD

BC

� �
; v ¼

q

p

( )
(19)

A ¼ �K�122 K21; B ¼ K11 � K12K
�1
22 K21 � ro2I;

C ¼ K12K
�1
22; D ¼ K�122 :

From Eq. (19), the interval formulation of the jth layer can be obtained as

qb ¼ Fqa �Gpb; pa ¼ Qqa þ Epb (20)

where qa and qb represent the displacement vectors and pa and pb represent the traction vectors at the two sides
of the jth layer and F;G;Q and E satisfy the following relations and the boundary conditions. (more detail can
be found in Ref. [10]).

F0 ¼ ðAþGBÞF; E0 ¼ EðBG� CÞ

G0 ¼ AG�GC�DþGBG; Q0 ¼ �EBF ð21aÞ

Gðza; zbÞ ¼ Qðza; zbÞ ¼ 0; Fðza; zbÞ ¼ Eðza; zbÞ ¼ I when za ! zb. (21b)
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Consider two adjacent intervals ½za; zb� and ½zb; zc�. Applying Eq. (20) to them gives

qb ¼ F1qa �G1pb; pa ¼ Q1qa þ E1pb for ½za; zb�, (22a,b)

qc ¼ F2qb �G2pc; pb ¼ Q2qb þ E2pcfor ½zb; zc�, (22c,d)

The intervals ½za; zb� and ½zb; zc� can be merged into the interval ½za; zc�, see Ref. [23], to give

qc ¼ Fcqa �Gcpc; pa ¼ Qcqa þ Ecpc for ½za; zc�,

Fc ¼ F2ðIþG1Q2Þ
�1F1; Gc ¼ G2 þ F2ðG

�1
1 þQ2Þ

�1E2,

Qc ¼ Q1 þ E1ðQ
�1
2 þG1Þ

�1F1; Ec ¼ E1ðIþQ2G1Þ
�1E2. ð23Þ

By combining all of the elastic layers and by assuming that the ground overlies an absolutely rigid
foundation, the whole interval formulation for the ground can be written as

qup ¼ Ḡpup (24)

in which qup ¼ uup; vup;wup

� �T
and pup ¼ txz; tyz;sz

� �T
represent the displacement and traction vectors at the

ground surface, respectively, and Ḡ is the total coefficient matrix.

4.2. Solution of the coupling system

Continuity of displacement at the ground surface is expressed as [15]

w3ðkw;OÞ ¼
1

2p

Z þ1
�1

wupðkw;ky;OÞeikyy dkyjy¼0 ¼
1

2p

Z þ1
�1

wupðkw;ky;OÞdky (25)

and force equilibrium at the ground surface is expressed as [15]

tupxz ¼ 0; tupyz ¼ 0; supz ¼
sinðkybÞ

kyb
F3ðkw;OÞ (26)

Substituting Eq. (26) into Eqs. (24) and (25) gives

w3ðkw;OÞ ¼ Lðkw;OÞF 3ðkw;OÞ, (27)

where

Lðkw;OÞ ¼ �
1

2p

Z þ1
�1

Ḡ33ðO� vkw;kw;kyÞ
sinðkybÞ

kyb
dky.

Eq. (27) is substituted into Eq. (16) to calculate F3, which is then substituted into Eq. (24) to produce the
dynamic responses of the ground surface, i.e. uðkw; ky;OÞ, vðkw;ky;OÞ and wðkw;ky;OÞ. By using the IFFT
and the transformation x ¼ wþ vt, the responses ûðx; y;O; tÞ, v̂ðx; y;O; tÞ and ŵðx; y;O; tÞ in the fixed
coordinate system can be obtained. Then by using PEM, the non-stationary PSDs Suðx; y;O; tÞ, Svðx; y;O; tÞ
and Swðx; y;O; tÞ and the time-dependent standard deviations suðx; y; tÞ, svðx; y; tÞ and swðx; y; tÞ can be
computed from

Suðx; y;O; tÞ ¼ û � û�; Svðx; y;O; tÞ ¼ v̂ � v̂�; Swðx; y;O; tÞ ¼ ŵ � ŵ�

s2uðtÞ ¼
Z þ1
�1

Su dO; s2vðtÞ ¼
Z þ1
�1

Sv dO; s2wðtÞ ¼
Z þ1
�1

Sw dO ð28Þ

5. Strategy to accelerate the computation

The above section has given the computation process. When a group of ðO;kw; kyÞ is specified, the matrix
Ḡðo ¼ O� vkw;kw;kyÞ has to be calculated. It contains a threefold integration process and so is very time
consuming. Therefore it is very desirable to accelerate the computation. To achieve this, a strategy based on
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a coordinate system rotation follows. The properties of matrix Ḡ are the foundation of this strategy, which
was also discussed in Ref. [15].

Firstly, let a new coordinate system ðk0w;k
0
yÞ be established, which shares the origin of the coordinate system

ðkw; kyÞ. Secondly, let a series of o0 2 ½0;maxðO� vkwÞ� and k0w 2 0;maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w þ k2y

q
Þ

h i
be selected, with k0y ¼ 0.

Here we let the lower limit of o0 be zero, because Ḡð�o0;k0w; 0Þ can be obtained easily from Ḡðo0;k0w; 0Þ.

Thirdly, let the corresponding Ḡ
0
¼ Ḡðo0;k0w; 0Þ be computed and save these matrices. As the contact force is

vertical, only the third column of Ḡ
0
is required, which enables computer storage space to be saved. The

procedure for computing matrix ḠðO;kw;kyÞ is (1) rotate the coordinates ðk0w;k
0
yÞ and let the k0w axis pass the

point ðkw;kyÞ; (2) select the matrix Ḡ
0
¼ Ḡðo0 ¼ O� vkw;k0w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2w þ k2y

q
; 0Þ (may be Ḡ

0
cannot be obtained

completely accurately, but an approximation with sufficient precision can be found) and; (3) compute the

matrix Ḡ ¼ TTḠ
0
T using the coordinate transform matrix T.

6. Numerical examples

The parameters of the ground and the railway track are listed in Tables 1 and 2 [15].

Example 1. In order to test the correctness of the program, some of its results were compared with those of
Ref. [15]. The method of separation of variables [24] was applied to deal with the elastic half-space in Ref. [15]
and the load used was a unit harmonic excitation with frequency 40Hz. Fig. 2 presents the distribution of the
vertical ground displacement in the wavenumber domain due to unit harmonic load intensity acting on a
2:7m� 2:7m rectangle on the ground. Fig. 3 presents the distributions of the longitudinal, lateral and vertical
ground displacements due to unit harmonic load acting on the track at the origin.

In Fig. 2 the amplitudes decay to zero beyond the wavenumbers kw ¼ 2:3 rad m�1 or ky ¼ 2:3 rad m�1,
which agree well with the results shown in Ref. [15]. In addition, the shapes of the ground displacement
distribution in Fig. 3 are quite similar to those shown in Ref. [15]. These, and additional checks not reported
here, verify the appropriateness of the method and program developed for this paper.

Example 2. Random vibration of the vehicle/track coupling system was extensively investigated in Chapter 3
of Ref. [25], in which a vehicle/track-coupling model was set up and the PSDs of the vehicle load were
obtained at speed 44.44m s�1. The same model is used as the present example except that the speed is higher,
Table 1

The parameters for the ground

Layer Depth (m) Young’s modulus (106Nm�2) Poisson ratio Density (kgm�3) Loss factor

1 7 269 0.257 1550 0.1

2 150 2040 0.179 2450 0.1

Table 2

The parameters for the railway track

Mass of rail beam per unit length of track 120kgm�1

Bending stiffness of rail beam 1:26� 107 Nm�2

Rail pad stiffness 3:5� 108 Nm�2

Rail pad loss factor 0:15

Mass of sleeper per unit length of track 490kgm�1

Mass of ballast per unit length of track 1200kgm�1

Ballast stiffness per unit length of track 3:15� 108 Nm�2

Loss factor of ballast 1:0
Contact width of railway and ground 2:7m
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Fig. 2. Vertical ground displacement due to unit ground excitation.

Fig. 3. Ground displacement components due to unit vehicle load: (a) longitudinal; (b) lateral and; (c) vertical.
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because no other PSD data are available as vehicle random loads. It is noted that when the IFFT is used, care
must be taken to ensure both that at each wavenumber point ḠðO;kw;kyÞ there is sufficient precision and also
that there are sufficient points for the transformation to give a sufficiently accurate quadrature. In this
example 1000 points were taken k0x, ranging from 0 to 10 rad m�1, and the IFFT was carried out over a grid of
512� 256 within �5okw; kyo5 rad m�1. The frequency o varies with the wavenumber kw according to
o ¼ O� vkw, and the influence of kw on various results was remarkably high. Therefore kw should be expressed
by mean of a suitably dense grid.
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Two fixed locations (0,15m) and (0,25m) were chosen when evaluating the vibration status, where location
(x, y) represents a ground surface point with coordinates xm and ym. Thus the first location is closer to the
track. Fig. 4 shows the non-stationary PSD of the vertical displacements of these two locations due to a single
load moving along the track at speeds of 50, 75 and 100m/s. It is assumed that when t ¼ 0 the moving load
passes the origin (0,0). Obviously material damping becomes more significant at the higher frequencies,
whereas geometrical damping dominates at lower frequencies. Comparing Figs. 4(a) and (b), it can be seen
that the vibration energy at location (0,15) is distributed approximately within the frequency range from a few
Hz to 100Hz, whereas at (0,25) the range becomes from a few Hz to 80Hz. Therefore, the vibration energy is
distributed in higher frequencies in regions closer to the track. Figs. 4(a) and (b) reflect this phenomenon
reasonably. Figs. 4(c)–(f) show that when the load passes the observation locations progressively more
quickly, the vibration energy increases remarkably and is concentrated within the range from a few Hz up to
50Hz, moreover there are secondary peaks which corresponded to the load speed.

The time-dependent standard deviations of the vertical displacements at the speeds of 50 and 100 m=s are
shown in Fig. 5, for the locations (0,15), (0,25) and (0,35), respectively. Clearly, when the load is far from these
three locations their displacement responses are of similar magnitude, wheres as the load passes by them their
vibration levels differ substantially.

Example 3. Four vehicle loads act on the track at the locations x1 ¼ 10:2 m, x2 ¼ 7:8 m, x3 ¼ �7:8 m and
x4 ¼ �10:2 m [25]. It is assumed that these loads are fully correlated, but that time lags exist between them,
which can be expressed as

fP1ðtÞ;P2ðtÞ;P3ðtÞ;P4ðtÞg
T ¼ fPðt� t1Þ;Pðt� t2Þ;Pðt� t3Þ;Pðt� t4ÞgT

ti ¼ ðx1 � xiÞ=vi ¼ 1; 2; 3; 4

The time-dependent standard deviations of the vertical displacement at locations (0,15) and (0,25) due to the
above four loads moving at speeds of 50 and 100 m s�1 are shown in, respectively, Figs. 6 and 7. The solid and
dotted curves represent, respectively, the results with or without account being taken of the cross-correlation
between the loads. Clearly the influence of the cross-correlation trends towards being negligible at speed
50 m=s�1, whereas when the speed increases to 100 m=s the responses when cross-correlation is neglected are
Fig. 4. Non-stationary PSD of vertical displacements for the locations and train velocities shown. (a) The location (0,15), v ¼ 50m s�1;

(b) the location (0,25), v ¼ 50m s�1; (c) the location (0,15), v ¼ 75ms�1; (d) the location (0,25), v ¼ 75ms�1; (e) the location (0,15),

v ¼ 100m s�1; (f) the location (0,25); v ¼ 100ms�1.
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Fig. 5. Time-dependent standard deviation of vertical displacement at the locations (0,15) (—————), (0,25) (- - - - -) and (0,35) (- - - - -)

for: (a) v ¼ 50ms�1 and; (b) v ¼ 100ms�1.

Fig. 6. Time-dependent standard deviation of vertical displacement, either including (—————) or neglecting (- - - - -) cross-correlation,

when v ¼ 50m s�1 and at location: (a) (0, 15) and; (b) (0, 25).
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much higher than when it is included. In the well known special case that the two loads act at the same
location, according to random vibration theory the standard deviation when cross-correlation is considered
will be

ffiffiffi
2
p

times as high as when it is neglected. Hence, it can be concluded that as conditions differ,
accounting for cross-correlation can either increase or decrease responses. Because including cross-correlation
does not add to the computation time when using PEM, cross-correlation can always be taken into account.

7. Conclusions

The non-stationary ground random vibration generated by random loads moving along a railway track at a
constant speed is investigated by the new algorithm proposed, which is based on the PEM and the precise
integration algorithm. The PEM formulas for time-dependent PSDs and standard deviations are derived for
the coupled vehicle–track systems subjected to moving random loads. An acceleration scheme has been
provided which reduces the computational effort considerably. Numerical examples accord reasonably with
some phenomenon. Numerical examples also show that as conditions differ, accounting for cross-correlation
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Fig. 7. Time-dependent standard deviation of vertical displacement, either including (—————) or neglecting (- - - - -) cross-correlation,

when v ¼ 100m s�1 and at location: (a) (0, 15) and; (b) (0, 25).
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can either increase or decrease responses. Because including cross-correlation does not add to the computation
time when using PEM, cross-correlation can always be taken into account.
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