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Abstract

The structural modification of a Lynx Mark 7 helicopter tailcone is considered. The problem is especially demanding

because of the almost symmetric structure of the tailcone, which in its initial configuration (prior to modification) results in

a number of very weakly excited responses to certain excitations, so the corresponding terms in the full 6� 6 receptance

matrix are very difficult to obtain. The modification, in the form of a large overhanging mass, has the effect of coupling the

initial-system responses and the weakly excited ones become important in determining the modified-system receptances

using the structural-modification theory. The results are interpreted with the aid of a finite-element model. Very good

estimates of the rotational receptances are obtained, the only significant difference from finite-element results being that

the model is stiffer than the physical structure. Noise on the weakly exited responses is amplified in the estimated modified-

system responses and it is demonstrated, using the finite-element model, that the use of a single X-block measurement to

connect the modification to the tailcone is insufficient at frequencies higher than the first double peak of the modified-

system receptances. It is considered that the exercise provides a demanding test of structural modification theory resulting

in a very useful practical assessment of the limitations of the method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of determining the effects of a known modification on an existing structure with measured
dynamic behaviour is a Structural Modification problem. The principles of structural modification are long
established; in 1941 Duncan [1] determined the behaviour of a compound system formed from two or more
subsystems, each with measured receptances, and known interconnection properties. Bishop and Johnson [2]
described the receptance method eloquently and in detail, and Ewins [3] described applications of structural
modification in modern modal analysis. Mottershead and Ram [4] considered the inverse problem of
determining the passive modification (and alternatively the active control) necessary to assign selected
eigenvalues (poles and zeros) to a dynamic system.

In practice, several problems arise when applying structural modification theory to measured data. Small
measurement inaccuracies can lead to large discrepancies in the estimated modified-system receptances at
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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frequencies close to the natural frequencies of the initial system. It was shown [5] for the rank-1 modification
that this problem occurs because of polynomials in the numerator and denominator of the modified
receptances that should cancel precisely at the poles of the initial system. In the case of perfect data, such as
simulated data with zero measurement noise, the cancellation is exact, but measurements from physical
systems inevitably contain noise so that the cancellation fails to occur even when the measurements contain
the slightest inaccuracy. The effect is to produce a characteristic equation in the denominator with eigenvalues
at the poles of both the original and modified systems. This problem occurs only when the measurement
coordinates and the modification attachment coordinates are different and cannot be corrected by removing
small singular values from the receptance matrix, as has often been tried unsuccessfully. Another problem with
practical modifications, such as added beams or large masses, is that rotational coordinates are required to
connect the modification to the initial structure. This necessitates the measurement of rotational receptances,
which is difficult and requires specialist skills. Essentially, there are two approaches: (1) apply a pure moment
and measure the resulting rotation or (2) apply a force that simultaneously imparts a moment to the structure
and then from measured linear acceleration responses determine a matrix of receptances using a multiple-
input, multiple-output estimator. A review of rotational receptance techniques extending to 34 references is
included in the Introduction to [6], which goes on to describe various problems of ill-conditioning brought
about by the assumption of rigidity of the attachment used to deliver a moment at the connection point. The
ill-conditioning problem may be greatly alleviated by allowing flexibility of the attachment, in which case a
model of the attachment must be included in the formulation of the estimator, as described in [6]. In [7] the
inverse problem of determining the sectional properties of a beam in order assign natural frequencies and
antiresonances to a portal frame structure using the rotational receptance measurements described in [6] was
considered.

In this paper, the modification of a Westland Mark 7 Lynx helicopter tailcone is described. Estimates of the
full 6� 6 receptance matrix are determined using an X-block attachment. Flexibility of the attachment is
included in the formulation of H1 and H2 estimators [8] so that the arms and stem of the attachment may be
long enough to impart a significant moment at the connection point. The baseline tailcone is almost, but not
quite, symmetric and the modification is a large overhanging mass at the top of the pylon, representative of the
mass and inertia of the tail rotor gearbox and hub. Certain initial-system responses are excited only very
weakly because of the near-symmetry of the baseline tailcone. The full 6� 6 matrix of receptances is therefore
especially difficult to estimate, but the overhanging mass and inertia couples all the initial-system receptances
in determining the dynamic behaviour of the modified system. Estimated rotational receptances of the initial-
and modified-system receptances are compared to results obtained from a finite-element model. The modified-
system receptances, determined from initial-system measurements and the known inertia matrix of the
modification, are compared to finite-element predictions and also to measurements carried out on the tailcone
with the overhanging mass modification.
2. Estimation of rotational receptances

The theory for estimating the rotational receptances of a T-block attachment is described in [6]. This device
enables the estimation of an in-plane 3� 3 receptance matrix at two linear coordinates and one rotational
coordinate. It is not possible to determine a full 6� 6 matrix using T-bocks alone. Use of the X-block, shown
in Fig. 1, however enables the estimation a 5� 5 matrix of receptances, and by moving the X-block into
different positions the full 6� 6 matrix may be obtained. The local X-block coordinate system shown in the
figure is used in the formulation of the multiple-input, multiple-output estimator of the 5� 5 receptance
matrix at each position of the X-block.

We begin, as in [6], by writing the equation of motion of the system with the attached X-block,
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Fig. 1. X-block forces and displacements.
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where the subscripts 0, 1, 2 denote the shared structure/X-block connection-point coordinates, the coordinates
of the structure (excluding the connection point) and the X-block coordinates (excluding the connection
point), respectively. The submatrices B11ðoÞ; B01ðoÞ; B00ðoÞ are unknown dynamic stiffnesses of the structure
and ~B00ðoÞ; ~B20ðoÞ; ~B22ðoÞ are X-block dynamic stiffnesses determined from a finite-element model.

Fig. 1 shows the measured forces f0ðoÞ and f2ðoÞ, the measured displacements x2ðoÞ (obtained from
accelerometer measurements) and the unmeasured displacements x0ðoÞ defined in the local X-block
coordinate system used in the following theory. The dimensions of the force and displacement vectors are
as follows:

f0 2 C5�1; f2 2 C6�1; x2 2 C6�1; x0 2 C5�1, (2)

where C denotes the set of complex numbers. The forces f2ð1Þ . . . f2ð6Þ and f0ð3Þ are applied consecutively in
seven separate tests, so that for example, in the first test f0 is the null vector and only the first term in f2 is non-
zero ðf0ðiÞ ¼ 0; i ¼ 1; 2; . . . ; 5 and f2ðiÞ ¼ 0; i ¼ 2; 3; . . . ; 6Þ.

Eq. (1) may be separated into two parts,

B11ðoÞ B10ðoÞ

B01ðoÞ B00ðoÞ

" #
x1

x0

 !
¼

0

f0 � ~B00ðoÞx0 þ ~B02ðoÞx2
� � !

(3)

and

f2 � ~B20ðoÞx0 þ ~B22ðoÞx2
� �

¼ 0. (4)

The receptance matrix of the parent structure without the X-block is not measured directly but is defined as
the inverse of the unknown dynamic stiffness matrix,

H11ðoÞ H10ðoÞ

H01ðoÞ H00ðoÞ

" #
¼

B11ðoÞ B10ðoÞ

B01ðoÞ B00ðoÞ

" #�1
. (5)

Our objective is to determine the receptance submatrix H00ðoÞ and an expression in this term alone can be
obtained from Eq. (3) after premultiplying by the matrix defined in Eq. (5). Then the second row of the
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resulting matrix equation gives,

x0 ¼ H00ðoÞ f0 � ~B00ðoÞx0 þ ~B02ðoÞx2
� �� �

. (6)

Eliminating the unmeasured x0 by combining Eqs. (6) and (4) leads to,
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, ð7Þ

where the finite-element dynamic stiffness submatrices have the following dimensions,

~B20ðoÞ 2 C6�5; ~B00ðoÞ 2 C5�5; ~B22ðoÞ 2 C6�6 (8)

and the asterisk denotes complex conjugation. Eq. (7) may be re-written in the simplified form,

RðoÞf2ðoÞ þ SðoÞx2ðoÞ ¼ H00ðoÞ f0ðoÞ þ TðoÞf2ðoÞ þUðoÞx2ðoÞð Þ (9)

or
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where
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20 ðoÞ ~B22ðoÞ � ~B02ðoÞ (14)

are all matrices formed from the finite-element model of the X-block.
2.1. H1 estimator

Postmultiplying both sides of Eq. (10) by

fnT0 ðoÞ fnT2 ðoÞ xnT
2 ðoÞ

h i I

TnTðoÞ

UnTðoÞ
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and taking n averages for each of the seven separate load cases leads to the expression,

BðoÞ ¼ H00ðoÞAðoÞ, (15)

where
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and

AðoÞ; BðoÞ 2 C5�5. (18)

The submatrices, typically Gf 0x2
ðoÞ, contain power spectal densities. For example,
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where the subscript denoting the load case is omitted for clarity. Finally the H1 estimate is given by

H00ðoÞ ¼ A�1ðoÞBðoÞ. (20)

2.2. H2 estimator

When Eq. (10) is postmultiplied on both sides by

fnT2 ðoÞ xnT
2 ðoÞ
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,

then the following expression is obtained:
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� � Gf 2f 2

ðoÞ Gf 2x2
ðoÞ

Gx2f 2
ðoÞ Gx2x2

ðoÞ

" #
RnTðoÞ

SnTðoÞ

" #
(23)

and

CðoÞ; DðoÞ 2 C5�5. (24)

The H2 estimate is then given by

H00ðoÞ ¼ C�1ðoÞDðoÞ. (25)

3. Finite-element model of the X-block

The finite-element model of the X-block consists of five beam elements with transcendental shape functions
that solve the dynamic Euler–Bernoulli beam equation exactly in the frequency domain. The beams are
inextensible in tension/compression and axial torsion and the element dynamic stiffness matrix is given, for
example, by Narayanan [9]. The dimensions of the X-block, manufactured in mild steel, are shown in Fig. 2
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Fig. 2. X-block dimensions.

Fig. 3. X-block finite-element model.

J.E. Mottershead et al. / Journal of Sound and Vibration 298 (2006) 366–384 371
and the finite-element model in Fig. 3. The joint between the four arms and the stem is modelled using an
offset node at the intersection of the centrelines and the displacements at the connecting nodes may be
determined from rigid constraints. The four rotational coordinates at the tips of the arms and the two at the
joint are unmeasured and must be eliminated from the model. This is achieved by applying Guyan reduction
to the assembled dynamic stiffness matrix, which is a function of frequency. Thus when a different reduction is
carried out at each frequency increment the process does not incur any loss of accuracy in the reduced
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dynamic stiffness matrix. Care should be taken in dealing with mass terms such the masses of the arms, which
need to be added to the dynamic stiffness of the stem (at the joint) in both the local x and y coordinates.
Similarly the mass of the stem needs to be added at axial coordinate x0(3).

The first natural frequencies of the finite-element model, fixed at the base of the stem, are two stem-bending
modes at 61Hz. Two corresponding frequencies at 58 and 61Hz were found in a hammer-excited modal test,
with the base fixed to a rigid heavy metal block.

4. Helicopter tailcone

The Westland Mark 7 Lynx tailcone is shown together with the global axis system (used for the presentation
of results) in Fig. 4. It was detached at the transport joint and attached via an aluminium plate to a rigid wall.
The tailcone is nearly, but not perfectly, symmetric about the X–Z plane. A large overhanging 76 kg mass,
almost exactly the same mass as the tailcone itself and representative of the tail-rotor gearbox and hub, can be
seen at the top left of the figure. The X-block attachment point, shown in Fig. 5, did not coincide exactly with
the attachment of the overhanging mass.
Fig. 4. Tailcone global coordinate system.

Fig. 5. X-block attached to the tailcone.
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A preliminary hammer test was carried out on the baseline tailcone (without the added mass and also
without the X-block). The first two vibration modes at 12.7 and 13.2Hz showed coupling between the lateral
(X–Z) and transverse (Y–Z) bending modes, the bending planes being almost perpendicular and at
approximately 451 to the Y–Z axes. There was no discernable torsion about the X-axis. The third and Fourth
modes at 46 and 58Hz did however show rotation about the X-axis coupled with lateral and transverse
bending. The large overhanging-mass modification was expected to introduce torsional coupling (and possibly
yet more complicated coupling of displacement and rotation) even in the lowest frequency modes and
therefore cross moment-rotation receptances were needed at the connection point in order to determine the
dynamics of the added-mass system by the structural-modification theory. The finite-element model of the
tailcone (in MSC-NASTRAN) consisted of 2771 elements (1600 nodes) including 1508 CQUAD4 elements
and 1139 CBEAM elements.
5. Estimated baseline-tailcone receptances

The estimated upper triangle of the 6� 6 matrix of H1 receptance magnitudes from the X-block mounted in
three mutually perpendicular orientations is given in Figs. 6–8 together with the same matrix terms determined
from the finite-element model. There is some duplication of results when the X-block is mounted in the three
different orientations, and of course certain configurations are best suited for the estimation of particular
matrix terms. Of the duplicated estimates the least noisy ones were selected for presentation, though generally
all of them were in quite reasonable agreement. The spectral densities, in Eqs. (16) and (17), were determined
directly from a modal test using random excitation over the range of 0–160Hz and 512 spectral lines. An
average of 500 measurements was taken with a 32% overlap. The receptances produced from the tail-cone
Fig. 6. Upper left-hand receptance matrix (magnitude—m/N): solid line—estimated from X-block measurements and dashed line—finite

element.
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Fig. 7. Upper right-hand receptance matrix (magnitude—N�1): solid line—estimated from X-block measurements and dashed line—finite

element.
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finite-element model were determined using modal damping at 0.1% of critical for all modes in the range
0–250Hz.

It can be seen that the finite-element model is stiffer than the physical system. Probably the most difficult
terms to estimate are the terms on the diagonal of the upper right-hand sub-matrix in Fig. 7, including the
extremely difficult to obtain H00(1,4) representing the rotational response yx to the force fx. It can be seen that
the terms H00(1,4), H00(2,5) and H00(3,6) are amongst the most noisy estimates, yet still show good agreement
with the finite-element results. The rotational receptances, shown in Fig. 8, appear to be quite different to the
translational receptances we are used to seeing, being quite flat except for peaks and troughs over narrow
frequency bands. Of course, it is important that not only the magnitudes but also the phases of the 6� 6
matrix are accurately determined. These are shown in Figs. 9–11. The differences in the shape of the phase
plots at the 1801 resonance phase changes are due only to differences in the modal damping (at 0.1% of
critical) applied in the finite-element model from the damping of the real structure. The H2 estimates appear to
be generally of poorer quality than the H1 estimates as shown for example in Fig. 12.

6. Structural modification

The details of the structural-modification theory can be found in Refs. [4,7], where it is explained how the
receptance of a system BðoÞfðoÞ ¼ xðoÞ modified by an added dynamic stiffness DBðoÞ may be written in the
form,

~HðoÞ ¼ IþHðoÞDBðoÞð Þ
�1HðoÞ, (26)

where ~HðoÞ represents the matrix of modified-system receptances and H(o) contains the receptances of the
initial system.
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Fig. 8. Lower right-hand receptance matrix (magnitude—(N/m)): solid line—estimated from X-block measurements and dashed line—

finite element.
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6.1. The overhanging mass modification

The overhanging mass modification and position vector ~r of the centre of mass with respect to the
connection point of the X-block is shown in Fig. 13. The centre of gravity is denoted by ‘0’ and the connection
point by ‘1’. A solid model placed in position on the finite-element mesh is shown in Fig. 14. The modification
consisted mainly of a solid piece of steel of dimensions 410� 230� 80mm and two-channel section beams,
each 125mm� 65mm (15mm wall thickness)� 410mm long. The attachment was via a 15mm mild steel plate
using six 8mm bolts connecting into the rigid tail-rotor gearbox mounting.

For the purposes of applying the modification theory it was assumed that the modification itself was rigid
and could therefore be represented by its total mass and the 3� 3 inertia matrix at the centre of mass. This is
described by the mass modification matrix,

DM ¼

75:6

75:6

75:6

1:844 �0:044 0:184

�0:044 1:268 0:254

0:184 0:254 0:832

2
666666664

3
777777775
. (27)

The position vector that defines of the centre of mass with respect to the X-block connection point is
given by

~r ¼ �0:256i� 0:213jþ 0:209k. (28)
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Fig. 9. Upper left-hand receptance matrix (phase): solid line—estimated from X-block measurements and dashed line—finite element.

Fig. 10. Upper right-hand receptance matrix (phase): solid line—estimated from X-block measurements and dashed line—finite element.

J.E. Mottershead et al. / Journal of Sound and Vibration 298 (2006) 366–384376
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Fig. 11. Lower right-hand receptance matrix (phase): solid line—estimated from X-block measurements and dashed line—finite element.
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The terms in Eq. (28) also appear in the transformation matrix T, so that the modification at the connection
point is expressed in the form,

DB ¼ �o2TTDMT (29)

and applied according to Eq. (26). The transformation matrix is written as,

T ¼

1 0 rz �ry

1 �rz 0 rx

1 ry �rx 0

1

1

1

2
666666664

3
777777775
¼

1 0 0:209 0:213

1 �0:209 0 �0:256

1 �0:213 0:256 0

1

1

1

2
666666664

3
777777775
. (30)

This arrangement means that the mass modification is correctly located but connected by a single rigid link
to the X-block connection point.
7. Modification results

A series of results are presented, beginning with a mass modification (without inertia) applied at the X-block
connection point. Then the mass and inertia modification at the connection point ð~r ¼ 0Þ is carried out.
Finally, the complete modification including the full offset mass and inertia with position vector defined in Eq.
(28) is considered.
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Fig. 12. Upper left-hand receptance matrix (magnitude—m/N): solid line—H1 estimate and dashed line—H2 estimate.

Fig. 13. Mass modification and position vector.
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7.1. Mass modification without inertia ð~r ¼ 0Þ

The results of the mass-only modification are shown in Fig. 15. The two sets of results, shown by the solid
and dashed lines, are obtained by using the 6� 6 receptance matrices shown in Figs. 6–11. The receptances
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Fig. 14. Solid model and FE mesh.
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given by the solid lines are determined by applying Eq. (26) to the measurements (solid lines) in Figs. 6–11.
Correspondingly the dashed-line receptances shown in Fig. 15 are obtained by applying Eq. (26) to the finite-
element (dashed-line) receptances in Figs. 6–11. The upper left-hand sub-matrix is sufficient to show that the
main features of the two sets of receptances are very similar. As with the initial-system receptances the finite-
element model is found to be stiffer than the physical tailcone.

7.2. Mass modification with inertia ð~r ¼ 0Þ

It is seen from Fig. 16 that the effect of the inertia is significant. The prominent double measured peak at
around 30Hz in receptance hxy shown in Fig. 15 has changed shape completely in Fig. 16. Note though, that
the shapes of the diagonal-term receptances have not changed very much, except for a fairly modest reduction
in the natural frequencies. This is because this modification with~r ¼ 0 does not introduce the strong coupling
between the different motions of the tailcone that appear when the mass modification is overhanging.

7.3. Full offset mass and inertia modification

From the result shown in Fig. 17 it is apparent that the effect of the offset (overhang) is indeed very
significant. The shapes of the receptances and the natural frequencies are all quite different to those shown in
Fig. 16. There remains, however, good agreement in the general shape of the solid-line and dashed-line
receptances shown in Fig. 17, although the noise that was apparent on the experimental solid lines in Fig. 16
has increased in magnitude on the solid-line receptances in Fig. 17. This is because the dynamic behaviour of
modified system is now very different to that of the initial system, as can be seen by comparing Fig. 17 to
Fig. 6. The modified receptances were obtained using Eq. (26), which requires the full 6� 6 receptance matrix
of the initial system, including the difficult to measure receptances such as the diagonal terms of the submatrix
shown in Fig. 7, which were noticed previously to be noisy. This noise on the initial-system receptances is
amplified in the data processing of Eq. (26) because the overhanging mass now causes the coupling of different
tailcone motions that were virtually uncoupled in the initial system.

A vibration test was carried on the physically modified tailcone, but the receptances obtained were quite
different from the experimental and finite-element results shown in Fig. 17. These separately obtained results,
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Fig. 15. Receptances (m/N)—mass-only modification: solid line—experimental and dashed line—finite element.

Fig. 16. Receptances (m/N)—mass and inertia modification ð~r ¼ 0Þ: solid line—experimental and dashed line—finite element.
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Fig. 17. Receptances (m/N)—full overhanging mass and inertia modification: solid line—experimental and dashed line—finite element.
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from a hammer test, are given by the solid lines shown in Fig. 18. The reason for the difference between the
two sets of results in Fig. 17 and the solid-line results in Fig. 18 becomes apparent when the overhanging mass
is connected to the tailcone at several points instead of the single-point connection at the X-block attachment
point. The dashed-line receptances shown in Fig. 18 were obtained using a multi-point constraint with 16
RBE2 (MSC-NASTRAN) elements. It may be seen that when the connection is representative of the real joint
between the mass modification and the tailcone the resulting finite-element receptances are in good agreement
with the hammer test results. The joint with multiple connections is clearly much stiffer that than the single-
point rigid-connection joint, which shows many natural frequencies lower than they should be and introduces
other natural frequencies not present in the experimental test. The MAC diagrams shown in Figs. 19 and 20,
produced using 58 accelerometer measurements, show the improvement achieved by the multiple-point
connection.

To apply the multiple-point connection using the receptance method would require the measurement of the
full 6� 6 receptance matrix at each of the connection points, and in this case there were six of them. This
would be a task requiring great care and a significant amount of time. It might seem that one could take a
single measurement and then assume a rigid connection to each of the other points, in this way producing the
full 6� 6 receptance matrix at each of the six connections. However, the centre of gravity of the modification
would then be fixed by further rigid links to each of the connection points. Together all of these
rigid connections would be defined in terms of the single original measurement, and therefore would be no
different from what was done before and shown in Fig. 17. Close observation of Figs. 17 and 18 shows that
only the first double peak close to 7Hz is accurately determined by the rigid-connection assumption to a single
X-block measurement. So, at the higher natural frequencies, the small differences in the receptances at
close points where the modification is really connected to the tailcone are significant. Therefore to replicate
the measurement shown in Fig. 18 it would be necessary to take measurements independently (and
very accurately) at each of the connection points with an X-block. Despite the very good results shown in
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Fig. 18. Receptances (m/N): solid line—hammer test and dashed line—finite element with six RBE2 elements.

J.E. Mottershead et al. / Journal of Sound and Vibration 298 (2006) 366–384382
Figs. 6–11 it has to be doubted that sufficient accuracy can be achieved in the original measurements to allow
the effects of the modification to be determined with sufficient accuracy because of noise amplification as
demonstrated in Fig. 17.

8. A note concerning nonlinearity

It is known that certain structures, typically interconnected slender beams, may exhibit a form of behaviour,
termed autoparametric, whereby small nonlinear interactions have a very considerable effect on forced
vibration behaviour possibly leading, under internal resonance conditions, to the absorption of directly excited
modes and large non-synchronous responses in modes that are not excited directly [10,11]. In its physical
appearance the tailcone/pylon structure resembles the sort of structures that in other studies have shown this
behaviour. However, the estimated X-block receptances, from wideband multi-frequency shaker excitation,
did not show any significant nonlinearity although the averaging carried out in the estimation process would
have had a linearising effect. The upper left-hand receptance matrix shown in Fig. 6 was measured at a number
of different excitation levels without any significant deviation in the resulting linearised receptance estimates.
The dynamic stiffnesses B11ðoÞ; B10ðoÞ; B00ðoÞ; B01ðoÞ in Eq. (1) are not used explicitly so that in principle
there is no assumption of linearity in the theory leading to Eq. (10) for the receptance H00ðoÞ, which may be
dependant upon response magnitude.

9. Conclusions

The structural modification theory enabling the estimation of the full 6� 6 matrix of receptances using an
X-block is presented. The X-block is represented by a finite-element model and included in the formulation of
the H1 and H2 estimators. The former is shown to give superior results in tests carried out on a Westland Lynx
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Fig. 19. MAC diagram: Single connection point.

Fig. 20. MAC diagram: Multiple connections.
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tailcone. The rotational receptances obtained using an X-block with the H1 estimator show very good
agreement with results from a finite-element model, the only significant difference being that the finite-element
model is stiffer than the real structure. The 6� 6 matrix of receptances includes terms that are extremely
difficult to measure because the geometry of the tailcone is almost, but not quite, symmetric about the X–Z

plane, so that very weak responses may be obtained to certain excitations. The modification, in the form of a
large overhanging mass (representative of the tail-rotor gearbox and hub and of about the same mass as the
baseline tailcone) has the effect of coupling all of the initial-system receptances. This has the effect of
amplifying the noise of the weakly excited initial-system responses. At frequencies higher than the first double
peak a single X-block measurement is insufficient to define the connection between the modification and the
tailcone and it is shown, using the finite-element model, that further independent measurements are required
to accurately determine the modified-system dynamics, including the overhanging mass and inertia. It is
considered that the exercise carried out on the Lynx tailcone, with a very large overhanging mass modification
and a near-symmetric initial structure, provides a very useful guide to the practical limitations of structural-
modification theory.
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