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Abstract

A modified iteration procedure is applied to the Duffing-harmonic oscillator. With the procedure, the excellent
approximate frequencies and the corresponding periodic solutions can be easily obtained.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a nonlinear oscillator modeled by the equation
X+gx)=0, x(0)=4, x(0)=0, (1)
where g(x) is a nonlinear function of x and has the property:
g(—=x) = —g(x).
If g(x) does not have for small x a dominant term proportional to x, then Eq. (1) is said to be a “truly

nonlinear oscillator” (TNO) [1]. One example of such equations is the Duffing-harmonic oscillator described
by the equation [2]

% +ﬁ -0, x0)=4, x0)=0. )

Recently, Lim and Wu [3] proposed a modified iteration procedure for Eq. (1). Mickens [1] generalized this
procedure for the following equation:

X +g(x) =¢f(x,x), x(0)=4, x(0)=0, 3)
where
f(_-x, —X) = _f(x’ X)
But they did not give the details as how to carry out the iteration scheme to deal with Eq. (2). It has been
shown that all the curves in the phase-space corresponding Eq. (2) are closed, and all motions for arbitrary
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initial conditions give periodic solutions [2]. Lim and Wu [4] obtained analytical approximate solutions to
Eq. (2) by combining the linearization of the governing equation with the method of harmonic balance. The
main purpose of this communication is to use an iteration procedure to determine accurate approximations to
the periodic solutions of Eq. (2).

2. Solution method

To begin, let the angular frequency of Eq. (1) be w, which is unknown to be further determined. Then
Eq. (1) can be rewritten as [1,3,5-7]

¥+ 0’y = 0*x —g(x) = G(x), x(0)=4, x(0)=0. 4)
The linearized equation of Eq. (1) is
¥+w*x=0, x(0)=4, x(0)=0. (5)

Comparing Eq. (1) with Eq. (5), we see that even though g(x) is not “small”, the function G(x) = w’>x — g(x) is
“small”. Therefore, the left-hand side of Eq. (4) is linear and the term G(x) on the right-hand side is a “‘small”
function. This is the reason that we prefer Eq. (4) to Eq. (1).

The iteration scheme is [5]

jék-ﬁ-l + wzxk+l = G(Xk), xk(o) = A: xk(o) = 05 k= 05 1:2: LR (6)
where the input or starting function is
xo(f) = A cos 0 = A cos wt. (7

Usually, x; can easily be obtained from Eq. (6). Timoshenko et al. [8] have applied this technique to the
Duffing equation, but they only gave the first iteration result. When k=1, we have

G(xi) = Glxp—1 + (xk — Xk )] & G(xp—1) + Gu(Xp—1)(Xk — Xg—1), (®)
where
dG
G(x) = o )

Therefore, Eq. (6) can be rewritten as [1,3]

Kt + 0 X1 = G(xp—1) + Ge(xk—1)(Xk — Xk_1),

xx(0)=4A4, x(00=0, k=0,1,2,..., (10)
where x_(7) = xo(¢) [1,3]. Instead of Eq. (8) we may also have
G(xk) = Glxo + (xk — X0)] & G(x0) + G(x0)(xk — Xo). (11)

Now Eq. (6) can be written as

Kt + 0 x1 = G(xo) + G(x0)(xk — Xo),

xx(0) =4, x(0)=0, k=0,1,2,.... (12)
In what follows, we will use formula (12) to solve Eq. (2). In this case, formula (12) becomes
X3 3x2 4 x7
Xeat + 0°xpp) = 0°xp — —2 - — =20 9 (xk — x0),
1 k+1 TR +x%)2( Kk — Xo)
xx(0)=4, x(0)=0, k=0,1,2,... . (13)

Using Eq. (7), we have the following Fourier series expansions:
X5

1+ x3

=a; cos 0+ a3 cos 30 + as cos 50 + - - -, (14)
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%:%—i—bzcos29+b4cos40+b6c0s69+~~, (15)

where [4]

2 2
AT

8 2 8 6
i AU+ 42 40+ 4P

N 2 22+ 4%

1+ )72 1+ 27

a1=A

azy =

b4 2 (1+ 2) N 24°
2—A2 (1+A2)1/2 42 (1—|—A2)3/2’
16 1 8 +84% + A*
by=— | -3 —-A>+——
16 +244% + 64* — 4°
8(1 + 4%
20 3 48 + 224 + 34*
_2+12+_A2+—+ +12
A 4 8(1 + 42)"/
N 4 192 + 4164° + 280A4* + 60A4° + 34°
A1+ 472 8A(1 4 A%

>

bs

T4t

(16a—f)

and

—t——
1+ 4% cos? 0 A A A 40+ 4DV
n 40 n 32
A3(1 +A2)1/2 AS(] +A2)1/2.
Substituting Eq. (14) into Eq. (13) and letting k = 0 gives

a_2/”A3cos3900350 2 24 32 10
T Jo

(16g)

X+ 0’x = (sz —ay)cos 0 — asz cos 30 — as cos 50,
x1(0) =4, x1(0)=0. (17)

The requirement of no secular terms in x;(¢) implies that

This equation is identical to Eq. (13) in Ref. [4]. The corresponding approximate periodic solution x;()
becomes

x1(f) = A cos wt + c3(cos wt — cos 3wt) + cs(cos wt — cos Swt), (19)

where w is given by Eq. (18) and

as azA
- _ — _ 27 20
&} 8’ 8a; (20a)
s = as _ ClSA (20b)

2407 24a;
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If k =1, Eq. (13) becomes

3 2 4

. 2 2 Xo 3x5 + Xg
X+ WXy =wx; — — X1 — Xo),
1+ x5 a+%f( )

0(0) =4, i(0)=0. Q1)

Using Egs. (7), (15) and (19), we have

3x0 + xO

) = Sl(bo -+ b2 — by — by

+ (bo — bg)cs]cos O
1
+ 5[(—[70 + by + by — be)c3

+ b465] cos 30 + = [( by + by + be)cs
+ (—by + by + bf,)cs] cos 50 + HOH, (22)

where HOH stands for higher-order harmonics. Substituting Eqgs. (14), (19) and (22) into Eq. (21) and
simplifying the resulting expression yields

1
X2+ 0)2X2 = [0)2(14 +c3+c5)—a — E(bo 4+ by — by — bg)cs
1
— z(bo — b4)C3] cos 0
2 1 b4C5
— |w7cs +a3+§(—bo+bz+b4 —b6)03+7 cos 30

1 1
— |:a)265 +as+ E(—bz + by + bg)cs + E(—bo + by + b(,)C5:| cos 50

+ HOH,

0(0) =4, %(0) = 0. (23)

Secular terms are eliminated by setting the coefficient of cos w¢ equal to zero; doing this yields

= 0 — Cll+%(b0+b2—b4—b6)cs_’_%(b0_b4)c3 1/2 (24)
2 A+C3+C5 .

The corresponding approximate periodic solution x,(z) is

x3(t) = A cos wt + ds(cos wt — cos 3wt) + ds(cos wt — cos Swt), (25)

where w is given by Eq. (24) and

b
d; = 8 |:a)262 +a3+ = ( by + by + by — bg)cs; + 4205:| (26a)

[(1)265 +as+ = ( by + by + bg)cs + = ( by + by + b(,)65:| (26b)
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3. Discussion

Now we compare the above approximate solutions with the exact solution and other approximate solutions.
The exact frequency w, of Eq. (2) is [4]

T

B 2‘[(;1/2 {AZCOSZ(?/{A%oszG—i-ln(l —%ﬂ}l/zdﬁ-

We

27)

The second approximate frequency obtained by Lim and Wu [4] is

Wy = wy(A4) = \/QL(A) +/ g3 (A) — h(A), (28)

where
(b() — b2 - b4 + bﬁ)A + 18611 + 2a3
A) = 2
91(4) o , 29)
Iy (A) = ai(by — by — by + b)) + a3(by — by) . (30)
184
The corresponding approximate periodic solution is [4]
Xpo = xp = Acoswpat + x1(A)(cos wrr — cos3wyat), (1)
where
2613
A)=— . 32
¥i(4) b2+b4—b0—b6+18w%2 (32)
By rewriting Eq. (2) as
(1+x)x+x>=0, x(0)=4, x(0)=0, (33)

Mickens [2] has obtained an approximate frequency

| 34%/4
M=\ 9

For comparison, the exact frequency w, obtained by integrating Eq. (27) and the approximate frequencies
computed by Egs. (18), (24), (28) and (34), respectively, are listed in Table 1 for 0.1 <A<10. w, (Eq. (24)) is

Table 1
Comparison of the approximate frequencies with the exact frequency w,

A w, Eq. 27) oy Eq. (34) w, Eq. (18) > Eq. (28) > Eq. (24)
0.1 0.0843887 0.0862796 0.0862441 0.0842560 0.0843678
0.2 0.1668303 0.1706640 0.1703930 0.1665626 0.1667969
0.4 0.3194026 0.3273268 0.3255129 0.3188634 0.3193871
0.6 0.4491013 0.4610840 0.4563924 0.4483261 0.4491515
0.8 0.5540680 0.5694948 0.5614401 0.5531399 0.5541943
1 0.6367803 0.6546537 0.6435943 0.6357955 0.6369633
2 0.8476261 0.8660254 0.8506508 0.8470211 0.8477949
3 0.9195998 0.9332565 0.9208966 0.9193277 0.9196820
4 0.9508565 0.9607689 0.9514815 0.9507304 0.9508974
5 0.9669758 0.9743547 0.9673103 0.9669129 0.9669982

10 0.9909163 0.9933993 0.9909541 0.9909118 0.9909194
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more accurate than any other approximate frequency in Table 1. Furthermore, we have

lim w; =1, (39)
A—~o00
. Wy .wy .. W 22
lim —= lim — lim — = /== x 1.0222 = 0.9997. (36)
A>+0W, A—>+0wW] A>+0 W, 23

The numerical solution x,m(#) of Eq. (2) obtained by using Runge-Kutta (R-K) method, the
corresponding approximate solutions x;»(¢), x1(¢) and x»(¢) computed by Eq. (31), Eq. (19) and Eq. (25),
respectively, are listed in Tables 2-4 for 4 =0.1, 1, and 5. The percentage errors are defined as

Table 2
Comparison of the approximate solutions with the numerical solution (4 = 0.1, T, = 2n/®, = 74.4553, h = T/10)

t Xnum x7 (% error) x7o(% error) x5 (% error)

h 0.07577 0.07532(—0.60) 0.07608(0.40) 0.07572(—0.07)
2h 0.02622 0.02394(—8.70) 0.02617(—0.19) 0.02617(—0.20)
3h —0.02622 —0.02974(13.39) —0.02576(—1.76) —0.02611(—0.44)
4h —0.07577 —0.07993(5.49) —0.07574(—0.05) —0.07566(—0.14)
Sh —0.10000 —0.09968(—0.32) —0.10000(0.00) —0.10000(0.00)
6h —0.07577 —0.07040(—7.08) —0.07642(0.85) —0.07577(0.00)
7h —0.02622 —0.01816(—30.76) —0.02658(1.37) —0.02624(0.05)
8h 0.02622 0.03552(35.46) 0.02535(—3.33) 0.02604(—0.69)
Oh 0.07577 0.08418(11.10) 0.07540(—0.50) 0.07561(—0.21)
T 0.10000 0.09874(—1.26) 0.09999(—0.01) 0.10000(0.00)
Table 3

Comparison of the approximate solutions with the numerical solution (4 = 1.0, T, = 9.8671, h = T/10)

t Xnum x1 (% error) X712 (% error) x> (% error)

h 0.77523 0.77381(—0.18) 0.77385(—0.18) 0.77502(—0.03)
2h 0.27305 0.26220(—3.97) 0.27488(0.67) 0.27249(—0.21)
3h —0.27305 —0.29146(6.74) —0.27069(—0.87) —0.27327(0.08)
4h —0.77523 —0.79565(2.63) —0.77063(—0.59) —0.77562(0.05)
Sh —1.00000 —0.99932(-0.07) —0.99999(—0.00) —1.00000(0.00)
6h —0.77523 —0.75113(-3.11) —0.77704(0.23) —0.77443(—0.10)
7h —0.27305 —0.23291(—14.70) —0.27908(2.21) —0.27171(—0.49)
8h 0.27305 0.32066(17.44) 0.26649(—2.40) 0.27405(0.37)
Oh 0.77523 0.81662(5.34) 0.76740(—1.01) 0.77622(0.13)
T 1.00000 0.99729(—0.27) 0.99994(—0.01) 1.00000(0.00)
Table 4

Comparison of the approximate solutions with the numerical solution (4 = 5.0, T, = 6.4978, h = T/10)

t Xnum x1 (% error) Xz2 (% error) X5 (% error)

h 4.02161 4.02385(0.06) 4.01226(—0.23) 4.02379(0.05)
2h 1.50555 1.50630(0.05) 1.51252(0.46) 1.50766(0.14)
3h —1.50555 —1.51139(0.39) —1.51156(0.40) —1.50800(0.16)
4h —4.02161 —4.02712(0.14) —4.01165(—0.25) —4.02401(0.06)
Sh —5.00000 —5.00000(0.00) —5.00000(0.00) —5.00000(0.00)
6h —4.02161 —4.02058(—0.03) —4.01287(—0.22) —4.02357(0.05)
7h —1.50555 —1.50121(—0.29) —1.51348(0.53) —1.50732(0.12)
8h 1.50555 1.51648(0.73) 1.51061(0.34) 1.50834(0.19)
oh 4.02161 4.03038(0.22) 4.01103(—0.26) 4.02422(0.07)
T 5.00000 4.99999(-0.00) 5.00000(0.00) 5.00000(0.00)
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100[x22(x1, X2) — Xnum)/Xnum. For small x, the equation of motion (2) is that of a Duffing-type nonlinear
oscillator (i.e., ¥ + x> ~ 0), while for large x, the equation of motion (2) approximates that of a linear
harmonic oscillator (i.e., X + x & 0). Therefore, x; gives poor accuracy for small amplitudes of oscillation
(Table 2). Tables 2—4 show that x;,(¢) and x»(¢) give excellent analytical approximate periodic solutions for
small as well as large amplitudes.

4. Conclusions

A modified iteration method, which is described by Eq. (12), has been applied to the Duffing-harmonic
oscillator. The first approximate frequency w; given in Eq. (18) is identical to the result in Ref. [4]. The w,
obtained by the second iteration gives very accurate results. The second approximate periodic solution x,(¢) is
in good agreement with the numerical solution. Although formula (12) is identical to formula (10) for the first
and second iterations, formula (12) is more convenient than formula (10) if the third iteration is required. This
is because computing the expressions x3 /1 + x? and 3x% + x}/(1 + x%)2 in formula (10) is not an easy task. For
each iteration, x( in (xx — xg) is not the same. For example, xq in (x; — xg) is 4 cos w ¢, and x, in (x; — Xp) is
A cos wyt. Since w, is more accurate than w;, x, — x¢ is ““smaller” than x; — xy.
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