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Abstract

In this paper, the effect of negative capacitance in damping and absorbing systems using shunted piezoelectric

transducers is analyzed. Different passive and semi-active configurations of networks have been compared in a general,

normalized form, highlighting the influence of the general electromechanical coupling coefficient and the negative

capacitance. Commonly used criteria for passive networks are adapted to the general configuration with negative

capacitance resulting in optimal parameters. The damping and absorbing performance of optimal passive and semi-active

networks are compared. With optimal parameter for negative capacitance, an upper limit for maximum appearing

amplitude in the frequency response function (FRF) can be given. Results are verified experimentally using a test rig.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Piezo elements have the unique ability to transfer mechanical energy into electrical energy and vice versa. By
connecting suitable networks containing resistive and inductive elements to the electrodes of the piezo element,
an electromechanical vibration damper or vibration absorber can be created. These networks can be tuned to
minimize the maximum amplitude of the frequency response function and thus resulting in broadband
damping [1]. In analogy to mechanical absorbing systems, the absorbing effect deteriorates with increased
damping, so the optimal performance can be achieved using an inductance only. Because of the narrow
bandwidth of the absorbed frequencies the resulting system is very sensitive to tuning errors and variations of
the excitation frequency.

To overcome these problems, Corr and Clark [2] analyzed switching shunt techniques for structural
damping. They suggest a state switching and a pulse switching within one vibration cycle. In state switching,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Ap surface area of electrodes
c0 mechanical spring
c33 stiffness of the piezo element
csd stiffness of mechanical spring in the

equivalent mechanical model
C external capacitance
Cps capacitance of the piezo element
d0 mechanical damping element
d33 charge density per unity stress under

constant electric field
dsd damping element of the equivalent me-

chanical model
D generalized external resistance
D0 generalized damping
DE electrical displacement
e piezoelectric constant
E electrical field

ip current flowing through the circuit
K3i generalized electromechanical coupling

coefficient
KE modulus of elasticity
lp height of piezoceramics
L external inductance
m main mass
R external resistance
s mechanical strain
up voltage on the electrodes
g square of the generalized electromecha-

nical coupling coefficient
d inverse of the generalized external capa-

citance
�S electrical permittivity
Z normalized frequency
l generalized external inductance
om eigenfrequency of the mechanical system
O angular velocity of external force
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damping is achieved by removing strain energy from the mechanical system when switching between open-
and short-circuit electrodes. This is caused by a change of stiffness of piezo element, thus it is only usable when
the stiffness of the piezo element dominates the overall system stiffness. In pulse switching the piezo element is
briefly connected to a inductor/resistor shunt circuit, which allows a generated charge to be applied to the
piezo element similar to direct velocity feedback control. A comparison of these techniques showed nearly
the same damping performance for the pulse-switching and traditional passive tuned resonance circuits. The
advantages of the switching techniques are a smaller required shunt inductance, a lower sensitivity to
environmental changes and easier tuning. Morgan and Wang [3] approached this problem by utilizing a
combination of a passive electrical circuit and active control actions to synthesize a system for adaptive
variable frequency narrowband disturbance rejection, where the active control consists of an inductor tuning
action, a negative resistance action and a coupling enhancement action. Niederberger et al. [4] introduced a
new technique for online adaptation of multi-mode resonant shunts. Circuit component values are tuned
online by minimizing the relative phase difference between a vibration reference signal and the shunt branch
current. They achieved a simultaneous damping of up to four structural modes.

Tang and Wang [5] compared different passive networks containing resistive and inductive networks and
proved that they obtain nearly the same passive damping ability and driving source amplification
characteristics. Further more, they proposed a method to increase the electro-mechanical coefficient by using
a synthetic negative capacitance circuit, which was analyzed and experimentally verified. A negative
capacitance circuit is capable of controlling the elasticity of the piezo element. Date et al. [6] achieved a change
of the elastic constant of poled PVDF film samples between 0.5 and 2 times the original value. They present
two networks representing a negative capacitance that are used to soften resp. harden the elastic coefficient.
Also Fukada et al. [7] proved the efficiency of negative capacitance circuit connected to a curved PVDF film in
sound isolation application. Changing the elasticity of the piezo film, the overall transmission loss level of
40 dB was achieved. The basic techniques for vibration absorbing using LR-networks can be generalized for
multiple mode vibration suppression. Hollkamp [8] suggested a shunt circuit consisting of an LR-circuit for
the first mode and additional parallel RLC (with a positive capacitance) shunts for each additional mode.
However, previous resistive and inductive elements have to be retuned when a new shunt is added, and no
closed-form tuning solution has been proposed yet. Behrens et al. [9] introduced the ‘‘current flowing’’
technique for piezoelectric shunt damping. The passive shunt controller consists of a specific number of
resonant impedance branches depending on number of frequencies that are to be damped. Although the
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presented solution has numerous technical advantages such like simpler structure in comparison with the one
proposed by Wu [10], it is still very sensitive for piezo element capacitance variation, and does not solve the
problem with the narrow bandwidth of absorbing area. Using the negative capacitance allows reducing the
inductance requirements significantly in resonant circuits with no loss of the absorbing performance. It was
shown already by Fleming et al. [11] that connecting the positive capacitance in parallel to a piezo patch can
reduce the inductor value in resonant circuit. The inductance value is reduced by the same factor in which the
capacitance of piezo element is increased, but the method is occupied with a lower controller gain and
performance.

2. Semi-active shunt damping

Systems with passive networks containing resistive and inductive elements have numerously been examined
and criteria and solutions for optimal parameters are given. Also, networks containing a negative capacitance
have been discussed, indicating an increase of the coupling coefficient and therefore damping and absorbing
performance. But there is still a lack of criteria for optimal tuning of such LRC-networks. Results for optimal
parameter of the shunted network in a serial application will be given in this paper. Throughout all sections,
the effect of the general coupling coefficient is highlighted. The results of the optimal R, LR and LRC-
networks are compared with respect to the general coupling coefficient.

The proposed LRC-networks with a negative capacitance is a semi-active control. Compared to an active
control, the semi-active approach offers a similar enhanced performance as active methods. By adjusting the
dynamic properties of the host structure, the mechanical dissipation of the system can be largely increased.
Therefore the semi-active control cannot cause instabilities, assuming that the original system was stable. The
amount of power needed for the vibration control typically is significantly smaller than in an purely active
control.

For an experimental verification of the results, a test rig has been established. In contrast to many
experimental investigations using cantilevered beams, here a translational vibration system with a relatively
high eigenfrequency of 1640Hz is used. The analytical results of the damping and absorbing performances are
validated by measurements.

The paper is arranged in the following order: The equations of the mechanical model under investigation
connected with a LRC-network in serial application are established and normalized. Based on these equations
any combination of the network is analyzed. Firstly, such networks are described, which contain only passive
elements (L, R and LR-networks), and the optimal parameters for damping and absorbing are given. This is
followed by a section describing the effect of a (negative) capacitance (C) only. In the following sections, the
networks including a capacitance (LC, RC and LRC-networks) are discussed. The results are compared with
the networks without a capacitance. Finally, a test rig and network representing the negative capacitance are
introduced and measurements underlining the analytical results are shown.

3. Equations of motion

The system under investigation is depicted in Fig. 1. It consists of a mass m connected to a spring-damper
(c0; d0) and a piezo element. The mass is excited by a harmonic force F ðtÞ. The piezo element is represented as
a spring c33 in the mechanical path and as a capacitance Cps and a charge source in the electrical path. The
mechanical and electrical systems are coupled by the following two equations:

s ¼ KEs� eE,

DE ¼ esþ �sE. ð1Þ

Here, the following notation has been used: s is the mechanical stress, KE the modulus of elasticity, s the
strain, e the piezoelectric constant, E the electrical field, DE the electrical displacement, �s the electrical
permittivity. Assuming that the force acting on the piezo element only affects changes in longitudinal
direction, all elements in Eq. (1) are scalars. Force direction is the same as poling direction of the piezo
element. In order to derive the equations connecting the force of the piezo element, the voltage on the
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Fig. 1. Mechanical model with piezo element connected to external LRC-network.
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electrodes, and the current flowing to the external network it is necessary to find the charge Qp on the plates of
the piezo ceramics. The electrical displacement DE and the electric field E describing the capacitor that is
formed by electrodes on top and bottom of the piezo material read, respectively,

DE ¼
Qp

Ap

; E ¼
up

lp

, (2)

where Ap is the surface of electrodes, lp the distance between electrodes (height) and up the voltage. The charge
is found by substituting the strain in Eq. (1) with s ¼ x=lp,

Qp ¼ e
Ap

lp

xþ �S

Ap

lp

up, (3)

where x is the displacement of the top of the piezo stack. The term �SAp=lp in Eq. (3) is the capacitance Cps of
the piezo element, where the electrical permittivity �S is the product of the vacuum and relative permittivities �0
and �r of the piezo ceramics. The piezoelectric constant can be described as

e ¼ KEd33; KE

Ap

lp

¼ c33, (4)

where d33 is the charge density per unity stress under a constant electric field and c33 the mechanical stiffness of
the piezo material. The current ip flowing to the external network is the first derivative of the charge with
respect of time, resulting in

ip þ c33d33 _xþ Cps _up ¼ 0. (5)

The mechanical stress s of the piezo element in Eq. (1) is determined by the force acting on the surface,

s ¼
F p

Ap

. (6)
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By inserting Eq. (4) into Eq. (1) the force produced by the piezo element is found

Fp ¼ c33x� c33d33up. (7)

So, it can be shown that the influence of the piezo element is totally described by parameters c33, d33 and Cps.
The equation of the mechanical model reads

m €xþ d0 _xþ c0xþ F p ¼ F ðtÞ, (8)

excited by the external force F ðtÞ. A harmonic force with angular velocity O is assumed,

F ðtÞ ¼ F̂ sinðOtÞ. (9)

The equation for the electrical network consisting of a RLC serial shunt branch reads

0 ¼ up þ L
dip

dt
þ Rip þ

1

C

Z
ipdt (10)

and determines the sum of voltages present on all network elements and the piezo element. It is described by
the parameters L, R and C, where C can be positive or negative with a negative value indicating a negative
capacitance. With the displacement x and the voltage up as degrees of freedom, the dynamical behavior of the
system is given by

m 0

c33d33L CpsL

" #
€x

€up

" #
þ

d0 0

c33d33R CpsR

" #
_x

_up

" #
þ

c0 þ c33 �c33d33

c33d33

C
1þ

Cps

C

" #
x

up

" #
¼

F ðtÞ

0

� �
. (11)

Ahlers [12] suggested a mechanical replacement model that has identical dynamical behavior as a piezo
element connected with a LR-network in serial application. This model is now extended by a spring cd to cover
the influence of the additional capacitance, cp. Fig. 2,

m 0

0 mp

" #
€x1

€x2

" #
þ

d0 0

0 dsd

" #
_x1

_x2

" #
þ

c0 þ c33 þ csd �csd

�csd csd þ cd

" #
x1

x2

" #
¼

F ðtÞ

0

� �
. (12)

The first degree of freedom is the displacement of the main mass, x1 ¼ x, and the second one reads
x2 ¼ xþ upCps=c33d33. This leads to diagonal mass and damping matrices.

In the absence of the spring cd, the mechanical replacement model is similar to a tuned mass damper.
Consider that the damping element is placed between the oscillating mass and the reference frame, which
corresponds to a skyhook damper arrangement.

In the following, normalized parameters are used introducing the non-dimensional time t:

t ¼ omt; _x ¼ omx0; o2
m ¼

c0 þ c33

m
; Z ¼

O
om

;

2D0 ¼
d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc0 þ c33Þm
p ; 2D ¼ RCpsom ; l ¼ LCpso2

m ; d ¼
Cps

C
:

(13)

The properties of the piezo element beside of the mechanical stiffness can all be condensed in a
parameter g,

g ¼
ðc33d33Þ

2

Cpsðc0 þ c33Þ
, (14)

that is the square of the generalized electromechanical coupling coefficient K3i,

K2
3i ¼

ZD2

n � ZE2

n

ZE2

n

, (15)
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Fig. 2. Mechanical replacement model.
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where ZD
n ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

and ZE
n ¼ 1 are resonance frequencies for the open- and short-circuit electrodes,

respectively (cf. R-network section). The equation of motion with normalized parameter read

1 0

0 l

� �
x001

x002

" #
þ

2D0 0

0 2D

� �
x01

x02

" #
þ

1þ g �g

�1 1þ d

" #
x1

x2

" #
¼

~F ðtÞ

0

" #
. (16)

Here, D0 is the damping ratio, l is proportional to the external inductance, D proportional to the external
resistance and d proportional to the reciprocal of the external capacitance as given in Eq. (13). All parameters
used are positive or equal to zero, apart from the parameter d which is negative for a negative capacitance. A
stability analysis based on Eq. (16) has been performed using the Hurwitz criterion. It can be shown that the
system with positive values of resistance and inductance is asymptotically stable for

d4dcrit ¼ �
1

1þ g
. (17)

The effect of an external capacitance is highlighted in Fig. 2. A positive capacitance is represented by a spring
with positive stiffness cd connected between the absorbing mass mp and the ground. Therefore it reduces the
vibration amplitudes of this mass and decreases the absorbing and damping effect. Using a negative capacitance
results in a spring with a negative stiffness. It is an active element that amplifies the vibration amplitudes of the
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absorbing mass and therefore increases the energy dissipation in the damping element. Eq. (16) describes the
most general case of a LRC-network in serial configuration. Having these equations, it is easy to derive the
equations for the more common cases of resistance only (case 1) and resistance and inductance (case 2) networks
by setting the parameters l and d (case 1) resp. d only (case 2) equal to zero. In all following sections, an
undamped mechanical system is assumed by setting the parameters d0 and D0 equal to zero.

4. L-network

By setting the parameters d and D equal to zero (resp. R ¼ 0 and C!1), a system containing a L-network
can be studied. The corresponding mechanical replacement model is given in Fig. 2 when removing the spring
cd and the damper dsd . The resulting model is the most common mechanical system used for absorbing. The
equations of motion read

1 0

0 l

� �
x001

x002

" #
þ

0 0

0 0

� �
x01

x02

" #
þ

1þ g �g

�1 1

� �
x1

x2

" #
¼

~F ðtÞ

0

" #
. (18)

Here, the damping matrix is reduced to a matrix of zeros indicating that no energy is dissipated. The FRF-
function V ðZÞ is given as

V ðZÞ ¼
lZ2 � 1

lZ4 � ðlþ glþ 1ÞZ2 þ 1
. (19)

The absorbing frequency of this system can be determined as

Zabs ¼

ffiffiffi
1

l

r
, (20)

while the two resonances are located at

Zres1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ gþ

1

l
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g 1þ

1

l

� �
þ g2 �

2

l
þ

1

l2

s !vuut . (21)

When setting l ¼ 1, which means Zabs ¼ 1, the equations for the resonance frequencies are as follows,

Zres1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

g
2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
gþ

g2

4

rs
. (22)
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Fig. 3. Absorbing frequency (—), resonance frequencies: (- - -), (-�-�-), ð� � � � � �Þ for g ¼ 0:01=0:05=0:10 versus inductance l.
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Both equations show that the difference between the resonance frequencies is increasing with g, resulting in a
broader absorbing area. The absorbing and resonance frequencies are given in Figs. 3 and 4a versus l resp. g.
As the coupling coefficient of piezo elements usually ranges around 10% [5], the absorbing area is very limited
making this network only usable for systems excited by a very steady frequency.
5. R-network

By setting the parameters l and d in the general case of the LRC-network in Eq. (16) to zero, the following
equations are derived:

1 0

0 0

� �
x001

x002

" #
þ

0 0

0 2D

� �
x01

x02

" #
þ

1þ g �g

�1 1

� �
x1

x2

" #
¼

~F ðtÞ

0

" #
. (23)

The resistance network can be used for vibration damping only, as there is no resonant network which is
required for absorbing. The corresponding FRF is shown in Fig. 5. As for all other figures shown in this
paper, a value of g ¼ 0:1 is assumed, if not mentioned explicitly. This is a rather high value unlikely to happen
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in applications, but the properties of the function are distinctive. The case of short-circuit electrodes is
represented by D ¼ 0, and the open electrodes by D!1. The resonance for the first case is located at Z ¼ 1,
while the resonance for open electrodes is at Z ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

. Here the property of a piezo element to change its
stiffness from open to short-circuit electrodes can be observed, which results in a shifted resonance frequency.
Another property of this function is the existence of a fixpoint located at

Zfix ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=2Þg

p
(24)

at which the amplitudes for any value of D are equal. A reasonable criterion for the optimal external resistance
for damping is to minimize the largest appearing amplitude of the FRF. Here, the existence of the above-
mentioned fixpoint can be used. For the optimal resistance, this fixpoint has to become a maximum. This leads
to the following expression,

qV ðD ¼ DoptÞ

qZ

����
Z¼Zfix

¼ 0. (25)

The optimal resistance can then be obtained as

Dopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4þ 2g

s
, (26)

with a maximum amplitude of

Vmax ¼
2

g
. (27)

Again, a larger value of the coupling coefficient g leads to a better damping performance.

6. LR-network

A network consisting of resistive and inductive elements can be used for absorbing as well as for
damping depending on the resistance used. For absorbing, it is best to have a very small value for D, i.e. a
network including an inductance only. The additional resistance leads to a reduction of the resonance
amplitudes, but also decreases the absorbing effect. For a certain range of resistance, the FRF-function of the
system does not show any significant resonance magnification anymore. This relation of inductance and
resistance can be used for broadband damping. The equations are derived below, and a comparison shows
that the damping performance of such LR-network is much superior compared to the R-network. A resistance
higher than that optimal value leads to open electrodes’ behavior of the system with strong resonance
amplification again. As before, the equations of motion for the LR-case can be derived from Eq. (16) by
setting d equal to zero,

1 0

0 l

� �
x001

x002

" #
þ

0 0

0 2D

� �
x01

x02

" #
þ

1þ g �g

�1 1

� �
x1

x2

" #
¼

~F ðtÞ

0

" #
. (28)

For every l40, this function has two fixpoints, where the amplitudes are not depending on D. For an optimal
damping design, the amplitudes at these fixpoints should be equal [5]. It can be shown, that this is achieved be
tuning the absorbing frequency to the resonance frequency with open electrodes. This leads to the following
relation for l,

lopt ¼
1

1þ g
. (29)

The fixpoints then are located to the left and to the right of the resonance frequency for open electrodes at the
frequencies

Zfix1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
gþ g2

ps
, (30)
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having the same amplitude

V ðZ ¼ ZfixÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

gþ g2

s
. (31)

This result again shows that a high value of g decreases the amplitudes. For such an inductance, the amplitude
for Z ¼ Zres is strictly monotonic increasing with larger resistance from V ðZ ¼ ZresÞ ¼ 0 for D ¼ 0 (absorbing)
to V ðZ ¼ ZresÞ ! 1 for D!1 (open electrodes),

V ðZ ¼ ZresÞ ¼ 2D

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

g
. (32)

That resistance, for which this amplitude is equal to the amplitude at the fixpoints is commonly stated as the
optimal resistance,

Dopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2=gþ 4þ 2g

s
: (33)

A comparison of Eqs. (26) and (33) shows that the optimal resistance for a LR-network is smaller than for a
R-network. Fig. 6 shows the FRF of the LR-network with optimal inductance and resistance varied. The
absorbing area is present for small values of resistance and is surrounded by two resonances. The optimum
resistance equalizes the amplitudes of the fixpoints and of the resonance frequency for the system with open
electrodes, which leads to a flat FRF with a minimized maximum amplitude but also no absorbing area. This
line is also shown in Fig. 6.
7. Comparison of R- and LR-networks

In this section, the optimal tuned R- and LR-networks are compared. The result is depicted in Fig. 7. The
optimal lines for both kinds of networks are plotted versus parameter g. The FRF for the optimal R-network
has one strong resonance frequency. It is clearly noticeable that the damping effect is increased for higher
values of g. In contrast to this, the optimal LR-network does not show any noticeable resonance amplification.
The overall function is more flat and the better damping performance of the LR-network is evident. However,
for very small and very high frequencies, the R-network has the slightly smaller amplitudes.
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8. C-networks

After concluding the passive networks, in this section the effect of a network consisting only of a negative
capacitance is studied, before analyzing general networks containing passive and semi-active elements in the
following sections. It is known and experimentally verified [6] that a negative capacitance shunted to a
piezoelectric transducer is capable of changing the elasticity of the piezo element. When the piezo element is
the dominating system stiffness, this directly leads to a shifting of the resonance frequency. Setting the values
for resistance and inductance to zero, one gets the following equations of motion,

1 0

0 0

� �
x001

x002

" #
þ

1þ g �g

�1 1þ d

" #
x1

x2

" #
¼

~F ðtÞ

0

" #
, (34)

with the external capacitance described by parameter d ¼ Cps=C. The second equation describes the relation
between x1 and x2,

x2 ¼
x1

1þ d
, (35)

which can be inserted into the first equation resulting in

x001 þ
1þ dþ gd

1þ d

� �
x1 ¼ ~F ðtÞ. (36)

In this normalized form, the resonance frequency can easily be obtained as

Zres ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dþ gd

1þ d

r
. (37)

A plot is shown in Fig. 8. Studying Eq. (37) one can derive the effect of positive and negative capacitances. By
positive capacitances, which means d40, the resonance frequency can be shifted in the range 1pZresp

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

,
which are the resonance frequencies for open- and short-circuit electrodes. For a common value of g a
maximum frequency shift of about 0.5% can be achieved. When applying a negative capacitance, the
resonance frequency can (theoretically) be shifted to any frequency apart from that range. Decreasing the
parameter d from d ¼ 0 towards d ¼ �1=ð1þ gÞ reduces the resonance frequency from 1 towards zero,
cf. Fig. 8. When increasing d from �1 towards �1 (which means decreasing the real value C from 0 towards
�Cps), the resonance frequency is shifted from Zres ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

towards Zres !1. In the range

�1odo�
1

1þ g
(38)
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the system is unstable. This range has to be excluded. For d ¼ 0 the resonance frequency is located at Zres ¼ 1
for any value of g. This is the case of short-circuit electrodes. With the resonance frequencies given in Eq. (37),
where the resonance for open electrodes remains constant at Zres ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

, the apparent electromechanical
coupling coefficient can be derived. The definition according to Eq. (15) leads to

K2
eff ¼

ð1þ gÞð1þ dÞ
1þ dþ gd

� 1. (39)

Fig. 9 shows a plot of the apparent coupling coefficient Keff versus parameter d for different values
of g. Per definition d ¼ 0 results in Keff ¼

ffiffiffi
g
p

. The graphs shows that the coupling coefficient is generally
increased by negative capacitances. For d close to the critical value dcrit according to Eq. (17), the
coupling coefficient increases nearly instantly towards infinity. This effect is even increased for small values of
g. This means that theoretically the coupling coefficient can be increased for any value of g, but practically
tuning is difficult for small values of g because of the high sensitivity regarding changes of d. Beyond this
critical value, the square of the coupling coefficient gets negative, that is physically not meaningful, and the
system becomes unstable.
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9. LC-network

In this section a network consisting of inductance and capacitance is studied. The LC-network includes the
special case of the L-network, which results from setting the parameter d equal to zero. The equations for the
LC-network reads

1 0

0 l

� �
x001

x002

" #
þ

1þ g �g

�1 1þ d

" #
x1

x2

" #
¼

~F ðtÞ

0

" #
. (40)

The resulting system has in analogy to the L-network two resonances and one absorbing frequency. The effect
of the external capacitance C (i.e. d) is a change in the resonance frequency of the network and therefore of the
absorbing frequency. This frequency can be calculated as

Zabs ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ d
l

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

Zabs;L. (41)

The two resonance frequencies are located at

Zres ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ gþ

1þ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞ2l2 þ 2½ð1� dÞg� ð1þ dÞ�lþ ð1þ dÞ2

q
l

0
@

1
A

vuuut . (42)

These frequencies are plotted in Fig. 10. The required inductance l to absorb a certain frequency is therefore
changed in the following way:

l ¼ ð1þ dÞlL, (43)

with the constant absorbing frequency

Zabs ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ d
l

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d
ð1þ dÞlL

s
¼

ffiffiffiffiffi
1

lL

r
, (44)

where lL is the required inductance for the L-network only (d ¼ 0). When setting Zabs ¼ 1 which means that
lL ¼ 1 and l ¼ 1þ d, the resonance frequencies are as follows

Zres1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

g
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

1þ d
þ

g2

4

svuut
. (45)
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With the absorbing frequency not depending on d, the difference of the two resonance frequencies is increased
with a negative capacitance, leading to an increased absorbing area, cf. Fig. 11. That means a negative
capacitance has a similar effect as an increase of the electromechanical coupling coefficient. The maximum
possible effect of increasing the absorbing area is achieved when tuning d exactly to stability boundary
dcrit ¼ �1=ð1þ gÞ as given in Eq. (17). With Eq. (42) it follows

Zres1;crit ¼ 0,

Zres2;crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gþ g=ð1þ gÞl

p
. ð46Þ

It is of practical relevance how the resonances can be shifted while absorbing a given frequency Zabs.
Depending on the absorbing frequency, the resonance frequencies for d ¼ dcrit are

Zres1;crit ¼ 0,

Zres2;crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2abs þ g

q
. ð47Þ

Considering the parameter g to be relatively small (g � 1% when K3i ¼ 0:1 for typical applications), the

maximum possible spreading of the resonances when tuning to d ¼ dcrit results in Zres2;crit �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2abs

q
. This

means the maximum possible absorbing effect is nearly independent from the parameter g but tuning is more
difficult with g.
10. RC-network

Next, RC-networks are discussed. Criteria for optimal tuning of resistance and inductance will be given, and
the resulting damping performance is compared to R-networks. As already mentioned, cf. Eq. (17), a negative
capacitance is capable of destabilizing the system when tuned close to the negative value of piezoelectric
capacitance. These limitations are always regarded in the following sections.

The equations of motion for the RC-network read

1 0

0 0

� �
x001

x002

" #
þ

0 0

0 2D

� �
x01

x02

" #
þ

1þ g �g

�1 1þ d

" #
x1

x2

" #
¼

~F ðtÞ

0

" #
. (48)
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For every value of the capacitance d there exists again a fixpoint, where all FRFs independent of the resistance
are crossing, located at

Zfix ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg=2Þ þ dþ gd

1þ d

r
, (49)

cf. Eq. (24). In analogy to the R-network, the resistance is tuned in such a way that this fixpoint coincides with
the maximum amplitude for all frequencies. This leads to the following result for the optimal damping:

Dopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ dÞ3

4þ 2gþ 4dð1þ gÞ

s
. (50)

The amplitude at the fixpoint is given by

V ðZ ¼ ZfixÞ ¼
2þ 2d

g
. (51)

It can be observed that the amplitude of the fixpoint is monotonic decreasing with negative values of d down
to V ðZ ¼ ZfixÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞ=2

p
for the stability boundary at dcrit ¼ �1=ð1þ gÞ. On the other hand the static

displacement for Z ¼ 0 is magnified by a negative capacitance,

V ðZ ¼ 0Þ ¼
1þ d

1þ dþ gd
. (52)

As defined by normalizing the equations, V ðZ ¼ 0Þ ¼ 1 for d ¼ 0. So, by a negative capacitance, the amplitude
of the fixpoint is decreased while the static displacement is increased. The optimal value for negative
capacitance, which minimizes the overall maximum amplitude, can therefore be obtained by equating both
amplitudes. For values of d larger than this optimal value, the maximum amplitude appears at the fixpoints,
for smaller values the static displacement at Z ¼ 0 is the maximum. This criterion results in the following
equation for dopt,

dopt ¼
g=2� 1

gþ 1
. (53)

Interestingly, the optimal value for d does not correspond to the stability boundary of the system at dcrit.
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Fig. 12. FRF for optimum RC-network versus d; optimum d marked by thick line.
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The corresponding optimal resistance is derived by substituting this value into Eq. (50). The maximum
amplitude of the FRF with optimal tuned RC-network reads

Vmax ¼
3

1þ g
. (54)

Fig. 12 shows the FRFs of optimal tuned RC-networks versus d. The line for optimal d is marked by a thick
line. Consider that the optimal R-network without negative capacitance is given at d ¼ 0. It is evident that the
damping effect is increased significantly when using a negative capacitance, being maximized for d ¼ dopt. As
presumed and confirmed by Eq. (54), a larger value of g leads to a better damping performance. It supersedes
optimal passive networks for any value of g possible in real applications. But unlike for passive R- and LR-
networks, the influence of g upon the damping performance is relatively small, i.e. that even with a small value
of g good damping performance is achievable, cf. Fig. 13. Moreover, an upper limit for the maximum
amplitude can be given by Vmax ¼ 3. But, as can be seen from Eq. (53), negative capacitance has to be tuned
closer to the stability boundary for small g, which means, the system is very sensitive for small changes of
d-values.
11. LRC-network

The following calculations are performed in an analogical way as for the LR-network for damping and the
same criteria are used to find the optimized parameters. Starting with the equations of motion,

1 0

0 l

� �
x001

x002

" #
þ

0 0

0 2D

� �
x01

x02

" #
þ

1þ g �g

�1 1þ d

" #
x1

x2

" #
¼

~F ðtÞ

0

" #
(55)

one can see they differ only by the term ð1þ dÞ in the stiffness matrix from the equations for the
LR-case, cf. Eq. (28). The resonance frequency for open electrodes again lies at Zres ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ g
p

, while
the absorbing frequency is located at Zabs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ dÞ=l

p
. Again the effect of a decreased absorbing

frequency by a negative capacitance can be observed. The optimal value is calculated in the same way as
for LR-network by equating the frequencies of absorbing and resonance for open electrodes, cf. Eq. (29).
This results in

lopt ¼
1þ d
1þ g

! lopt ¼ ð1þ dÞlopt;LR. (56)
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It can be shown that a negative value for d leads to a reduction of the required value for l (resp. inductance),
compensating the effect of decreased absorbing frequency by the negative capacitance, while the resonance for
open electrodes does not change. For such a parameter-constellation, the fixpoints are located at

Zfix1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g�

1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g
1þ d

svuut
. (57)

This equation shows clearly the effect of spreading the fixpoints by a negative capacitance d. The
amplitude at the resonance frequency is V ðZresÞ ¼ 2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ gÞ

p
=g, while the amplitudes at the fixpoints are

V ðZfixÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ dÞ=ðg2 þ gÞ

p
. This term shows a reduction of the amplitudes for a negative value of d. The

criterion for optimal parameter D is to equate these amplitudes,

Dopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d

2=gþ 4þ 2g

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

Dopt;LR. (58)
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Eqs. (56) and (58) clearly indicate the reduced values for resistance and inductance for the optimal LRC-
network compared to the optimal LR-network.

As already mentioned by Tang and Wang [5] the usually quite small piezoelectric capacitance leads to a
large optimal inductance for the LR-network, which probably has to be built synthetically. A negative
capacitance can therefore make the synthetic inductor unnecessary.

The amplitudes for optimal damping according to Eq. (58) are depicted in Fig. 14 versus parameter d. One
can see that generally a negative capacitance leads to better damping, as presumed before. Consider the line at
d ¼ 0 is the line of optimal damping for the LR-network. As in the case of the RC-network, there again exists
an optimal value dopt which minimizes the maximum amplitude,

dopt ¼
gkLRC � 1

gþ 1
; kLRC ¼

ffiffiffiffiffi
17
p

2
cos

arcustangens ð4Þ

3

� �
�

3

4
� 1:113, (59)

which has the same form as dopt for the RC-network, for which kRC ¼ 0:5, cf. Eq. (53). The corresponding
frequency response function is highlighted in Fig. 14 by a thick line. Again a smaller value of g results in dopt
closer to d ¼ �1 which means closer to the stability boundary of the system. For the parameter as shown in
Fig. 14, dopt is calculated as dopt ¼ �0:808. The optimal parameter dopt for RC- and LRC-networks and the
stability boundary dcrit, which is the same for both kind of networks, are plotted in Fig. 15 versus parameter g.
The difference between dcrit and dopt, which can be treated as the safety margin to the stability boundary is
given as

dopt � dcrit ¼
kg

1þ g
; k ¼ kLRC resp. k ¼ kRC . (60)

It is larger for the LRC-network than for the RC-network, and it is growing for larger values of g for both
networks, which makes the tuning to the optimal values easier. A comparison of optimal tuned RC-network
according to Eqs. (50) and (53) and the optimal tuned LRC-network according to Eqs. (56) and (58) is given in
Fig. 16 versus parameter g. Unlike in passive networks, amplitudes for small values of g are only slightly higher
than for large values of g. The damping performance of LRC-networks is yet superior to RC-networks, the
upper limit for the maximum amplitude can be given as

lim
g!0

Vmax ¼ 2:38, (61)

compared to Vmax ¼ 3 for the RC-network. Also the static displacement for the optimal RC-network is larger
than for the LRC-network, because dopt;RC is closer to �1 than dopt;LRC . For both semi-active networks, the
static displacement is larger than the normalized static amplitude of passive networks, V ðZ ¼ 0Þ ¼ 1.
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Fig. 18. Test rig.
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12. Comparison of optimal passive and semi-active networks

The analytical discussion of passive and semi-active networks concludes in a comparison of both
methods. Best damping performance in passive systems can be achieved by LR-networks, cf. Fig. 7, while
LRC-networks result in the best semi-active constellation, cf. Fig. 16. A comparison of these damping
performances gives insight how much potential for improvement is given with semi-active networks,
cf. Fig. 17. It can be seen that the addition of the optimal negative capacitance reduces the maximum
amplitudes in the FRF significantly, thus increasing the damping performance of the system. The
overall FRF is very flat, but for small frequencies (especially for Z ¼ 0), the amplitudes are larger than
for passive networks, caused by the negative capacitance reducing the effective stiffness of piezo
element. Also for high frequencies the amplitudes of the LRC-network are slightly larger than of the
LR-network. While damping performance of LR-networks is diminished significantly for small g,
damping performance of optimal LRC-networks shows only little influence of this parameter. Thus,
the improvement in performance caused by an additional negative capacitance is better, the smaller the
parameter g. These results are based on the assumption that optimal tuning is possible and the operational
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amplifiers in synthetic negative capacitance always generate the required voltage, which is proportional to the
amplitudes of excitation forces.

13. Measurements

Experimental investigations have been performed with different configurations of impedance shunt circuits.
The aim is to validate the analytical results and to prove the increased damping and absorbing performance
for optimum LRC-networks compared to optimum LR-networks predicted by the analytical investigations
shown before. The test rig consists of a vibration mass of 1.1 kg which is mounted on top of a piezoelectric
stack actuator, cf. Fig. 18. The piezo element used is a tubular HVPZT stack translator PI-305 (Physics
Instruments). The synthetic negative capacitance circuit was realized with a single high-voltage OPA445
operational amplifier as an impedance converter, based on Ref. [7]. Negative capacitance was gained by
changing the amplification factor of the operational amplifier. The positive capacitance value in the circuit is
22 nF. For symmetric supply, voltage of �40V has been applied, the overall power consumption was less than
0.3W. The stiffness c33 of the piezo element is calculated from the measured mass and eigenfrequency for
short-circuit electrodes. The maximum normal pressure of the piezo element is limited to 500N. In order to
use the maximum possible vibration amplitude, a pre-stress of 250N has been applied to the piezo element by
an additional spring c0 which is connected between the mass and the base.

The absorbing frequency was tuned equal to the resonance frequency for open electrodes as suggested in the
section L-network to achieve maximum damping performance. Using an inductance of L0 ¼ 640mH the
absorbing frequency was located at f abs ¼ 1625Hz with the resonances at f res1 ¼ 1445Hz and f res2 ¼ 1800Hz,
or normalized according to Eq. (13),

Zabs ¼ 1:0125; Zres1 ¼ 0:9003; Zres2 ¼ 1:1215. (62)

The parameter l0 is defined by the absorbing frequency, cf. Eq. (20):

l0 ¼
1

Zabs

� �2

¼ 0:9755.

The unknown parameter g can be obtained by solving Eq. (21) for both left and right resonance frequencies.
This results in g ¼ 0:0502 for the left resonance and g ¼ 0:0477 for the right one. In the following the average
value of

g ¼ 0:0489

is assumed. The generalized coupling coefficient of this application is therefore K3i ¼ 0:22. The sensitivity of
the piezo element can be derived by Eq. (14) as

d33 ¼ 2:56 nm=V.

The properties of the test rig are summarized in Table 1. In Fig. 11 the influence of a negative capacitance in a
LC-network for absorbing is compared to a L-network. To observe the strongest absorbing performance, the
Table 1

Test rig parameters

Parameter Value Description

m0 1:1kg Vibrating mass

Cps 15nF Capacitance of piezo stack

c33 111MN=m Stiffness of piezo stack for short-circuit electrodes

d33 2:56nm=V Sensitivity of piezo stack

c0 12:5kN=m Additional spring

g 0:0489 Square of gen. electromechanical coupling coefficient

f short 1605Hz Eigenfrequency of the system with short-circuit electrodes
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value of negative capacitance in the test rig was set to obtain a value of d closest to dcrit ¼ �1=ð1þ gÞ ¼ �0:95,
cf. Eq. (17), which is the stability boundary of the system. The inductance value was set again, to obtain the
absorbing frequency equal to the open electrodes’ resonance frequency of the system. As proposed in Eq. (43),
the required inductance was reduced, in this case to L ¼ 90mH, resp. l ¼ 0:1372. Eq. (43) can be used to
derive the parameter d that has been achieved in experiment,

d ¼
l
l0
� 1 ¼

L

L0
� 1 ¼ �0:86.

With Cps ¼ 15 nF, the actual negative capacitance value was �17:45 nF. As it is practically difficult to reach
the optimum value for d due to the stability boundary, the damping performance is supposed to be even more
improved when tuning closer to dcrit. According to Eq. (42) the resonances of the FRF for the LC-network
containing these values for d, l and g are located at

Zres1 ¼ 0:66; Zres2 ¼ 1:28.

From measurement data, the resonances are located at

f res1 ¼ 1115Hz; f res2 ¼ 2085Hz; resp: Zres1 ¼ 0:69; Zres2 ¼ 1:30.

These results are not only in very good accordance to the predicted frequencies, also the considerably improved
absorbing performance of the LC-network compared to the L-network is obvious. The difference in frequency of
the two resonances is increased almost 3 times from 355 up to 970Hz. The corresponding measured FRF for the
L- and the LC-network are shown in Fig. 19. The test rig has then been used to verify the improved damping
performance of networks containing negative capacitances. The optimal tuned R- and LR-networks are
compared with the optimum LRC-network as has been shown in Figs. 7 resp. 17 analytically. The optimum
resistance for the R-network according to Eq. (26) and revoking the normalization is given as

Ropt;R ¼
2

Cps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

ðc0 þ c33Þð4þ 2gÞ

r
¼ 6531O.

For the optimum LR-network, the inductance is set by tuning the absorbing frequency to the resonance
frequency for open electrodes. According to Eq. (33), the optimum resistance is given as

Ropt;LR ¼
2

Cps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

ðc0 þ c33Þð2=gþ 4þ 2gÞ

r
¼ 1970O.

For the LCR-network, the optimum value for d assuming g ¼ 0:0489 is given as dopt ¼ �0:905, cf. Fig. 15.
However, the network remains to be tuned to d ¼ �0:86 which is the closest possible value for the network used
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Fig. 19. Measured FRF of LC- (—) and L- (-�-�-) networks; absorbing case.
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Fig. 21. Measured FRF of opt. R- (—), LR- (- - -) and LRC- (-�-�-) networks.
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Fig. 20. Measured FRF of LRC-network: (-�-�-), ð� � � � � �Þ, (- - -): R ¼ 10=200=5000O; (—): R ¼ Ropt ¼ 800O.
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to emulate a negative capacitance. According to Eqs. (56) and (58), the values for inductance and resistance are
decreased

Lopt;LRC ¼ ð1þ dÞLopt;LR,

Ropt;LRC ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

Ropt;LR ¼ 739O.

To prove the existence of the two predicted fixpoints, several FRF with different resistances were measured,
keeping the inductance and negative capacitance values constant. The result is shown in Fig. 20. In this graph,
the solid line is drawn for the optimum value of resistance according to the proposed criterion. The two fixpoints
around which all FRFs meet can clearly be localized at frequencies

f fix1 ¼ 1300Hz; f fix2 ¼ 1970Hz; resp: Zfix1 ¼ 0:81; Zfix2 ¼ 1:23.

Again, these measured frequencies are in very good accordance with the analytical predictions given by
Eq. (57):

Zfix1 ¼ 0:79; Zfix2 ¼ 1:22.
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Table 2

Comparison of measurements and analytic predictions

Analytic result Measurement

Optimum resistance for R-network Ropt;R 6531O 6000O
Optimum resistance for LR-network Ropt;LR 1970O 1500O
Optimum resistance for LRC-network Ropt;LRC 739O 800O
Left resonance for LC-network Zres;1 0.66 0.69

Right resonance for LC-network Zres;2 1.28 1.30

Left fixpoint for LRC-network Zfix;1 0.79 0.81

Right fixpoint for LRC-network Zfix;2 1.22 1.23
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As for the LR-network, it can be seen that the shape of the FRFs change from the absorbing case with two
resonances for resistances lower than the optimum value to an open electrodes behavior of the system for
resistances larger than the optimum. The optimum line itself has the lowest maximum amplitude of all FRFs.

In Fig. 21, the optimal measured FRFs for R-, LR- and LRC-networks are plotted in one diagram to
compare the damping performances of the different networks. The best performances for each network can be
achieved using the following resistances:

RR ¼ 6000O; RLR ¼ 1500O and RLRC ¼ 800O.

Especially the resistances used for R- and LRC-networks are very close to the predicted values and prove the
proposed criteria. The differences between calculations and measurements are due to the side effects in the test
rig, e.g. cables capacitance and reactance losses in the coil used during the experiment. A comparison shows
that for passive networks, the LR-network is significantly better in comparison to the R-network. However,
the damping performance can still be increased further when using an optimum tuned LRC-network. The
maximum appearing amplitude was decreased to 60% compared to the LR-network. This improvement may
be further increased when tuning the negative capacitance closer to the proposed optimum value. On the other
hand, amplitudes for low frequencies are amplified by the negative capacitance, cf. Fig. 17. The comparison of
analytic and measured results is summarized in Table 2.
14. Conclusions

In this paper, a comprehensive study of a negative capacitance in a damping and absorbing system using
shunted piezoelectric transducers has been performed. Based on a unifying mechanical model, for each kind of
network, criteria for optimal parameters are given and the damping and absorbing performance of these
networks tuned to the proposed optimal parameters are compared. All results are given in a normalized form
highlighting the influence of the generalized electromechanical coupling coefficient. Comparing the optimal
passive LR-network with the optimal LRC-network, it can be shown that damping performance is increased
significantly by adding a negative capacitance. An upper limit of the maximum appearing amplitude in the
FRFs has been given. For RC- and RLC-networks the maximum amplitudes are, respectively, 3 and 2.38
times the static displacement for the system without negative capacitance. Furthermore, smaller values for
resistance and inductance are required. An optimal value for the negative capacitance is given and the stability
boundary is derived. It is also shown that the absorbing effect is increased by a negative capacitance resulting
in a broader frequency range between the resonances.

These analytical results are verified experimentally. A test rig has been built and a circuit representing
the negative capacitance has been implemented. Beside a reduction of the required inductance from
640 to 90mH, the absorbing effect of an L-network has been increased significantly by adding a negative
capacitance, resulting in an absorbing area nearly 3 times larger than before. Also the increased damping
performance has been validated, where the maximum appearing amplitude has been reduced to 60%
compared to the LR-network.
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