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Abstract

The time-dependent forces resulting from a two-phase air–water mixture flowing in an elbow and a tee are measured.

Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on

similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to

the parameters defining the flow and the geometry of the piping. Using a momentum balance we show that these forces are

correlated with local measurements of the void fraction in the flow.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Two-phase flow is found in many systems used in nuclear and chemical engineering. Mixtures of liquid and
gas may be steam and water, such as in heat-transfer apparatus, or non-miscible products such as in offshore
production. Some aspects of the excitation of structures by these two-phase flows are known to be related to
the existence of distinct phases with distinct densities. This has been analyzed in the case of flow external to the
structure, such as in heat exchangers where steam and water flow through a tube bundle (see Ref. [1] for a
review).

In the case of internal flow in piping systems, excitation forces materialize at flow-turning elements such as
bends, elbows and tees. Much less attention has been paid to this case. The first set of experiments aimed at
characterizing these forces was conducted by Yih and Griffith [2] in relation with nuclear engineering. By
measuring forces on tees subjected to ascending air–water mixtures they found that fluctuating forces were of
the same order as the load induced by the steady component of the flow. A dimensionless expression was
proposed to relate experiments with various diameters and flow velocities. Using a momentum balance these
forces were related to the time variation of the density of the fluid entering the tee, liquid and gas alternating.
In term of spectral content, a dominant frequency emerged, and was considered as rather low in comparison
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with those typical of piping elements. This probably led to the common idea in the field of nuclear engineering
that such excitations were of minor practical importance. In recent experiments Riverin and Pettigrew [3]
showed that the induced forces can nevertheless be of significant magnitude and that strong vibrations of
U-bends can be caused by such two-phase flows.

In the field of chemical engineering concerns about these fluctuating forces arose more recently, from
failures of piping systems, see Tay and Thorpe [4] and references therein. In the design of such piping values of
the maximum possible load are sought, to prevent fracture. These loads are typically related to the passage of
slugs through bend, as discussed in Refs. [4,5]. A recent experimental program has been reported in Ref. [4]
where a horizontal bend is subjected to slugs of liquids. Using also a momentum balance, the measured forces
were found to be closely related to the dynamics of the slugs, which was simultaneously measured. The effect
of surface tension and of viscosity of the liquid phase were tested and found to be of minor importance. In
Refs. [6–8], a detailed experimental analysis of the flow motion and fluctuations in a Tee-junction has been
presented. Pressure fluctuations in the outlet branches have been analysed in terms of magnitude and of
spectral content, but no forces have been directly measured. These results will be reconsidered in Section 5 in
relation with our findings.

Considering all these results it appears that a common mechanism of excitation was observed in quite
different systems: (a) a tee subjected to vertical flow, at high velocities (more than 15m/s) with diameters
smaller than 25mm in Yih and Griffith [2], (b) a bend subjected to horizontal flow of slugs with low velocities
(less than 4m/s) with a larger diameter of 70mm. The aim of the present work is to arrive at a common
formulation of these forces, in dimensionless form so that it can be used in practical applications in piping
design. In particular we seek to characterize the rms value and the spectral content of these excitations.

A computational approach to this question is possible but would raise several difficulties. First of all, as we
seek values of the fluctuation load, time-dependent computational results are needed on a duration such that
the spectral analysis can be made accurately. Second, the nature of the flow regimes considered here (bubbly,
churn or slug) are such that the complexity in time and space of the interface between gas and liquid would
require considerable space and time refinement in the numerical technique [9]. Note here that simpler
homogenized flow models where the interface positions are not explicitly computed would not allow to derive
the fluctuating loads, as these loads are not caused by turbulence but by alternating of phases. Finally the
geometry of bends and tees is such that flow patterns are quite complex even in their time-averaged
characteristics. Recent computations, such as in Supa-Amornkul et al. [10] or Adechy and Issa [11] and
reference therein, show that the computational derivation of the spectral content of fluctuating forces on bends
and tees does not seem presently feasible. We therefore use here an experimental approach.

The existing experimental data on forces acting on bends and tees are few, and are based on experiments
either on bends or on tees. To our knowledge no experiment has been done on bends and tees in the same flow
regime and using the same technique. No comparison either has been done between the existing data, and no
dimensionless formulation exists that has been tested on several cases. Finally, as local characteristics of two-
phase flow are now available using optical probes, the relation between these characteristics and the resulting
forces can be explored.

In Section 2, new experiments on a bend and a tee are described. The dimensionless formulation of Yih and
Griffith [2] is extended in Section 3 to include all experiments mentioned above. Finally, in Section 4 a local
measurement of the time-dependent void fraction is used to reconstruct the measured excitation.

2. Experiments

2.1. Experimental set-up

An air–water loop was constructed to simulate two-phase flow. Air from the local compressed air service is
mixed with water to produce two-phase flow. A mixer made of a fine screen is used at the inlet of the test
section to homogenize the mixture. After the test section, the flow is discharged in a tank where the air escapes.
In the performed tests, the volumetric flow rates of air and water were varied from 0.1 to 10.4, and from 0.17
to 1.25 L/s, respectively. Two parameters are used to specify the flow conditions [12]: the volumetric quality (or
homogeneous void fraction), b, and the superficial or homogeneous velocity, referred simply as velocity in this
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paper, j, defined respectively as

b ¼
Qg

Qg þQl

; j ¼
Qg þQl

A
, (1)

where A is the total flow area, Qg and Ql stand for the volumetric flow rate of air and water, respectively. A set
of 11 two-phase mixtures was tested with two different volumetric qualities b ¼ 50% and b ¼ 75% and
velocity j varying from 2 to 6 m/s in the first case and from 2 to 12 m/s in the second case. These conditions are
selected so that the main flow patterns, according to the map of Taitel et al. [13], would be bubbly or churn
flow. A larger set of experiments is reported in Ref. [3], with tests in other flow regimes.

Flow is carried by a transparent PVC tube of internal diameter D ¼ 20:6mm, mounted vertically. Two set-
ups are considered. First, a U-tube configuration, Fig. 1a, is made of two sharp bends (radius of curvature
R ¼ D=2) at distance of L ¼ 300mm. Second, a Tee configuration, Fig. 1b, is made with two equal short
branches of the same diameter as the vertical pipe. In both configurations a piezoelectric force sensor was used
to measure the force exerted by the flow on the tube. In the U-Tube configuration the force sensor is attached
horizontally on one side to the first bend and on the other side to a rigid bracket, Fig. 1a. In the Tee
configuration the force sensor is attached vertically on the central part of the tee junction, Fig. 1b. Here, a
small sliding device decouples the measured force from the tension in the vertical pipe.

For the sake of comparison between these two configurations and with the previous results in Refs. [2,4], we
define an equivalent bend force F B, Fig. 1c, as the fluctuating part of the flow-induced force projected on the
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outward oriented median of a bend, eB. For the U-bend configuration, the measured force FX results from the
sum of forces exerted at the two bends, each being projected on the horizontal axis x,

FX ðtÞ ¼ �
1ffiffiffi
2
p F B;1ðtÞ þ

1ffiffiffi
2
p FB;2ðtÞ, (2)

where the subscripts 1; 2 refer to each bend. The power spectral density (PSD) and the rms value of the
measured force are related to those of the bend force. If it is assumed that F B;1 and FB;2 are of equal magnitude
and fully decorrelated then the PSD and the rms force read

FX ðf Þ ¼ FBðf Þ; F rms
X ¼ F rms

B . (3)

If some correlation exists between the forces at the two bends, as a result of convection of the flow structure
between them, the measured force will underestimate the equivalent bend forces, as correlated force would
cancel each others. Following Ref. [2], this effect can estimated and has not been found to be of importance
here. In the Tee configuration the measured force in the y direction is equivalent the projection of a bend force
so that

FY ðtÞ ¼
1ffiffiffi
2
p FBðtÞ; FY ðf Þ ¼

1

2
FBðf Þ; F rms

Y ¼
1ffiffiffi
2
p F rms

B . (4)

In addition to the measurement of forces an optical probe was used to measure the local properties of two-
phase flow. The probe, made of an optical fibre of 0:17mm diameter with a conical tip, acted as a phase sensor
based on the different level of light reflection between air and water. Its principle of operation is the same as
described in Ref. [14]. The probe was inserted in a vertical straight tube made of the same material and of same
diameter as the U-tubes, Fig. 1d. Probe data were recorded for a period of 200 s for each run. As a result the
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Fig. 2. Spectrum of equivalent bend forces. (a) U-bend, b ¼ 50%; (b) Tee, b ¼ 50%; (c) U-bend, b ¼ 75%; (d) Tee, b ¼ 75%. In each

graph the spectra are given for the following velocities: j ¼ 2; 3; 4; 5; 6m=s for b ¼ 50%, and j ¼ 2; 4; 6; 8; 10; 12m=s for b ¼ 75%.

Increasing spectral levels correspond to increasing velocities.
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instantaneous local void fraction aðtÞ is derived, being equal either to zero or one, corresponding to the
presence of liquid or gas. Four flow conditions were tested, corresponding to the minimum and maximum
values of b and j.

2.2. Experimental results

In the two configurations, Tee and U-bend, the equivalent bend force as a function of time is derived from
the measured forces. The corresponding PSD are shown in Fig. 2. The rms value of the equivalent bend force
with the flow velocity j is plotted in Fig. 3. In these results it appears that: (a) the forces caused by the two-
phase flows at b ¼ 50% and b ¼ 75% are similar, though different in magnitude, (b) for a given void fraction
and flow velocity forces on bends and on a tee are similar if referred to an equivalent bend force, (c) the effect
of the flow velocity is continuous in this range of parameters, (d) the PSD shows a pronounced dominant
frequency that varies with the flow velocity.

A typical evolution with time of the local void fraction aðtÞmeasured by the optical probe is shown in Fig. 4.

3. Dimensionless forces

3.1. RMS of forces

In the presentation of their experimental force measurement on a Tee for different tube diameters, void
fractions and flow velocities, Yih and Griffith [2] proposed to use the following dimensionless form:

F rms

F stat We0:4 ¼ AðbÞ, (5)
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where F stat ¼ rLð1� bÞj2ðpD2=4Þ is the stationary component of the force, the Weber number is defined by

We ¼
rLj2D

s
; (6)

and AðbÞ is a function of void fraction given graphically in Ref. [2]. The Weber number scales the dynamic
pressure with the effect of surface tension. This relation was found to give a reasonable collapse of all data
points in a range of void fraction from 55% to 98%. We only use here data for void fractions below 75% to be
consistent with our experiments. Moreover, only in that range can the original data be reconstructed from the
dimensionless results. These experiments were made with a diameter of 6.35mm and a velocity of 16.5m/s.

More generally, if it is assumed that the viscosity of the liquid m, gravity g and the densities of both phases
rL, rg, all influence the magnitude of the forces, the corresponding dimensional relation should read

F rms ¼ bðj;b;D;rL;rg;s; m; gÞ, (7)

where b is the unknown function of all these dimensional parameters. Using standard dimensional analysis, as
in de Langre and Villard [15] for the case of external flow, this may equivalently be written as

F rms

rLð1� bÞj2ðpD2=4Þ
¼ B b;

rL

rg

;We;Re;Fr

 !
, (8)

where the Reynolds and Froude numbers are, respectively,

Re ¼
rLjD

m
; Fr ¼

jffiffiffiffiffiffiffiffi
rLg
p ; (9)

and where B now only depends on the dimensionless parameters. Clearly, Eq. (8) is a generalization of Eq. (5).
Using the experimental results presented in the preceding section as well as from the conclusions of Yih and
Griffith [2] and of Tay and Thorpe [4] the effect of each parameter may be assessed as follows:

(a) The flow velocity j was found to influence the force as j1:2 in Ref. [2] and as ðj0 þ jÞ2 in Ref. [4], j0 being a
constant. The variation as j1:2 is compatible with our tests, Fig. 3, though a slightly higher exponent might
be more appropriate (see Ref. [3] for a detailed analysis). This dependence would imply that the function B

in Eq. (8) varies either as We�0:4 or Re�0:8 or Fr�0:8 or any combination of these such that the resulting
variation in j is, in this combination, j�0:8.

(b) When the diameter was varied by a factor of 4 in Ref. [2], for higher void fractions, the force was found to
vary as D1:6. This is not compatible with the dependences in Reynolds and Froude number mentioned
above, which would yield a variation of D1:2 and D2:4, respectively.

(c) When surface tension was varied by 35% in the experiments of Tay and Thorpe [4] a very small variation
in the level of forces was found. This is compatible with a variation as We�0:4 where the surface tension,
acts as s0:4 only.

(d) Similarly when viscosity was varied by a factor of 2.6 in Ref. [4] a small variation in the level of forces was
found. This is compatible with no significant dependence with the Reynolds number.

(e) In terms of the effect of gravity, it should be noted that the experiments by Tay and Thorpe [4] are made
with a horizontal pipe, whereas those of Yih and Griffith [2], as well as those of the present work, are made
with a vertical pipe. Gravity is known to play an important role on the flow structure in both
configuration, but differently. As we wish to compare vertical and horizontal test we assume as a first
approximation that there is no dependence of the force with the Froude number.

(f) The effect of the mass ratio rL=rg was analysed by Yih and Griffith [2], for higher void fractions. By
doubling the pressure and thus doubling the gas density the magnitude of forces was reduced by about
15%. The dependence with rL=rg in that range is therefore small and may be discarded. When considering
higher gas density, such as in vapour, using the density of air probably yields an overestimation of the
forces. This has been observed before in modelling the effect of two-phase flow across tube bundles, see
Refs. [1,9].
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(g) Finally, in terms of the effect of void fraction the results of Fig. 3 show that from 50% to 75% the
magnitude of the force varies slightly. In Ref. [2] less than a factor of 2 is found in the function A of
Eq. (5). We may assume that B varies like 1=ð1� bÞ.

From these considerations, it appears that the formulation proposed by Yih and Griffith may be extended
as

F rms

rLð1� bÞj2ðpD2=4Þ
¼

B

1� b
We�0:4 (10)

which also reads simply

F rms ¼
F rms

rLj2ðpD2=4Þ
¼ CWe�0:4, (11)

where C is a constant.
In Fig. 5 we show the dependence of this dimensionless rms F rms force with the Weber number. On the same

graph are plotted experiments in this range of void fraction: those of Yih and Griffith [2], those of Section 2
and those of Tay and Thorpe [4]. For these latter experiments a conversion is needed to derive the rms value of
the force from its maximum value, reported in Ref. [4]. In our experiments we found Fmax=F rms ’ 5, which is
used here. Note that this ratio may depend on the flow regime.

Eq. (11) is found to be a reasonable approximation for all these results, with C ¼ 10. It is remarkable that
this relation allows to compare tests with significant differences in terms of diameter (from 6 to 70mm), flow
velocity (1 to 17m/s), surface tension (0.05–0.07N/m), viscosity (10�6–2:6� 10�6 Kg=ms) and geometry (tee,
bend, U-bend). Results from tests at a void fraction of 25%, not shown the figure, also follow the same trend,
see Ref. [3].

The experimental data on pressure fluctuation given by Wang and Shoji [6] may also be analysed using this
approach. We consider their case of symmetric flow, w3=w1 ¼ 0:5, with water and gas superficial velocities of
0.14 and 0.94m/s, respectively, as described in Fig. 6b of Ref. [6]. We may estimate the fluctuating force by

ARTICLE IN PRESS

106105104103102

10-1

100

We

F
rm

s

Fig. 5. Dimensionless rms force on a bend as a function of the Weber number. Present test: �, U-bend; &, Tee. Tests by Yih and Griffith

[2]: }. Tests by Tay and Thorpe with water, water with isopropanol surfactant and water with glycerol solution, respectively [4]: �, �, þ.

Force estimated from pressure data in a test by Wang and Shoji [6]: �. Extension of the formulation of Yih and Griffith [2], Eq. (11) with

C ¼ 10, (- -).

J.L. Riverin et al. / Journal of Sound and Vibration 298 (2006) 1088–10981094



integrating the measured fluctuating pressure over an area equal to that of the pipe section. This results in a
dimensionless fluctuating force F rms ¼ 0:24 with a Weber number of We ¼ 250. In Fig. 5 the corresponding
data point is lower than our proposed relation. Note that the void fraction b ¼ 0:87 is higher than those we
considered in our experiments. Moreover Eq. (11) remains an upper bound.

3.2. Dimensionless spectrum

In terms of the spectral characteristics of the forces, few data are available. The spectra computed in Ref. [2]
are not accurately defined, due to the rather simple data processing available in the late 60s. Only the results of
our test are reported here. Using the dimensional analysis presented above, the dimensionless form of the PSD
must be such that its integration over frequency yields the dimensionless rms value. This requires that

FB

ðrLj2D2Þ
2

f 0We0:8 ¼ E
f

f 0

� �
, (12)

where f 0 is a reference frequency and Eð Þ is a function of the dimensionless frequency f =f 0. A natural
reference frequency is f 0 ¼ j=D. In Fig. 6 the PSD of the equivalent forces, given in Fig. 2, are shown now in
dimensionless form using

FB ¼
FB

ðrLj2D2Þ
2

j

D

� �
We0:8; f R ¼

fD

j
, (13)

where f R is commonly defined as the reduced velocity. It is found that for a given void fraction the dependence
with velocity is satisfactorily taken into account.
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On these dimensionless spectra a dominant frequency is well defined at fD=j ’ 0:05 for b ¼ 50% and
fD=j ’ 0:03 for b ¼ 75%. The Strouhal number defined by Azzopardi and Baker [16] for the dominant
frequency of fluctuations in a two-phase flow is

ST ¼
fD

jð1� bÞ
. (14)

Its value is here approximatively ST ¼ 0:10 for b ¼ 50% and ST ¼ 0:12 for b ¼ 74%. This falls in the range of
Strouhal numbers for this range of void fractions, as given in Ref. [16], showing that periodicity of the force
exerted by the two-phase flow is the result of a periodicity in the flow structure. Here again some data from
Wang and Shoji [6] may be considered. In the nearly symmetric case of Fig. 8b in Ref. [6], the dominant
frequency is about 2Hz, so that the Strouhal number is ST ¼ 0:33. This is compatible with the data given in
Ref. [16] for this range of void fraction (here b ¼ 0:91).

4. Relation with local void fraction

Following Yih and Griffith [2] the fluctuating force may be related to the variation with time of the fluid
momentum. The equivalent bend force is given by the momentum balance equation, projected on the axis eB

defining FB, Fig. 1c. It reads

F BðtÞ ¼
1ffiffiffi
2
p

Z
Inlet

rj2 dAþ
1ffiffiffi
2
p

Z
Outlet

rj2 dA�
q
qt

Z
Bend volume

r j :eB dV

� �
, (15)

where the first two surface integrals relate to the flow characteristics at the entrance and exit of the bend, the
third one being a volume integral over the whole fluid domain in the bend. This is identical to the formulation
used by Yih and Griffith [2] to relate the force exerted by the flow on a tee to variations in void fractions,
except for gravity effects which are neglected here. It is also equivalent to the formulation developed by Tay
and Thorpe [4,5], named piston flow model (PFM), except for the pressure gradients due to friction which are
neglected here.

Though the flow regimes in our experiments are bubbly and churn flows we model it here as alternative slugs
of liquid and gas, as measured by the optical probe. From this simplifying assumption the density is
homogeneous across a section of the pipe and is equal to

rðtÞ ¼ rLð1� aðtÞÞ, (16)

where the gas density has been neglected. Considering that the void fraction pattern is convected by the flow
velocity j, the density at the inlet, outlet and inside the bend are related by time lags only. Using Eqs. (15) and

ARTICLE IN PRESS

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

(a) (b)

F
B

rm
s (N

)

F
B

rm
s (N

)

j(m/s) j(m/s)

Fig. 7. rms value of the equivalent force as a function of the flow velocity. (a) b ¼ 50%; (b) b ¼ 75%; �, U-bend; &, Tee; �, force

estimated using the local measured void fraction.

J.L. Riverin et al. / Journal of Sound and Vibration 298 (2006) 1088–10981096



(16) we have

FBðtÞ

rLj2pD2=4
¼

2� aðtÞ � aðt� dÞffiffiffi
2
p þ

Z d

0

qa
qt

� �
t�t

cos
p
4
þ

tj

R

� �
dt, (17)

where the time lag between the inlet and outlet is d ¼ pR=ð2jÞ. The corresponding rms values are plotted
Fig. 7, in comparison with the direct measurement of the force. The order of magnitude is similar, at least for
the higher velocities.

5. Concluding remarks

When considering bends and tees in various geometrical and flow configurations a relation is found between
the fluctuating forces caused by the two-phase flow and the characteristics of the flow. This relation is here
expressed in a dimensionless form for application to other conditions. The magnitude of the forces may also be
related to local fluctuations of void density in the mixture.

In some particular cases, such as in the experiments of Tay and Thorpe [4] with slugs entering a horizontal
bend, a much closer agreement was found between the measured forces and those derived from the measured
characteristics of the slugs using a momentum equation. In such cases the flow structure is indeed well defined
and the precise geometry of the boundary between the liquid and gas phases of a given slug can be tracked, as
shown in Ref. [4]. When vertical flows are considered, with bubbly and churn regimes, the dynamics of the
phases is much more complex. The corresponding momentum balance would require much more information
on this dynamics to have the same accuracy. In practical applications in the design of piping systems, bends
and tees follow horizontal and vertical sections, depending on their location. It is then recommended to use
Eq. (11) as a first approximation of the magnitude of forces that can be expected. The corresponding spectral
content is given by Fig. 6. For higher void fractions some preliminary comparisons following the methodology
used here show a more pronounced dependence of the forces on the geometry, orientation and flow
conditions, which is probably an effect of flow regime.
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