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Abstract

A modified iteration procedure is applied to a quadratic nonlinear oscillator (QNO). When the solutions of the two
auxiliary equations are available, we obtain the first and second analytical approximate solutions to the QNO. Our second
approximation result significantly improves on the accuracy of the approximate solution obtained by using the first-order
harmonic balance method.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a quadratic nonlinear oscillator (QNO) modeled by
¥+x4+ex>=0 x(0)=4>0, x(0)=0, (1)

which is used as a mathematical model of the human eardrum oscillation [1]. Unlike cubic nonlinear
oscillators, the behavior of QNOs is different for positive and negative directions [2,3]. By using the lowest-
order harmonic balance (HB) method [1] and resorting to the two auxiliary equations, Hu [3] obtained the
first-order approximate solution to Eq. (1). However, the relative errors of the approximate period and
approximate periodic solution are increased when ¢4 — 0.5 because Eq. (1) has a homoclinic orbit with period
+ oo for ¢4 = 0.5 [3]. In addition, it is usually rather difficult to use the HB method to produce higher-order
analytical approximations because it requires solutions of sets of complicated nonlinear algebraic equations.
To improve the accuracy of the approximate solution in Ref. [3], the first and second approximations to the
solution of Eq. (1) are presented in this paper using a modified iteration procedure derived by Lim et al. [4] and
Mickens [5].

For convenience, an outline of the iteration technique [4,5] is rewritten here.

The nonlinear oscillator equation is assumed to have the form

X¥+g(x)=0, x(0)=4, x(0)=0, 2)
where g(x) is a nonlinear function of x and has the property

g(—x) = —g(x). 3)
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Let the angular frequency of Eq. (2) be w, which is unknown to be further determined. Then Eq. (2) can be
rewritten as
¥+ o’y = 0*x — g(x) = G(x), x(0)= A, x(0)=0. 4)
The iteration scheme is [6]
Xip1 + 0 X1 = Gx), xx(0)= A4, x(0)=0, k=0,1,2,..., (5)

where the input or starting function is

Xxo(t) = A cos 0 = A cos wt. @)
Usually x; can easily be obtained from Eq. (5). When k>1, we have [7]
G(xk) = Gxk—1 + (X6 — x,—1)] & G(xx—1) + Gu(xp—1)(Xk — X—1), (7
where
dG
Gl) == (8)

Therefore, Eq. (5) can be rewritten as [4,5]

Kt + 0P X1 = Gxk—1) + G(oxk—1) (X — Xk_1),
(0 =4, %(0)=0, k=0,1,2,..., )

where

x-1(1) = xo(2). (10)

The angular frequency w is calculated anew at each stage of the iteration procedure by demanding that the
right-hand side of Eq. (9) contains no terms giving rise to secular terms in the complete solution of Eq. (9) [8].

2. Solutions of the two auxiliary equations

On the basis of the analysis in Ref. [3], we first consider the following auxiliary equation:
F+x+exlx=F+x+ex?sgn(x) =0, x(0)=4, x(0)=0, (11)

where sgn(x) is the sign function, equal to +1 if x>0, 0 if x =0, and —1 if x<0. Let w, be the angular
frequency of Eq. (11). For Eq. (11), it follows that

G(x) = wix — x — ex?sgn(x) (12)
and the equation for x;(7) is, see Egs. (9) and (10),
X1+ wixl = G(xg) = wixo —Xo — 8x%sgn (x0), x1(0)=4, x1(0)=0. (13)
Letting p = 2 in Eqgs. (15) and (16) of Ref. [7], we have
sgn (xo)x% = A’sgn[(A cos 0)]cos’ O
= A*(a; cos 0+ a; cos 30 4 as cos 50 + - --), (14)
where
ay =8/(3n), a3=a;/5=8/(15n), as= —a;/35=—-8/(105n). (15a—c)
Substituting xg = 4 cos 0 = A cos w4t and Eq. (14) into Eq. (13) gives

. &p 8p A 8p A
¥+ oix = <w§1 -1 —3—;>A cos 0 — ISAn cos 30 + 10/;71 cos 50 + HOH,

x1(0)=4, x(0)=0, (16)
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where HOH stands for the higher-order harmonics and
Py =¢A. (17)

The requirement of no secular terms in x;(f) implies that

Wy =Wy = 1+8PJ (18)
V 3n

The corresponding first approximate periodic solution becomes
x41(t) = Acos w,t + bs(cos w4t — cos 3w yt) + bs(cos w4t — cos Swut), (19)

where w4 is given by Eq. (18) and

A A
by=—- LA po= LA (20a.b)
15nwy, 315wy,
The corresponding first approximate period of the oscillation is
21
Ty=—-.: (21)
WAl
Continuing to k = 1 yields
X3+ wyxs = Glxo) + (0 — 1x1 — x0) — 2efsgn (x0)x5/Xol(x1 — Xo),
XZ(O) = Aa XZ(O) = Oa (22)
where use has been made of the relation
d
d—x[sgn(x)xz] = 2sgn(x)x = 2sgn(x)x2/x. (23)
Letting p = 2 in Eq. (22) of Ref. [7] produces
2[sgn (x)x3 /x0](x1 — x0) = 44~ sgn (x0)x3[b3(1 — cos 20) + bs(cos 20 — cos 40)]. (24)

Now substituting xg = 4 cos 0 = A cos wy4t, Egs. (19) and (24) into Eq. (22), taking into account the relation
given by Eq. (14) and making some arithmetical manipulations results in
2 84 Apa(0i—1) 2944p7

2 2
PR Acos 0
R [“’A 3 Gnad, 11025n2wf4j cos

o’ —1  6704p
AT g A 4 30
sz ( L=y 2205nw§“) cos

paA 8_(034 — 1 368p,
1057 307,  45m07,

+

) cos 50 + HOH, x(0) =4, x,(0)=0. (25)

Secular terms are eliminated by setting the coefficient of cos 6 equal to zero; doing this yields

8p4[1 — 368 3675nw?
w1 == |1+ P4 04/ (675104)] (26)
3n[l —4p,/(63nw)]
The corresponding second approximate periodic solution is
X42(t) = A cos wyt + c3(cos w4t — cos 3w t) + ¢s5(cos wyt — cos Sw 1), 27
where w4 is given by Eq. (26) and
paA wyy — 1 6704p 4
= -8 - , 28
“ = 0ne?, ( Tl T 2205m02, (28a)
A 2, —1 368
o= st As (g P WA (28b)
252077, 3wy, 45ty
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The corresponding second approximate period of the oscillation is

2n
Tp=—. (29)
W42
Now we consider the second auxiliary equation [3]
F+x—elxlx=%+x—ex’sgn(x) =0, x(0)=B>0, x(0)=0, (30)
where [3,9]
B=[3+2p,— /31 =2p)3 +2p,)]/(4e). (31
If we obtain the approximate solutions to Eq. (11), then we do not need to actually solve Eq. (30). In fact,
replacing p4 = ¢4 and A in the above calculations by pp = —eB and B respectively gives the first and second
approximations to the solution of Eq. (30) immediately. Consequently, the first approximation is
xg1(t) = B cos wpt + by(cos wgt — cos 3wpt) + bs(cos wpt — cos Swpl), (32)
where
8P / B / rgB
frd = 1 -, b = — N = . 33' -
@B = OBl T3 BT T e, 7T 315000, (33a=c)

The corresponding approximate period of the oscillation is
2n

Tp =—. (34)
WpI
The second approximation is
Xpo(t) = Bcos wpt + ¢(cos wpt — cos 3wpt) + ¢5(cos wpt — cos Swpt), (35)
where
8ppll — 368 3675w}
05 = op = 4|1+ 28k Py/3675m0p) (362)
3n[l — 4pp/(63nwy,)]
, ppB w%z -1 6704p
=——— (-8 — , 36b
S 2003, ( T T 2205002, (36b)
, ppB wh —1  368p
b= (82— 2. (36¢)
2520mwy, 3wy, 45nwy,
The corresponding second approximate period of the oscillation is
21
T =—-. (37)
(0F:5)

3. Results and discussion

When the approximate solutions of the two auxiliary Egs. (11) and (30) are available, according to the
analysis in Ref. [3], the approximations to the solution of Eq. (1) can be ecasily obtained. Consequently, the
first approximate period 7 and the corresponding periodic solution x;(¢) to Eq. (1) are respectively

Ty=(Tan+Tr)/2, (38)

T
0() = xa(), 0<I<— =, (39)
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Ty Tp T Txa Tg
= f— A AL 9b
x1(1) xm( IR ) 1 SISt (39b)

Tya Tp Tya Tg
t) = t+——— —— 4+ —<t<T). 39
x1(2) xA1(+2 2), 1 T ! (39¢)
Similarly, the second approximate period 7, and the corresponding periodic solution x»(#) to Eq. (1) are

respectively

T, =T+ Tr)/2, (40)
T4
(1) = x42(8), 0<t< e (41a)
Ty Tmp T T Tr
= ——+— — <IS—+—F,
i =xm(1- T2+ 02 T Te D @1b)
Ty Tm 2 I'm
= == =+ ——=<1<T,. 41
x2(1) XAQ(Z-I- 2 > ), 1 + > t 2 (41c)
Eq. (38) is identical to Eq. (35) in Ref. [3]. The first-order HB method solution to Eq. (1) is [3]
T
xpi(f) = A cos wat, 0<i< %, (42a)
T T T T T
le(z):BcostI(t—%JrTBl), %<z<%+731, (42b)
T T T T
xu(f) = A cos coA1<t+2Al—2m>, %+%<I<T1. (42¢)
For the purpose of comparison, the following exact solution to Eq. (1) is presented [9]
X(1) = A + asn*(Qt,m), (43)
where sn(Qt, m) is the Jacobian elliptic sine function and [9]
a= V3T =206 +2,) =30+ 2] /4o, (442)
1 /1 1
Q=3\/53+pa+ V30 =200 +2p,), (44b)
2 _
e 3Cpy+2p4— 1) (44c)

2 34420030 =2p )G +2p,)

The corresponding exact period of the oscillation is [9]
T.=2F/Q, (45)

where F is the complete elliptical integral of the first kind given by the following equation:

F= F(k, K =m. (46)

n) B /“/2 do
2 Jo V1-K2sin?0
The exact period T, obtained by using Eq. (45) the approximate periods 77 and 7> computed by Egs. (38)
and (40), respectively, are listed in Table 1 for ¢ = 1. The percentage errors are defined as 100[7(7>)—T,]/T,.
Table 1 indicates that 7, is more accurate than 77, especially for 4 close to 0.5.

The exact solution x.(f) of Eq. (1) obtained from Eq. (43) and the corresponding approximate solutions
x1(1), x1(¢) and x»(r) computed by Eqgs. (42), (39) and (41), respectively, are plotted in Fig. 1 for the time in
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Table 1

Comparison of approximate periods with the exact period for ¢ = 1

A T, T (% error) T, (% error)
0.100 6.311599 6.311242(—0.006) 6.311595(0.000)
0.200 6.411392 6.409514(—0.029) 6.411370(0.000)
0.300 6.629357 6.622552(—0.103) 6.629261(—0.001)
0.400 7.124567 7.096187(—0.398) 7.123948(—0.009)
0.450 7.706476 7.627741(—1.022) 7.703604(—0.037)
0.460 7.905170 7.801416(—1.312) 7.900709(—0.056)
0.470 8.167157 8.023325(—1.761) 8.159562(—0.093)
0.480 8.545168 8.327834(—2.543) 8.530067(—0.177)
0.490 9.207999 8.811815(—4.303) 9.166040(—0.456)
0.495 9.883999 9.234181(—6.574) 9.785314(—0.998)
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Fig. 1. Comparison of the approximate solutions xz; (dotted curve), x; (dashed curve) and x, (dash-dot curve) with the exact solution x,
(solid curve) for ¢ = 1: (a) 4 = 0.100; (b) 4 = 0.400; (c) 4 = 0.490; (d) 4 = 0.495.

one exact period (¢ = 1). Fig. 1 shows that xz(7), x;(¢) and x,(¢) are nearly identical to the exact solution for
A = 0.100. But for A4 close to 0.5, x;(¢) is more accurate than x;(¢) and x»(¢) is more accurate than x(¢), as
shown in Fig. 1.
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4. Conclusions

A QNO modeled by Eq. (1) has been attacked by a modified iteration technique. First, the technique is
applied to the two auxiliary Egs. (11) and (30), where the force functions are odd. Once the approximate
solutions of the two equations are available, we obtain the analytical approximate periodic solutions to the
QNO immediately. The second analytical approximation result derived here greatly improves the accuracy of
the first-order approximation obtained by using the HB method in Ref [3]. Although the solutions of the two
auxiliary equations are needed, actually we only solved one of these equations in great detail. Therefore, the
procedure used in this paper is not complicated.

The present method can also be used to deal with the mixed parity differential equation:

F4x+ox? + px? = 0. (47)

The two auxiliary equations are respectively [3]
¥4+ x+olxlx+px’ =5+ x+ax®sgn(x)+px* =0 for x>0, (48a)
F4+x—axlx+ x> =i4+x—ox?sgn(x)+px =0 for x<O0. (48b)

The corresponding results will be presented in another paper.
Acknowledgments

This work was supported by Scientific Research Fund of Hunan Provincial Education Department (Project
no. 04C245).

References

[1] R.E. Mickens, Oscillations in Planar Dynamic Systems, World Scientific, Singapore, 1996.

[2] B.S. Wu, C.W. Lim, Large amplitude non-linear oscillations of a general conservative system, International Journal of Non-linear
Mechanics 39 (2004) 859-870.

[3] H. Hu, Solution of a quadratic nonlinear oscillator by the method of harmonic balance, Journal of Sound and Vibration 293 (2006)
462-468.

[4] C.W. Lim, B.S. Wu, A modified Mickens procedure for certain non-linear oscillators, Journal of Sound and Vibration 257 (2002)
202-206.

[5] R.E. Mickens, A generalized iteration procedure for calculating approximations to periodic solutions of ““truly nonlinear oscillators™,
Journal of Sound and Vibration 287 (2005) 1045-1051.

[6] R.E. Mickens, Iteration procedure for determining approximate solutions to non-linear oscillator equation, Journal of Sound and
Vibration 116 (1987) 185-188.

[7] H. Hu, Solutions of nonlinear oscillators with fractional powers by an iteration procedure, Journal of Sound and Vibration 294 (2006)
608-614.

[8] R.E. Mickens, Iteration method solutions for conservative and limit-cycle x'/* force oscillators, Journal of Sound and Vibration 292
(2006) 964-968.

[9] H. Hu, Exact solution of a quadratic nonlinear oscillator, Journal of Sound and Vibration 295 (2006) 450-457.



	Solutions of a quadratic nonlinear oscillator: Iteration procedure
	Introduction
	Solutions of the two auxiliary equations
	Results and discussion
	Conclusions
	Acknowledgments
	References


