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Abstract

Free axisymmetric vibrations of non-homogeneous isotropic circular plates of nonlinear thickness variation have been

analyzed on the basis of classical plate theory employing the differential quadrature (DQ) method. The non-homogeneity is

assumed to arise due to the variation in Young’s modulus and also the density of the plate material. The first three natural

frequencies have been obtained for clamped, simply supported and free edge conditions, taking grid points as zeros of

Chebyshev polynomials. The effect of non-homogeneity and thickness variation on natural frequencies of vibration has

been investigated for the first three modes of vibration. The results for linear as well as parabolic thickness variations have

been obtained as special cases. Comparison studies have been carried out to establish the accuracy and versatility of the

present DQ method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Plates of uniform/non-uniform thickness are widely used as structural components in various engineering
fields such as aerospace industry, missile technology, naval ship design and telephone industry, etc. Various
numerical techniques such as Frobenius method [1], finite-difference method [2], simple polynomial
approximation [3], Galerkin’s method [4,5], Rayleigh–Ritz method [6–8], characteristic orthogonal
polynomials [9], quintic splines method [10], finite element method [11,12] and Chebyshev collocation method
[13,14], etc. have been employed to study the vibrational characteristics of plates of various geometries. The
above numerical methods such as finite difference and finite element require fine mesh size to obtain accurate
results but are computationally expensive. The method of quintic splines, the characteristic orthogonal
polynomials and Frobenius method require an appreciable number of terms for plates of variable thickness.
Recently, differential quadrature method (DQM), introduced by Bellman et al. [15,16] has emerged as a
distinct numerical technique which has capability of producing highly accurate results with minimum
computational efforts for initial and boundary value problems. This led to the study of the vibrational
behavior of plates of various geometries using DQ method by a number of researchers [17–22], to mention a
few.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In this paper, a DQ procedure is developed for obtaining the natural frequencies of non-homogeneous
circular plates of quadratically varying thickness. The consideration of present type of thickness variation
was taken earlier by Singh and Saxena [7] and has the advantage of approximating general thickness
variations by proper choice of taper constants besides dealing with linear and parabolic variations
which are of practical importance. The plate type structural components in aircraft and rockets have to
operate under elevated temperatures which cause non-homogeneity in the plate material i.e. elastic constants
of the material become functions of the space variables. In an up-to-date survey of literature, authors
have come across various models to account for non-homogeneity of plate material proposed by researchers
dealing with vibration. Bose [23] analyzed the vibrations of thin non-homogeneous circular plates
with a central hole assuming the variation in Young’s modulus and density in radial direction as E ¼ E0r

and r ¼ r0r where E0 and r0 are constants. Biswas [24] considered a non-homogeneous material for which
rigidity m ¼ m0e

�mz and density r ¼ r0e
�mz both were assumed to vary exponentially where m0 and r0 are

constants. Rao et al. [25] dealing with vibration of non-homogeneous isotropic thin plates have assumed
linear variations for Young’s modulus and density given by E ¼ E0(1+ax) and r ¼ r0(1+bx). In a series of
papers, Tomar et al. [26–29] have assumed exponential variations i.e. E ¼ E0e

mx and r ¼ r0e
mx in the study of

vibrational behavior of non-homogeneous isotropic plates. The Poisson ratio is assumed to remain
constant. The assumption of variation in which the parameter m is same for Young’s modulus as well as
density does not seem to have any justification. In the present study, a more general model has been proposed
in which, the Young’s modulus and density are assumed to vary exponentially in radial direction in distinct
manner i.e. E ¼ E0e

mx and r ¼ r0e
Zx.
2. Mathematical formulation

The small deflection axisymmetric motion of an isotropic non-homogeneous circular plate of radius a,
thickness h(r) and density r(r), referred to cylindrical polar coordinates system (r, y, z) is governed by the
equation

Dw;rrrr þ
2ðDþ rD;rÞ

r
w;rrr þ

�Dþ ð2þ uÞrD;r þ r2D;rr

� �
r2

w;rr

þ
ðD� rD;r þ r2uD;rrÞ

r3
w;r þ rhw;tt ¼ 0, ð1Þ

where a comma followed by a suffix represents the partial differentiation with respect to that variable and
D(r) ¼ E(r)h3/12(1�u2) is the flexural rigidity, w the transverse deflection, t the time and E(r) Young’s
modulus.

Introducing the non-dimensional variables x ¼ r/a, w̄ ¼ w=a, h̄ ¼ h=a together with the quadratic variation
in thickness

h̄ ¼ h0ð1þ axþ bx2Þ such that aj jp1; b
�� ��p1 and aþ b4� 1 (2)

and assuming the exponential variation for the non-homogeneity of material as

E ¼ E0e
mx; r ¼ r0e

Zx, (3)

Eq. (1) reduces to

P0
d4W

dx4
þ P1

d3W

dx3
þ P2

d2W

dx2
þ P3

dW

dx
þ P4W ¼ 0, (4)

where w̄ðx; tÞ ¼W ðxÞeiot (for harmonic vibrations), o is the radian frequency, m and Z are non-homogeneity
parameters, a and b are the taper parameters, h0, r0 and E0 are the thickness, density and Young’s modulus
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respectively, at the center of the plate and

P0 ¼ 1; P1 ¼ 2f1þ bxg=x; P2 ¼ B2 þ C þ ð2þ nÞB=x� 1=x2;

P3 ¼ ð1� BxÞ=x3 þ nðB2 þ CÞ=x; P4 ¼ �O2eðZ�mÞx=A2;

A ¼ 1þ axþ bx2; B ¼ mþ 3ðaþ 2bxÞ=A; C ¼ 3ð2b� a2 � 2b2x2 � 2abxÞ=A2;

O2 ¼ 12r0a
2o2ð1� n2Þ=ðE0h

2
0Þ:

Eq. (4) which is a fourth-order linear differential equation with variable coefficients involving several plate
parameters becomes quite complex and so its exact solution is not possible. An approximate solution of Eq.
(4) together with the boundary conditions at the edge x ¼ 1 and regularity condition at the center x ¼ 0, has
been obtained by DQ method.
3. Method of solution

Let x1, x2,y, xm be the m grid points in the applicability range [0,1] of the plate. The DQ method
approximates the nth order derivative of W(x) w.r.t. x at discrete point xi as

W ðnÞ
x ðxiÞ ¼

Xm

j¼1

c
ðnÞ
ij W ðxjÞ; i ¼ 1; 2; . . . ;m. (5)

Following Shu [30, pp. 31,35], the weighting coefficients c
ðnÞ
ij in Eq. (5) are given by

c
ð1Þ
ij ¼

M ð1ÞðxiÞ

ðxi � xjÞM
ð1ÞðxjÞ

; i; j ¼ 1; 2; . . . ;m; but jai, (6)
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Fig. 1. Convergence of the normalized frequency parameter, O/O*, for the first three modes of vibration with grid refinement for Z ¼ 1.0,

m ¼ �0.5, a ¼ �0.4, b ¼ 0.1 for (a) clamped (b) simply supported and (c) free plate. O*—the DQ results using 25 grid points.
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Table 1

Values of frequency parameter O for clamped plate for n ¼ 0.3

Mode a b Z

�0.5 0 1

m

�0.5 0 1 �0.5 0 1 �0.5 0 1

I �0.5 0 5.7823 6.7376 9.1707 5.2676 6.1504 8.4058 4.3141 5.0589 6.9743

0.5 8.9842 10.5316 14.4740 8.2329 9.6732 13.3572 6.8269 8.0606 11.2424

�0.5 6.2569 7.2797 9.8979 5.6889 6.6320 9.0529 4.6407 5.4328 7.4779

0 0 9.5005 11.1464 15.3791 8.6879 10.2158 14.1597 7.1733 8.4746 11.8597

0.5 12.6893 14.9226 20.6014 11.6473 13.7310 19.0532 9.6912 11.4843 16.1078

�0.5 9.9883 11.7224 16.2153 9.1180 10.7241 14.8998 7.5016 8.8627 12.4275

0.5 0 13.2232 15.5730 21.6005 12.1153 14.3021 19.9359 10.0431 11.9150 16.7809

0.5 16.4301 19.3602 26.7851 15.0951 17.8331 24.8054 12.5840 14.9471 21.0272

II �0.5 0 26.9194 30.8689 40.4535 23.7356 27.3002 35.9954 18.3158 21.1908 28.2756

0.5 36.0125 41.2360 53.8464 32.0322 36.7861 48.3178 25.1528 29.0528 38.6035

�0.5 29.5624 33.9258 44.5205 26.0750 30.0152 39.6350 20.1283 23.3085 31.1577

0 0 38.9153 44.5753 58.2294 34.6170 39.7711 52.2669 27.1791 31.4115 41.7754

0.5 46.9682 53.7238 69.9704 42.0016 48.1833 63.1185 33.3287 38.4559 50.9585

�0.5 41.7988 47.9016 62.6145 37.1793 42.7391 56.2127 29.1787 33.7466 44.9341

0.5 0 50.0417 57.2557 74.5872 44.7438 51.3480 67.2899 35.4855 40.9669 54.3272

0.5 57.5710 65.7867 85.4815 51.6715 59.2181 77.3894 41.2949 47.6025 62.9284

III �0.5 0 62.6436 71.6301 93.0924 54.9910 63.0611 82.4331 42.0591 48.5050 64.1358

0.5 81.0526 92.2944 118.9703 71.7238 81.8995 106.1599 55.7456 64.0058 83.8865

�0.5 69.3735 79.3069 102.9940 60.9308 69.8624 91.2716 46.6401 53.7902 71.1093

0 0 88.1704 100.3867 129.3342 78.0372 89.1041 115.4552 60.6645 69.6613 91.2929

0.5 103.8901 117.9711 151.2091 92.3972 105.2133 135.6044 72.5320 83.0515 108.2282

�0.5 95.2048 108.3867 139.5838 84.2756 96.2259 124.6483 65.5218 75.2493 98.6172

0.5 0 111.2158 126.2833 161.8083 98.9144 112.6360 145.1395 77.6391 88.9129 115.8719

0.5 125.5564 142.2857 181.6230 112.0582 127.3436 163.4471 88.5764 101.2208 131.3580
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where

M ð1ÞðxiÞ ¼
Ym
j¼1
jai

ðxi � xjÞ (7)

and

c
ðnÞ
ij ¼ n c

ðn�1Þ
ii c

ð1Þ
ij �

c
ðn�1Þ
ij

xi � xj

 !
; i; j ¼ 1; 2; . . . ;m; but jai and n ¼ 2; 3; . . . , (8)

c
ðnÞ
ii ¼ �

Xm

j¼1
jai

c
ðnÞ
ij ; i ¼ 1; 2; . . . ;m. (9)

Now, discretizing Eq. (4) at the grid point x ¼ xi and substituting the values of first four derivatives of W from
Eq. (5), we get Xm

j¼1

P0c
ð4Þ
ij þ P1;ic

ð3Þ
ij þ P2;ic

ð2Þ
ij þ P3;ic

ð1Þ
ij

� �
W ðxjÞ

þ P4;iW ðxiÞ ¼ 0 for i ¼ 2; 3; . . . ; ðm� 2Þ. ð10Þ

The satisfaction of Eq. (10) at (m�3) grid points xi, i ¼ 2, 3,y, (m�2) together with the regularity condition
at the center provides a set of (m�2) equations in terms of unknowns Wj(�W(xj)), j ¼ 1, 2,y,m. The
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Table 2

Values of frequency parameter O for simply-supported plate for n ¼ 0.3

Mode a b Z

�0.5 0 1

m

�0.5 0 1 �0.5 0 1 �0.5 0 1

I �0.5 0 3.4712 3.9408 5.0531 3.1222 3.5498 4.5644 2.4868 2.8360 3.6678

0.5 4.3703 4.9682 6.4540 3.9284 4.4716 5.8231 3.1239 3.5653 4.6660

�0.5 3.9578 4.4870 5.7368 3.5575 4.0392 5.1786 2.8303 3.2236 4.1571

0 0 4.8363 5.4854 7.0874 4.3455 4.9351 6.3917 3.4540 3.9330 5.1187

0.5 5.7008 6.5136 8.5969 5.1172 5.8537 7.7432 4.0582 4.6532 6.1828

�0.5 5.3019 6.0043 7.7289 4.7624 5.4002 6.9676 3.7838 4.3019 5.5774

0.5 0 6.1453 7.0035 9.1877 5.5152 6.2927 8.2732 4.3736 5.0018 6.6047

0.5 7.0302 8.0765 10.8085 6.3033 7.2492 9.7218 4.9877 5.7486 7.7411

II �0.5 0 21.1646 24.1560 31.3380 18.5522 21.2386 27.7240 14.1696 16.3177 21.5609

0.5 26.5982 30.2135 38.7592 23.5495 26.8323 34.6339 18.3632 21.0515 27.5109

�0.5 23.7449 27.1551 35.3799 20.8236 23.8870 31.3192 15.9085 18.3578 24.3697

0 0 29.4088 33.4691 43.0951 26.0326 29.7200 38.5132 20.2762 23.2937 30.5755

0.5 34.2642 38.8520 49.6169 30.5313 34.7290 44.6324 24.1079 27.5988 35.9295

�0.5 32.1785 36.6866 47.4039 28.4755 32.5691 42.3620 22.1519 25.4982 33.6053

0.5 0 37.1930 42.2449 54.1239 33.1209 37.7423 48.6734 26.1046 29.9426 39.1333

0.5 41.7869 47.3208 60.2327 37.3972 42.4881 54.4319 29.7804 34.0603 44.2205

III �0.5 0 53.3298 60.8744 78.8013 46.6827 53.4404 69.5828 35.5298 40.9040 53.8779

0.5 67.0534 76.0816 97.2716 59.2161 67.3808 86.6427 45.8806 52.5035 68.2906

�0.5 59.7779 68.2611 88.4161 52.3468 59.9533 78.1234 39.8575 45.9172 60.5504

0 0 73.7511 83.7329 107.1722 65.1256 74.1561 95.4730 50.4382 57.7665 75.2496

0.5 85.5072 96.7042 122.7873 75.9212 86.1120 109.9742 59.4550 67.8279 87.6393

�0.5 80.3894 91.3164 116.9831 70.9833 80.8729 104.2267 54.9546 62.9843 82.1519

0.5 0 92.3434 104.4969 132.8232 81.9714 93.0342 118.9535 64.1490 73.2383 94.7611

0.5 103.0955 116.3255 146.9773 91.8815 103.9770 132.1453 72.4891 82.5168 106.1166
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resulting system of equations can be written in the matrix form as

B½ �W �½ � ¼ 0½ �, (11)

where B and W* are matrices of order (m�2)�m and m� 1, respectively.
The (m�2) internal grid points chosen for collocation are the zeros of shifted Chebyshev polynomial of

order (m�2) with orthogonality range (0, 1) given by

xkþ1 ¼
1

2
1þ cos

2k � 1

m� 2

p
2

� �� 	
; k ¼ 1; 2; . . . ; ðm� 2Þ. (12)

However, for a specified plate, the following three different sets of grid points have also been considered for a
comparative study:
(i)
 Zeros of shifted Legendre polynomial P�nðxÞ (Bellman et al. [16]), satisfying the differential equation

xð1� xÞP00
�

nðxÞ þ ð1� 2xÞP0
�

n þ nðnþ 1ÞP�nðxÞ ¼ 0,
(ii)
 grid points taken by Liew et al. [21]

xk ¼
1

2
1� cos

ðk � 1Þp
m� 1

� 	
; k ¼ 1; 2; . . . ;m, (13)
(iii)
 equally spaced grid points (Bert et al. [17]).
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Table 3

Values of frequency parameter O for free plate for n ¼ 0.3

Mode a b Z

�0.5 0 1

m

�0.5 0 1 �0.5 0 1 �0.5 0 1

I �0.5 0 7.6512 8.5256 10.5669 6.5544 7.3210 9.1148 4.8080 5.3956 6.7773

0.5 8.2370 9.2473 11.7358 7.1209 8.0104 10.2059 5.3145 6.0017 7.7045

�0.5 8.8436 9.8303 12.1335 7.5871 8.4538 10.4805 5.5760 6.2423 7.8063

0 0 9.2861 10.3962 13.1162 8.0258 9.0031 11.4019 5.9841 6.7388 8.5971

0.5 10.1677 11.4956 14.8727 8.8302 10.0019 12.9879 6.6397 7.5474 9.8686

�0.5 10.3456 11.5593 14.5223 8.9408 10.0093 12.6218 6.6624 7.4873 9.5095

0.5 0 11.1358 12.5551 16.1444 9.6649 10.9165 14.0871 7.2577 8.2260 10.6863

0.5 12.1778 13.8588 18.2126 10.6010 12.0854 15.9387 8.0002 9.1506 12.1479

II �0.5 0 28.9596 32.9017 42.1928 25.1820 28.6948 37.0232 18.9596 21.7315 28.3819

0.5 34.3938 38.8313 49.1903 30.2380 34.2393 43.6261 23.2871 26.5254 34.2015

�0.5 33.2679 37.8344 48.5867 28.9266 33.0007 42.6575 21.7646 24.9838 32.7162

0 0 38.5853 43.6084 55.3258 33.9100 38.4432 49.0768 26.0797 29.7511 38.4637

0.5 43.5454 49.0296 61.7573 38.5366 43.5210 55.1422 30.0688 34.1688 43.8251

�0.5 42.8138 48.4339 61.5353 37.6092 42.6843 54.5883 28.8839 32.9955 42.7632

0.5 0 47.7623 53.8273 67.8908 42.2438 47.7593 60.6154 32.9048 37.4425 48.1396

0.5 52.4791 58.9816 74.0091 46.6550 52.5980 66.3917 36.7318 41.6763 53.2666

III �0.5 0 64.7299 73.7404 94.9875 56.4716 64.5147 83.5836 42.7249 49.0844 64.3256

0.5 79.1946 89.5658 113.7101 69.7483 79.1053 100.9993 53.7865 61.3479 79.2246

�0.5 73.4335 83.6969 107.8786 64.0616 73.2293 94.9522 48.4505 55.7064 73.0949

0 0 87.8164 99.3786 126.2877 77.3162 87.7502 112.1630 59.5707 68.0039 87.9488

0.5 100.2487 112.9478 142.2784 88.7759 100.3099 127.0838 69.2079 78.6545 100.8112

�0.5 96.4352 109.1903 138.8659 84.8794 96.3928 123.3271 65.3466 74.6541 96.6718

0.5 0 108.9059 122.7715 154.7914 96.4035 108.9980 138.2345 75.0806 85.3944 109.5943

0.5 120.2682 135.1474 169.3227 106.9103 120.4877 151.8287 83.9766 95.2018 121.3824
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4. Boundary conditions and frequency equations

By satisfying the relations:
(i)
 W ¼ dW
dx
¼ 0
 : for clamped edge,
(ii)
 W ¼ d2W
dx2 þ

u
x
dW
dx
¼ 0
 : for simply supported edge,
(iii)
 d2W
dx2 þ

u
x
dW
dx
¼ d3W

dx3 þ
1
x
d2W
dx2 �

1
x2

dW
dx
¼ 0
 : for free edge,
a set of two homogeneous equations in terms of Wj is obtained. These equations together with field Eq. (11)
give a complete set of m equations in m unknowns.

For a clamped plate, the above set of homogeneous equations can be written as

B

Bc

� 	
W �½ � ¼ 0½ �, (14)

where Bc is a matrix of order 2�m.
For a non-trivial solution of Eq. (14), the frequency determinant must vanish and hence

B

Bc

����
���� ¼ 0. (15)
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Fig. 2. Frequency parameter for clamped, simply supported and free plates vibrating in (a) fundamental mode (b) second mode (c) third

mode for Z ¼ 0.5. ——, clamped; – – – – – –, simply supported; - - - - - - - - - - - -, free; &, a ¼ 0, b ¼ �0.3; n, a ¼ 0, b ¼ 0.3;

’, a ¼ 0.3, b ¼ �0.3; K, a ¼ 0.3, b ¼ 0; m, a ¼ 0.3, b ¼ 0.3.
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Similarly, for simply supported and free edge boundary conditions, the frequency determinants can be written
as

B

Bs

����
���� ¼ 0;

B

BF

����
���� ¼ 0, (16,17)

respectively.
5. Numerical results and discussion

The frequency Eqs. (15)–(17) provide the values of the frequency parameter O for various values of plate
parameters. In the present work, the first three natural frequencies of vibration have been computed for all the
three boundary conditions for non-homogeneity parameter m ¼ �0.5(0.1)1.0; density parameter
Z ¼ �0.5(0.1)1.0 and taper constants a ¼ �0.5(0.1)0.5; b ¼ �0.5(0.1)0.5 (such that a+b4�1) for n ¼ 0.3.

To choose the appropriate number of grid points m, a computer program was developed and run for
m ¼ 10(1)25 for different sets of plate parameters for all the three boundary conditions. The numerical values
showed a consistent improvement with the increase of the number of grid points. In all the computations, the
number of grid points has been taken as m ¼ 18, since further increase in m does not improve the results even
in the fourth place of decimal (Fig. 1).

The numerical results are given in Tables 1–3 and Figs. 2–8. From the results, it is found that for a40, b40,
the frequency parameter for free plate is smaller than that of clamped plate and greater than that for simply
supported plate whatever are the values of other plate parameters.
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Fig. 2(a) shows the effect of non-homogeneity parameter m on the frequency parameter O for Z ¼ 0.5,
a ¼ 0.0, 0.3 and b ¼ 0.0, 70.3 for all the three plates vibrating in fundamental mode. It is observed that
frequency parameter increases with increasing value of non-homogeneity parameter m for all the three cases.
Also, the frequency parameter increases with increasing values of a or b or both for all the three plates. The
increase is more pronounced in case of clamped plate as compared to simply supported and free plates. Fig.
2(b) shows the plots for O versus m for the second mode of vibration. It is observed that the rate of increase of
O in all the three cases is higher than that of the fundamental mode. A similar behavior can be seen from Fig.
2(c) when the plate is vibrating in third mode.

Fig. 3(a) depicts the variation of frequency parameter O with density parameter Z for m ¼ 0.5, a ¼ 0.0, 0.3
and b ¼ 0.0, 70.3 for all the three plates vibrating in fundamental mode. It is observed that frequency
decreases with the increasing value of density parameter Z. The rate of decrease with increasing value of Z is
more pronounced in case of free plate as compared to clamped or simply supported plate, whatever are the
values of other plate parameters. A similar inference was observed when the plate is vibrating in second and
third modes (Figs. 3(b) and (c)).

Fig. 4 shows the effect of taper parameter a on frequency parameter O for m ¼ �0.5, 1.0, Z ¼ 0.5 and
b ¼ �0.3, 0.3 for plates vibrating in fundamental mode. It is observed that frequency parameter increases with
increasing value of taper parameter a. The rate of increase of O is higher for clamped plate as compared to
those of simply supported and free plates. Further the frequency parameter can be increased/decreased by
increasing/decreasing the value of b as well as m. For second and third modes the behavior of O with a is the
same as that for the fundamental mode except for the fact that the rate of increase gets more pronounced with
increase in number of modes.
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Fig. 5 shows the plot of frequency parameter O versus taper parameter b for m ¼ �0.5, 1.0,
Z ¼ 0.5 and taper parameter a ¼ �0.3, 0.3 for plates vibrating in fundamental mode. It is found
that frequency parameter increases with increasing value of taper parameter b except in case of free plate
for a ¼ �0.3. In this case, there appears a local minima in the vicinity of b ¼ �0.3. This may be attributed to
the increased mass of the plate towards the center. However, from the results for the second and third
modes, the frequency parameter O is found to increase continuously with the increasing value of b. The
rate of increase of O with increasing values of b is higher for clamped plate as compared to simply

supported and free plates.
Figs. 6–8 show the plots for normalized transverse displacements for m ¼ �0.5, 1.0, Z ¼ 0.5, a ¼ 0.0,

b ¼ 0.0; a ¼ 0.5, b ¼ 0.0 and a ¼ 0.5, b ¼ 0.5 for the first three modes of vibration for clamped, simply
supported and free plates, respectively. The radii of nodal circles decrease as the outer edge becomes thicker
and thicker for all three boundary conditions. The effect of non-homogeneity m also decreases the radii of
nodal circles.

Table 4 shows a comparison of results for homogeneous (m ¼ 0.0, Z ¼ 0.0) circular plate of uniform
thickness (a ¼ 0.0, b ¼ 0.0) with those of exact solutions given by Leissa [31] and approximate solutions
obtained by Ritz method [32] and receptence method [33]. Table 5 shows a comparison of results for
homogeneous circular plate of linearly varying thickness with results obtained by Frobenius method [1] and by
Rayleigh–Ritz method [6,34] for clamped and simply supported plate. A comparison of results for
homogeneous circular plate of parabolically varying thickness with those obtained by Frobenius method [1],
Rayleigh–Ritz method [6] and Ritz method [32] is presented in Table 6.
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A comparative study for evaluation of frequency parameter O for a specified plate for the first three modes
of vibration has been presented in Table 7 by taking equally spaced and three unequally spaced grid points i.e.
zeros of shifted Chebyshev polynomials obtained from Eqs. (12) and (13) and also that of shifted Legendre
polynomials. During numerical computation, it is found that for uniform grid spacing the number of grid
points is considerably greater as compared to non-uniform grid spacing. It is worth noting that in case of
uniform grid points the results converge with the increasing value of m up to a certain extent and after that
results become unstable which is due to round-off errors.

It is observed that the number of grid points taken as zeros of shifted Chebyshev polynomials (used in the
present investigation) are found not to exceed the number of grid points as taken by Liew et al. [21] and
Bellman et al. [16]. Thus, the present choice of grid points not only provides a comparatively faster rate of
convergence but also leads to reliable results. After verifying the convergence trends and the accuracy of
results available in the literature by the present DQ method (Tables 4, 5 and 6) the new results for non-
homogeneous circular plates of linear, parabolic and quadratic variation in thickness can be used as
benchmark for future researches.

6. Conclusion

The DQM has been applied to study the effect of the non-homogeneity of the material on the natural
frequencies of circular plates of quadratically varying thickness on the basis of classical plate theory. It is
observed that in case of plate for which thickness increases towards the outer edge, the frequency parameter
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Table 4

Comparison of frequency parameter O for homogeneous (m ¼ 0.0, Z ¼ 0.0) circular plate of uniform thickness (a ¼ 0.0, b ¼ 0.0)

Mode n ¼ 0.3 n ¼ 0.33

Clamped plate S-S plate Free plate

I 10.2158 10.2158a 4.9351 4.977a 9.0689 9.084a

10.2158b 10.216c 4.9352b 4.935c

II 39.7711 39.771a 29.7200 29.76a 38.507 38.55a

39.7711b 39.771c 29.7200b 29.720c

III 89.1041 89.104a 74.1561 74.20a 87.8127 87.80a

89.1041b 89.103c 74.1961b 74.156c

aValues taken from Ref. [31].
bValues taken from Ref. [32] by Ritz method.
cValues taken from Ref. [33] by receptence method.
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Fig. 8. Normalized displacements for the first three modes of vibration for free plate for Z ¼ 0.5. ——, fundamental mode; – – – – – –,

second mode; - - - - - - - - - - - -, third mode. m ¼ �0.5: &, a ¼ 0.5, b ¼ 0.5; n, a ¼ 0.5, b ¼ 0; J, a ¼ 0, b ¼ 0. m ¼ 1.0: ’, a ¼ 0.5, b ¼ 0.5;
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for linear thickness variation (LTV) is higher than that for parabolic thickness variation (PTV) and smaller
than that for quadratic thickness variation (QTV). However, in case of plate for which thickness decreases
towards the outer edge, the frequency parameter for LTV is smaller than that for PTV and higher than that for
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Table 5

Comparison of frequency parameter O for homogeneous (m ¼ 0.0, Z ¼ 0.0) circular plate of linear thickness variation (b ¼ 0.0)

a Clamped S-S

I II III I II III

�0.5 6.1504 6.1522a 27.3002 27.3006a 63.0611 63.0605a 3.5498 3.5507a 21.2386 21.2419a 53.4404 53.4095a

6.1504b 27.300b 63.062b 3.5498b 21.239b 53.441b

�0.3 7.7783 7.7769a 32.4610 32.4586a 73.9467 73.9586a 4.1158 4.1154a 24.7265 24.7268a 62.0704 62.0732a

7.7783b 7.778c 32.461b 32.463c 73.947b 4.1158b 4.116c 24.727b 24.728c 62.071b

�0.1 9.4027 9.4016a 37.3763 37.3742a 84.1680 84.1188a 4.6637 4.6627a 28.0774 28.0765a 70.2127 70.2104a

9.4027b 9.402c 37.376b 37.376c 84.168b 4.6637b 4.664c 28.077b 28.078c 70.213b

0.1 11.0301 11.0297a 42.1337 42.1408a 93.9486 93.9014a 5.2061 5.2065a 31.3465 31.3467a 78.0323 78.0254a

11.030b 11.03c 42.134b 42.133c 93.949b 5.2061b 5.206c 31.346b 31.346c 78.032b

0.3 12.6631 12.6648a 46.7813 46.7965a 103.4123 103.8434a 5.7483 5.7469a 34.5625 34.5613a 85.6205 85.5148a

12.663b 12.663c 46.782b 46.784c 103.41b 5.7483b 5.748c 34.563b 34.564c 85.623b

0.5 14.3021 14.3033a 51.3480 51.3588a 112.6360 112.4586a 6.2927 6.2908a 37.7423 37.7414a 93.0342 92.7375a

14.302b 51.349b 112.64b 6.2928b 37.743b 93.042b

aValues taken from Ref. [1] by Frobenius method.
bValues taken from Ref. [34] by Ritz method.
cValues taken from Ref. [6] by Rayleigh�Ritz method.

Table 6

Comparison of frequency parameter O for homogeneous (m ¼ 0.0, Z ¼ 0.0) circular plate of parabolic thickness variation (a ¼ 0.0)

b Clamped S-S

I II III I II III

�0.5 6.6320 6.6303a 30.0152 30.0130a 69.8624 69.8709a 4.0392 4.0391a 23.887 23.8884a 59.9533 59.9567a

�0.3 8.0759 8.0748a 34.161 34.1768a 78.1241 78.1086a 4.4034 4.4029a 26.3765 26.3757a 66.0394 66.0258a

8.0759b 8.076c 34.1610b 34.161c 4.4034b 4.403c 26.3765b 26.376c

�0.1 9.5055 9.5055a 37.9627 37.9631a 85.5877 85.5598a 4.7576 4.7562a 28.6437 28.6447a 71.5534 71.5579a

9.5055b 9.505c 37.9627b 37.963c 4.7576b 4.758c 28.6437b 28.644c

0.1 10.9235 10.9223a 41.5301 41.5380a 92.505 92.5123a 5.1142 5.1130a 30.7664 30.7682a 76.6758 76.6675a

10.9235b 10.924c 41.5301b 41.529c 5.1142b 5.114c 30.7664b 30.768c

0.3 12.3317 12.3287a 44.9242 44.9329a 99.0172 99.2534a 5.4787 5.4802a 32.7863 32.7877a 81.5074 81.5172a

12.3317b 12.332c 44.9242b 44.921c 5.4787b 5.479c 32.7863b 32.786c

0.5 13.731 13.7317a 48.1833 48.1822a 105.2133 — 5.8537 5.8509a 34.729 34.7138a 86.112 —

aValues taken from Ref. [1] by Frobenius method.
bValues taken from Ref. [32] by Ritz method.
cValues taken from Ref. [6] by Rayleigh–Ritz method.
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QTV. The frequency parameter increases with increasing values of non-homogeneity parameter m, while it
decreases with increasing values of density parameter Z. Thus, a desired frequency can be achieved by altering
one or more plate parameters: non-homogeneity parameter m, density parameter Z and taper parameters a, b.
The accuracy of the approach has been verified by demonstrating a close agreement of our results with those
of exact solutions and obtained by various techniques: Frobenius method, Ritz method, Rayleigh–Ritz
method, receptence method.
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Table 7

Number of grid points for convergence of frequency parameter O by using zeros of Chebyshev polynomial, Legendre polynomial and

equidistant collocation points for clamped plate for Z ¼ 0.5, m ¼ �0.5

Nature of grid points a ¼ �0.5, b ¼ 0.5 a ¼ 0.0, b ¼ 0.5 a ¼ 0.5, b ¼ �0.5 a ¼ 0.5, b ¼ 0.5

Mode

I II III I II III I II III I II III

O

7.5131 28.4203 63.3102 10.6470 37.4630 81.9673 8.2884 32.9813 74.4059 13.8119 46.2540 99.7549

Zeros of Chebyshev polynomial 13 15 17 11 13 16 11 12 14 11 12 15

Zeros of Legendre polynomial 13 15 17 11 14 17 11 14 16 11 13 16

Equidistant 17 22 24 16 20 23 16 19 22 13 18 21

Ref. [21] 13 14 18 12 15 18 12 15 16 12 15 16
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