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Abstract

A stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback control is
proposed. First, a quasi-integrable Hamiltonian system with delayed feedback control subjected to Gaussian white noise
excitations is formulated and then transformed into It6 stochastic differential equations without time delay. Then, the
averaged Itd stochastic differential equations for the system are derived and the stationary solution of the averaged
Fokker—Planck—Kolmogorov (FPK) equation associated with the averaged Itd equations is obtained for both non-
resonant and resonant cases. Finally, three examples are worked out in detail to illustrate the application and effectiveness
of the proposed method and the effect of time delayed feedback control on the response of the systems.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In the implementation of feedback control of a dynamical system, time delay is usually unavoidable due to
the time spent in measuring and estimating the system state, calculating and executing the control forces, etc.
This time delay causes unsynchronized application of the control forces and this unsynchronization can not
only deteriorate the control performance but also cause instability of the system. Thus, the time delay problem
has drawn much attention of the control community.

Systems with time delay under deterministic excitation have been studied extensively [1-6]. The time-delayed
systems under stochastic excitation have attracted many researches recently. The multiscale analysis has been
adopted to study the effect of noise near critical delay in stochastic delay differential equations by Klosek and
Kuske [7]. The center manifold reduction of delay differential equations was used by Fofana [8] to deal with
machine-tool chatter problem. The linearly controlled system with deterministic and random time delays
excited by Gaussian white noise has been treated by Grigoriu [9] and the stability of such a system has been
investigated by means of Lyapunov exponent. The effects of time delay on the controlled linear systems under
Gaussian random excitation has been studied by Di Paola and Pirrotta [10] using Taylor expansion of the
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control force. The effect of time delay on nonlinear systems under Gaussian white noise also has been studied
by Bilello et al. [11] using the Taylor expansion.

In the present paper, a stochastic averaging method for quasi-integrable Hamiltonian systems with time-
delayed feedback control under Gaussian white noise excitation is proposed. The delayed feedback control
forces are approximated by control forces without time delay and the system is transformed into It6 stochastic
differential equations without time delay, from which the averaged It6 equations are derived. The stationary
solution of the averaged FPK equation associated with averaged It6 equations is obtained by using the
technique proposed by the second present author and his co-worker [12]. Three examples are worked out in
detail to illustrate the application and effectiveness of the proposed procedure and the effect of delayed
feedback control on the response of the systems.

2. Quasi-integrable Hamiltonian systems with delayed feedback control

Consider an n-degree-of-freedom (ndof) quasi-Hamiltonian system with delayed feedback control forces
governed by the following equations:

. oH'

0= P,

. OH' oH'

Pi= _—_scij—_8Fi(Q15P‘E)+81/2fika([)a i,j=1,2,...,n; k=1925"-sm7 (1)
00; 0P

where Q; and P; are generalized displacements and momenta, respectively; H = H'(Q,P) is twice
differentiable Hamiltonian; ¢ is a small positive parameter; ec; = ec;;(Q,P) represent the coefficients of
quasi-linear dampings; &'/?f,; = &'/>f,(Q,P) represent the amplitudes of stochastic excitations; eF;(Q,,P;)
with Q, = Q(¢ — 7) and P, = P(z — 7) denote delayed feedback control forces, 7 is the time delay; W;(¢) are
Gaussian white noises in the sense of Stratonovich with correlation functions

EIW (W (t + T)] = 2Dud(T), k1=1,2,...,m. )
When ¢ =0, system (1) is reduced to ndof Hamiltonian system. It is called integrable or completely
integrable if there exist n independent integrals of motion, H; = H, H», ..., H,, which are in involution. The
term ““in involution” means that all H; are commute with each other, i.e.,
[HiaHj]zoa i’j:1323"'5n9 (3)
where

[H,',Hj]z%%—%%, k=1,2,...,n 4)
Opy. Oqi Oqy Opy

is the Poisson bracket of H; and H;.
In principle, a canonical transformation

I;=1i(q,p),0; = 0i(q,p), i=12,...,n (5)
can be introduced so that the Hamiltonian equations of an integrable Hamiltonian system are of the form

. 0

I = ~ 30, H(I) =0,

. 0

0; = 7 H(I) = w(I), (6)

where [; and 6; are action-angle variables and w,(I) are the frequencies of the system. Eq. (6) can be easily
solved to yield

I; = const.,
0;=wDt+9;, i=12,...,n, (7
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where ; are constants. It is seen from Eq. (7) that the motion of an integrable Hamiltonian system is almost
periodic or periodic depending upon the number of the strong resonant relations of the form

Klo=0, u=12...,00 i=12,...,n (8)

among w4(I), where k; are integers and o is the number of resonant relationships. If there is no resonant
relation, then the Hamiltonian system is called non-resonant. The motion of non-resonant integrable
Hamiltonian system is almost periodic and a single orbit covers n-dimensional tore uniformly. If there are n—1
resonant relations, then the system is called completely resonant and the motion of the system is periodic.
If the number of resonant relations is between 1 and n—1, then the system is called partially resonant and the
motion of the system is almost periodic.

It is noted that n action variable I; can be regarded as n independent integrals of motion in involution,
satisfying Eq. (3), and the frequencies of truly nonlinear Hamiltonian systems are functions of integrals of
motion or action variables.

If the Hamiltonian system associated with Eq. (1) is integrable, then system (1) is called quasi-integrable
Hamiltonian system. This system can be modeled as Stratonovich stochastic differential equations and then
converted into It stochastic differential equation by adding Wong—Zakai correction terms [13], i.e.,

OH’
dQ. = —,
Ql aP,
0H' o0H' of . o
dpP; = - a—Qi+ec,-j a—Pi+sFi(QT,Pr)—sDsz_,-, aféﬂ di+&"PopdBu(o), ij=12,....n; k=12,....,m (9)

where B,(¢) are standard Wiener processes and 66’ = 2fDfT. The double summation terms eDy;f 49 i /OP; in
Eq. (9) are the Wong—Zakai correction terms.
Assume that the Hamiltonian H’ associated with system (1) is of the form

- 1
H =" Hiqup), H;=3p}+Gla), (10)
i=1

where G(g;)=0 is symmetric with respect to the g; = 0, and with minimum at ¢; = 0. Then the associated
Hamiltonian system has a family of periodic solutions around the origin and the solution to Eq. (9) is of the
form [14,15]

Q;(t) = A; cos @i(1), Pi(t)=—A4; % sin (1), P@i(t) = O,(¢) + (1), (11)

where cos @(f) and sin @(¢) are called generalized harmonic functions. For quasi-integrable Hamiltonian
systems, A{f¢) and I'(¢) are slowly varying processes and the average value of the instantaneous frequency d®,/
dz is equal to w;(4;) [14,15]. If A;(t — t) and I';(t — 1) are approximated by A4;(¢) and I';(¢), respectively, and
O,(t — 1) is approximated by ©;(f) — w;t, then we have the following approximate expressions:

0t — 1) = Ai(t — 1) cos Pi(t — 1)=A(¢) cos[wi(t — 1) + ['(1)]

. . P .
= A;(t){cos[w;t + I'i(¢)] cos w;t + sin[w;? + ()] sin w;t} = Q,(¢) cos w;T — 51 sin w;T,
i
d@i(l — ’C)
dt
= — A(How{sin[w;t + ()] cos w;t 4 cos[w;t + ['i(¢)]sin w;t} = P; cos w;t + Q,()w; sin w;z.  (12)

P(t—1)= —Ai(t—1) sin @;(t — 1)= — A;(t)w; sin[w(t — 7) + ['{(?)]

The numerical results for three example described in Section 4 will show that Eq. (12) is acceptable even for
some large time delay 7:

eF(Q.,P.) — eDyf ;0f 4 /OP; in Eq. (9) can be split into two parts: one has the effect of modifying the
conservative forces and the other modifying the damping forces. The first part can be combined with
—0H /0Q; to form an overall effective conservative forces —0H /0Q; with a new Hamiltonian H = H(Q, P; 1)
and with 0H /0P; = 0H /OP;. The second part may be combined with —ec;; OH' /OP; to constitute an effective
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damping forces —em;; 0OH /OP; with m;; = m;(Q,P;t). With these accomplished, Eq. (9) can be rewritten as

oH
in—a—Pidt,
_ OH O0H 12 oL . _
dP; = — <6Q+8mU6P>dt+8 fudB(®), i,j=12,....n; k=12,...,m, (13)

which is the It6 equations for regular quasi-Hamiltonian systems.
3. Averaged equations and stationary solutions

The stochastic averaging method for quasi-Hamiltonian systems has been well developed [12,16,17,19]. The
dimension and form of the averaged It6 and FPK equations depend upon the integrability and resonance of
the associated Hamiltonian system. Suppose that the Hamiltonian system with modified Hamiltonian H is still
integrable. Then the stochastic averaging method for quasi-integrable Hamiltonian systems [12] can be applied
to the system governed by Eq. (13). The dimension and form of the averaged It6 and FPK equations depend
upon the resonance of the associated Hamiltonian system with modified Hamiltonian H.

3.1. Non-resonant case

In this case, the averaged It6 equations are of the form
dl, = cU,()di + 'V, dB(t), r=1,2,....,n; k=12,....m (14)
and the averaged FPK equation is of the form

op 1
i 8{ ar arDPl+5 5=+ o101 (b m(l)p]}. (15)

In Egs. (14) and (15),

1 n OH 61 1,
r I = Ur I = — —mMjj —
a ( ) ( ) (27'5)”/0 ( my apj a k]j‘k»fjl a ap/>

1 [ I, oI,
:(2n)”/0 (2Dsz,-kf]/2 2p>d9 rns,Lj=12,....,n; kiI=12,....m (16)
J

bys(D) = [VV'],,

in which 0 = [0,,0,, ...,0,]", V= [V,] and foz [¢]d0 denotes an n-fold integral.
The exact stationary solution of FPK Eq. (15) with vanish probability potential flow at boundary is of the
form

p) = C exp[—A(D)], (17)
where C is a normalization constant and A(I) is the so-called probability potential which is governed by
equations

04 0by,

rs Ay — A_2I‘9 ’ =1929‘°'7 . 1
bsals ol ar, 1,8 n (18)
If diffusion matrix B = [b,,] is not singular, i.e., its inverse matrix B™' = G = lg,,] exists, then Eq. (18) can

be converted into
04 0b,s

— =g, =— —2a, |. 1

o, g”(al‘\, a’) (19

Furthermore, if the following compatibility conditions

0 b, 0 0b,
or, Y (61 2"”> al, gf’(GIS N 2”’> (20)
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are satisfied, then the probability potential is

1A
A =4 dry, 21
(D =20+ | oL, (21)
where 49 = A(0) and the second term is a summation of line integrals over s = 1,2, ...,n. The exact stationary

solution p(I) of averaged FPK Eq. (15) is obtained by substituting Eq. (21) into Eq. (17). The approximate
stationary probability density of system (1) is then

( 9) (1, 0) 1

da.p| Qo ”

where |0(1, 0)/0(q, p)| is the absolute value of the Jacobian determinant of the canonical transformations from
q,p to 1,0 which is always equal to unity.

If the action-angle variables 1,0 for Hamiltonian system with Hamiltonian H can not be obtained, then the
averaged It6 equations for independent integrals of motion may be derived. Suppose that Eq. (10) still holds
for the modified Hamiltonian, i.e.,

r(q,p) = p(, 0) (22)

= p0Ihp ()‘

H=> Hiq.p). H;=p}/2+ Giq) (23)

then the averaged It6 equations are of the form
dH, = em,(H)dt + ¢ 26, (H)dB(H), r=1,2,...,n; k=12,...,m (24)
and the averaged FPK equation is of the form

»_ 1@
0= o{ = sy atp 5 s b 03)

where the averaged drift and diffusion coefficients are

) 1 0H 0H, 1 s
ar(H) = m,(H) - Tf( i apj apz + ok a 6p/) u—l( / apu) e

0H,0H, /[/0H,
byy(H) = 6,64 (H) = , dg, 26
(H) = G (H) = %H( Tk 5, %, 6p1,> q (26)

in which

7= 70 = [[ 71 = ] f ( / aH") 9u (27)
u=1 u=

The exact stationary solution p(H) to averaged FPK Eq. (25) can be obtained similarly and the approximate
stationary probability density of system (1) is then

r(q,p) = p(H)/T(H). (28)

3.2. Resonant case

Suppose that the modified Hamiltonian system with Hamiltonian H is integrable and resonant with o weak
resonant relations of the form

Ko, =06, u=12,...,00 r=12,...,n (29)
Then the averaged Itd equations are of the form
dl, = em, (I, ¥)dr + £'26,.(I, ¥) dBi (1),
d¥, = e, (LY)dt + 626, (LY)dB(0), r=1,2,....n; u=12...,00 k=12,....,m (30)
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and the averaged FPK equation is of the form

L |- @) — - ) + 5 507 O hp o i)+ O )] G)
o1 D th n+up 2 o1, o1, rsD o1, oy, rantul 20y, 00, n+un+ol) | >
where‘l‘:[?’l,%,..., o] ,x//uzk;‘@,.,kz1,2,...,o<and
1 2 OH oI, 1 oI,
_,, I,‘l’ = — m; g; 5
(L) (27:)”/0( i 3, w12 kf"aa)‘w‘
) 1 2n OH oY, 1 oy,
1y (IL,'W) = W/O <0u(8) myj —— a api +§ 0ik O jk p: p )dela
1 2n oI, oI,
ikOs LY ikOjk ~_ ~_ 5
kO' 1»( ) (2 )n :x/ qu/k apl apj del
o 1 m oI, oY,
G;‘k6n+u,lc(la ¥) = W/o ik O jk a—l @—pj de,
1 n oy, 0V,
5 ntu, O nto Ia‘P = 77 _n—a ikOjk —~ 5
GntukOntok(L, V) @y a/o kTjikc . %, de,

a, = a, (L) = m,(I,'¥),
ap iy = Apu (L) = 1, (1,'P),
bys = brs(la \|’) = U_rk(fsk(la ‘l’)a
br,n+u = br,n+u(la \|’) =a rk5n+u,k(la \P)a
butuntv = bnyunto(L W) = GppuicGrnpoc(LY), 18,0, j=1,2,...,n wv=12,...,0; k,/=12,...,m
(32)
in which 0, =[01,0,,..., Hn_,]T. The exact stationary solution to averaged FPK Eq. (31) is of the form

pL) = C exp[—A(L )], (33)

where A(I, ) can be obtained by expanding A(I, ), the averaged drift and diffusion coefficients into a-fold
Fourier expansions of \, substituting them into averaged FPK Eq. (31) with 0p/0r = 0 and obtaining the
Fourier coefficients of A(I,Wr). The approximate stationary solution of system (1) is then

oL, 0y) oL, 0 1 oL\, 91)’
o(q, p) oq.p) | (@mn™ o(q, p)

where |0(T, r, 0,)/0(q, p)| is the absolute value of the Jacobian determinant for the transformation from q, p to
L, \, 0, which is an integer.

p(q,p) = p(L,01) | ————

L) (34)

= pO1[L)p(, \II)|

4. Examples

Three examples are given to illustrate the application and effectiveness of the proposed method.

4.1. Example 1

Consider a van der Pol oscillator with time-delayed linear feedback control subject to Gaussian white noise
excitation. The equation of motion is

X +0”X =e(1 — XHX — e(a1 X + e Xo) + e P W(0), (35)

where ¢ is a small positive parameter; X, = X (¢ — 7) and X, = X (¢ — 1) are delayed system state; a; and a, are
feedback control gains; W(f) is a Gaussian white noise with intensity 2D. System (35) without stochastic
excitation has been studied by Atay [18] using averaging method.



184 Z.H. Liu, W.Q. Zhu |/ Journal of Sound and Vibration 299 (2007) 178-195

Note that there is no Wong—Zakai correction term for this example. Let X = Q, X = P. The Hamiltonian
associated with the system (35) is

H =T'o = (¢ +p)/2. (36)
The time-delayed feedback control forces in system (35) can be approximately converted into one without time
delay, i.e.,
&(a1 0, + arP)=¢[(a; cos o't + ar’ sin w'7)Q + (az cos w't — a—l/ sin w/r) Pl 37)
@)

Note that on the right-hand side of Eq. (37), the term proportional to Q represents conservative control
force while that proportional to P represents dissipative control force. The first term should be combined with
the restoring force w?Q into a modified restoring force w>Q + &(a; cos 't + a»@’ sin w't)Q. Thus, the
modified Hamiltonian is

H=1Iv=1[p"+ (0 +¢a cos o't + eara’ sin w'1)q*]/2 (38)
and the modified frequency is
o = (0 + eay cos &'t + eara sin w't)/?. (39)

The action variable is I = H/w.
Applying the stochastic averaging method to the modified system leads to the averaged It6 equation

dI = eU(I)dr + &>V (I)dB(7) (40)
and averaged FPK equation
op 0 1 o
6_1_8{_5[61(1)17“—5%[[)(1)1)]}’ (41)
where
2
all)y=U() = (1 —+—ﬂ sin Wt — a cos wr)[ — I——}—B,
w 20 o
2DI
b(I) = V() = —. (42)
The exact stationary solutions to FPK Eq. (41) is
p(I) = C exp[-A(])], (43)
where
) r’r ol ap .
A(I)—E—F(l + %L sin wr - a; cos w‘c). (44)

The approximate stationary probability density of original system (35) is then

. 1
p(x: X) = % p(1)|1=(5c2+a)2x2)/2w' (45)

Some numerical results for stationary marginal probability density p(x) of system (35) with displacement,
velocity and both displacement and velocity feedback controls obtained by using the proposed stochastic
averaging method and from digital simulation are shown in Figs. 1-3, respectively. It is seen that in all three
cases the results obtained by using the proposed method agree well with those from digital simulation even for
long delay time. From Eq. (37) it is seen that the time-delayed feedback control forces change both the nature
frequency and damping coefficient of the oscillator in a manner of harmonic function with periodic
T =2rn/w'. So, both the stability and response may be affected by the time-delayed feedback control. For
example, in the case of displacement feedback control without time delay, the response of the system is
a diffused limit cycle (see Fig. 1(a)) while it is random vibration around the origin when time delay t = 5.0
(see Fig. 1(f)). This implies that time-delayed feedback control may cause phenomenological bifurcation.
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Fig. 1. Stationary marginal probability density p(x) of system (35) with displacement feedback. The parameters are: ' =1, a; =1,
a,=0,6=001,2D=02,(a)t=0,(b)yt=1,(c)r=2,d)t=3,(e) 1=4, ) =5, (g) t=06, (h) t =7. — By using the proposed

stochastic averaging method; @ from digital simulation.
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Fig. 2. Stationary marginal probability density p(x) of system (35) with velocity feedback. The parameters are: @' =1, a; =0, a» = 1,
e=001,2D=02,(a)t=0,(b)r=1,(c)t=2,(d)t=3, () t=4, () 1 =5, (g T =6, (h) T = 7. — By using the proposed stochastic
averaging method; @ from digital simulation.
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Fig. 3. Stationary marginal probability density p(x) of system (35) with both displacement and velocity feedback. The parameters are:
o=1la=1,a=1=001,2D=02,a)t=0,b)t=1,(c)r=2,(d)t=3,(e)t=4,(f) =5, (g) T =6, (h) T = 7. — By using the
proposed stochastic averaging method; @ from digital simulation.
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It happens also in the case of velocity feedback control (see Fig. 2) and in the case of both displacement and
velocity feedback controls (see Fig. 3).

4.2. Example 2

Consider two linear oscillators coupled by linear and polynomial type nonlinear dampings subject to
external excitations of two uncorrelated Gaussian white noises and delayed velocity feedback control. The
equations of motion of the system are of the form

Xi el X1+ 00X + B X (X3 + XD+ 01X = —en X + 2 W(2),
Xo + eloa Xy + oy Xo 4+ B X2(XT + X3 )]+w2 = —en, Xoo 4 &P Wa(1), (46)

where o, o, B;, 1;, 0i(i,j = 1,2) are constants; en;(i = 1,2) are the feedback gain and e Xie = en, Xi(t — 1)
are time-delayed feedback control forces; W(¢)(i = 1,2) are uncorrelated Gaussian white noises with
intensities 2D;;.

The Hamiltonian system associated with Eq. (46) is linear and the Hamiltonian can be expressed in terms of
action variables as

2

/ / / 1 52 122 / —1 Xi
H => ol 1i=2w;(Xi+w,X[), 0. = —tan oX) (47)

i=1
The time-delayed system state in system (46) can be approximately converted into that without time delay as
X = X; cos ot + X, sinwlt. (48)

The modified Hamiltonian is of the form

2
= Z CD[I,‘, (49)

where w; = ©'; 24 en,wisinw't. I; and 0; are of the same form as I; and 0; in Eq. (47) with o/ replaced by w;.
Also, the dampmg coefficients o}, become o;; = o); + en;w; sin w;t. Eq. (46) can be rewritten as the following
1t6 stochastic differential equations:

2

X Du
dli:p{ [(a,1X1+och2+ﬁX(X2+X)] }dz+ 12 Xi dB,(t)
20X X;
dHi:a)i+a{[(oc,1X1+oc,2X2+ﬁ,X(X2+X)] T, T Di .ZZ}dt
w; X7+ X; (07 X7 + X;)
X
— PP 4By(0). (50)
02 X? + X]

Note that the repeated subscripts in Eq. (50) do not imply a summation. Two cases are considered in the
following.

Nonresonant case: rwy + sw, #0, r, s are integers. In this case, the averaged FPK equation is of the form of
Eq. (15) with the following drift and diffusion coefficients

By B Dy

ay = —oyil —712—*1112—!-7
2w () (]

D
a2=—a2212—&12—&1112 22
2w, Wy’

2 2
bin=—Duly, by =—Dpl, bi=>b;=0. (51)
w1 w?
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The stationary solution of the averaged FPK equation is of the form of Eq. (17), where 04/0I, satisfy the

following equations:
2Dy 1, 04 2D D
1141 == o g — B 12 By I, + 21
m1 611 (O] 2w () ()]

2Dy I, 04 2D D
2242 — 22 _9 _OC22[2 _ ﬁ I% .82 I]I 22
wy 0l Wy 2w (6]

(52)

If (B,/D11)(@1/w2) = (By/Dxn)(wr/w1) =y, the averaged FPK equation has an exact stationary solution
p1, 1) = C exp[—A11, )], (53)

where

1 Bi 1 B
M, 1) =— Il I — 1 I; 11>. 4
(I1,1>) D, <O<11w1 L+ 2 +D22 2o ls + == 4 + 1 (54)

The approximate stationary probability density of the displacements and velocities of original system (46) is
then

.. 1
p(x1’x2: X1, X2) = m P(Il 7Iz)'[,-:(x%-f-w!le?)/hu,-‘ (55)

Primary resonant case: w1 = w; = w. Let 0; — 0, = . The averaged FPK equation in this case is of the
form of Eq. (31) with the following drift and diffusion coefficients:

1 D
ay = —o Iy — ap/I1 I cos  — ﬁl 12 b 1112(1 — 5 cos 24) +J
1 D
ar = —oly — o1/ 111> cos l// —& 12 ﬁz 1112(1 — z Ccos 2(//) —|—£
(0612\/‘+ 0621\/7> sin y — —(/)’112 + By11)sin 24,
Dy | Dx
by = —D 1, by= —D I, b3y3;=—
1l Op = 212, b33z = 2w<11 12)
b1y = by = b1z =b31 = by = b3 =0. (56)
The stationary solution of the averaged FPK equation is of the form
py, 1, ¥) = C exp[—A1, 12, Y)], (57)
where A(11, I, ) satisfies the following partial differential equations:
2Dy I, /. 2D 1 D
(Ll ! a—;lz wll—z[—d]lll—dlz\/lllz COS —ﬁ ﬂl I]I <1—§COS 2lﬂ> 11]
2Dpl, 04 2D 1
202 0202 sty o/ cos w22 2P D cos 20y + 2
2
Dy Dy 92 \/E \/ﬂ . 1 )
—— = = — —(B,1 I . 58
<2w11 +2w12) 0 (0612 2 + oy 2 sin Y +2w(ﬁ1 2+ fod1)sin (58)

Let
My, o) = Ao(Iy, I2) 4+ 2111, 12) cos Y + Za(I1,12) cos 2y. (59

Substituting Eq. (59) into Eq. (58), we obtain three sets of partial differential equations for 4y, 4; and 4,. In
the case that 8,/D1; = B5/Dx» = 71, 12/D11 = a1 /D2 = y,, we obtain the exact stationary solution (57) with
1@ 0] Bi

o 24 B _n \ /T T
/1(]1,]2,!,0)— Do, I + Drs 12+4D11 Il 4Dy I + 111 3 1,1, cos 2lp+2/2(1) 1,15 cos l// (60)
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The approximate stationary probability density of the displacements and velocities of original system (46) is
then

. ) 1
P(Xl,xl,xz,xz)=%P(11,12,¢)» (61)

where y = 6 — 6,; I; and 0, are functions of x; and x;.

Let g1, p; represent the displacement and velocity of the first oscillator, respectively. Some numerical results
for stationary probability density p(g;, p;) obtained by using the proposed stochastic averaging method and
from digital simulation are shown in Fig. 4 for non-resonant case and in Fig. 5 for primary resonant case. It is
seen that the proposed method yields very good prediction even the time delay approaches to one period. For
both non-resonant and resonant cases, the results for several 7 values are given to illustrate the effect of time
delay in control forces on the response of the system. It is seen that the time delay in control forces may affect
the response of the system greatly, and may even cause phenomenological bifurcation.

4.3. Example 3

As an example of strongly nonlinear stochastic system, consider a Duffing—van der Pol oscillator with
delayed linear feedback control subject to Gaussian white noise excitation. The equation of motion is

X+ 0 tX +oX? =eb— XHX — eaX,) + &> W(r), (62)
where ¢ is a small positive parameter; X, = X(r — 1) is delayed system velocity; ¢a is feedback control gain;
W(¢) is a Gaussian white noise with intensity 2D.

Note that there is no Wong—Zakai correction term for this example. Let X = Q, X = P. The Hamiltonian
associated with the system (62) is

1 1 1
H = 5 i 5 w’(z)q2 + - A agt. (63)

The time-delayed feedback control force in system (62) can be approximately converted into a control force
without time delay, i.e.,

eaP.=ca(P cos o't + Q' sin w'1), (64)
where the average frequency o’ is

o VA + B
22 K@)

where K(r) is complete elliptic integral of the first kind; r = 4// 4> + B*, 4> = 0/} Ja (w /1 +40H |org — 1) ,
=ow 0/0c<, /1 +daH' |/} + 1>.

After the term proportional to Q in Eq. (64) is combined with the restoring force to form a modified
restoring force, the new Hamiltonian is

o' (H') = (65)

H = %pz +% w(z)q2 —i—% agt, (66)
where w% =o' 2 4+ s’ sin w't. Also, we can obtain modified frequency w(H) of the nonlinear oscillator, which
is of the same form as w'(H’) in Eq. (65) but with wj is replaced by w,.

The 1t6 equation for H can be obtained from Eq. (62) by using It6 differential rule as follows:

dH = &{[(b — ¢* — a cos wtlp* + D} dt + &' *p dB(z). (67)
Applying the stochastic averaging method to Eq. (67) leads to the following averaged FPK equation

op 1 @
Frimk { [( ]+ 2@[ (H)P]}’ (68)
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resonant case. The parameters are: (al) t =0,
5.0, result obtained by using digital simulation;
(b2) =1, f, = 5.04, result obtained by using digital

p1) of system (46) with velocity feedback in non

Fig. 4. Stationary probability density p(q;,

B> =

s

f> = 5.0, result obtained by using proposed stochastic averaging method; (a2) t = 0

s

result obtained by using proposed stochastic averaging method; (c2) t

5.04, result obtained by using proposed stochastic averaging method;

bh)z=1,p,

f, = 4.91, result obtained by

>

=4

4.65, result obtained by using proposed stochastic averaging method; (d2) t =5, f8,

simulation; (cl) t =4, , =491,

4.65, result

B2 =

>

using digital simulation; (d1) t = 5

5.0,

B =10.0,1n, =

1, = —5.0,015 = 5.0,

o

0.2,

1.0,2Dy; =

/
1=

The other parameters are: ¢ = 0.01, w

obtained by using digital simulation;

= 1.414, 2D5 = 0.2,00) = 5.0,04, = 5.0,, = 5.0.

/
h =

2]
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Fig. 5. Stationary probability density p(q;, p1) of system (46) with velocity feedback in resonant case. The parameters are: (al) t = 0, result
obtained by using proposed stochastic averaging method; (a2) T = 0, result obtained by using digital simulation; (bl) T = 1, result obtained
by using proposed stochastic averaging method; (b2) T = 1, result obtained by using digital simulation; (c1) T = 2, result obtained by using
proposed stochastic averaging method; (c2) t = 2, result obtained by using digital simulation; (d1) T = 6, result obtained by using
proposed stochastic averaging method; (d2) 7 =6, result obtained by using digital simulation; The other parameters are:
¢=0.01,0) =1.0,2Dy; = 0.2,¢;; = =5.0,010 = 5.0, f; = 5.0,17; = 5.0, ), = 1.0, 2Dy = 0.2, 001 = 5.0, 05, = =5.0, f, = 5.0,17, = 5.0.
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where the drift and diffusion coefficients are

1
a(H) = m}l{ [[(b — ¢* — a cos wtlp* + D] /pdq,
Q

1
W) =7 f [2Dp] /pda,
Q

0.7 0.4
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03| e
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0 n 1 1 1 1 1 1 0 1 1 1 1 1 1 é
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Fig. 6. Stationary marginal probability density p(x) of system (62) with velocity feedback. The parameters are: a = 1.0, b = 1.0, o, = 1.0,
0=0.5,6=001,2D=02,(a)t=0,(b)t=1,(c)t=2,(d) 1 =3, (¢) =35, (f) T = 6. — By using the proposed stochastic averaging
method; @ from digital simulation.
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T(H) = Zf(l/p) dg,

Q= {qlH = 0jq* /2 + oq" /4}. (69)
The stationary solutions to averaged FPK Eq. (68) is
p(H) = C exp[—/A(H)], (70)
where
. A1 (db(H)

The approximate stationary probability density of original system (62) is then

1
r(g,p) = TRP(H”H:( Ligt) (72)

%pz J%wg ¢+

Some numerical results for stationary marginal probability density p(x) obtained by using the proposed
stochastic averaging method and from digital simulation are shown in Fig. 6. From the figures, it is seen that
the analytical results obtained by using the proposed method agree well with those from digital simulation
even for long delay time. From the figures, we can also see the phenomenological bifurcation in the response of
the system caused by the delayed feedback control.

5. Conclusion

In the present paper, a stochastic averaging method for quasi-integrable Hamiltonian systems with time-
delayed feedback control has been proposed. After the time-delayed feedback control forces are approximated
by control forces without time delay, the original stochastic averaging method for quasi-integrable
Hamiltonian systems proposed by the present second author and his co-workers can be directly applied to
the systems with time-delayed feedback control. The analytical results obtained for three examples agree well
with those from digital simulation even for large time delay. The numerical results show that the delayed
feedback control may affect the response of a system greatly and even may cause phenomenological
bifurcation.
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