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Abstract

In this paper, a modal approach to fracture mechanics for dynamic loading is proposed. This approach is based on the

linear recombination of modal stress intensity factors. The modal stress intensity factors may be computed either from a

classical crack-tip-opening-displacement method or by an energy method that is detailed in this paper. The energy method

is based on a bilinear form stemming from the energy release rate quadratic form and it turns out to be very satisfactory—

compared to other methods—in a large range of frequencies, up to moderate frequencies. The accuracy of the modal

approach to fracture mechanics is discussed through several examples and demonstrated in an industrial application.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Fracture mechanics for dynamic loading is less commonly studied than static fracture mechanics unless
industrial applications are varied: fatigue tests, rotating machines and seismic analysis. For low or moderate
frequencies, the study of a fixed crack (non-dynamically propagating crack) may be conducted with the usual
static criteria provided that both static and inertial effects are taken into account in the computation of
fracture mechanics parameters.

Introduction of inertial effects in the energy release rate G is discussed by Destuynder [1,2] in order to define
an active control of a cracked body for dynamic loads. For fast dynamical applications the Laplace transform
is preferably used, as in Ref. [3] by Freund and Rice for infinite bodies and in Ref. [4] by Petroski for finite
cracked beams: an elastodynamic weight function is defined from elastodynamic stress intensity factors
corresponding to a reference dynamic load. This weight function is sufficient for accurately determining the
time-dependent stress intensity factors corresponding to other dynamic loads of the same cracked structure.

Experimental identification of elastodynamic stress intensity factors is discussed by Bui et al. [5]. An
engineering approach to cracked structures subjected to dynamic loading is proposed by Kuntiyawichai and
Burderkin [6] and applied to seismic analysis. The J-integral including inertial effects is computed with a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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standard FEM method (Abaqus code). An approximate simplified method is used to get rid of the direct time
integration method of the dynamic problem, which requires prohibitive computation time.

A modal approach is proposed by Doyle et al. [7], as the behavior of stress intensity factor K as a function of
frequency is shown to be very similar to a modal response. Only static K calibration needs to be performed.

In a continuation of this last study, the aim of this paper is to propose a method for accurately and more
efficiently solving fracture mechanics problems for structures with dynamic loading at low frequencies. This
approach is based on the modal recombination, so that it is restricted to linear elasticity. Consequently, the
contact between the crack faces is not taken into account. This assumption may appear as very restrictive, but
it is met in most of industrial applications within the range of low frequency solicitations: the structure is often
subjected to a preponderant static load that tends to open the crack. For instance, this is the case for cracked
solids which are subjected to quasi-static inertial forces and which are oscillating around an equilibrium
position. The aim of the mechanical analysis is either to determine if an existing crack will propagate, or to
compute the rate of propagation of cracks for repeated dynamic loads.

For high frequency loads inertial effects locally change the crack singularity and affect the accuracy of the
computation of stress intensity factors. Moreover, modal approaches are usually restricted to low or moderate
frequencies. That is why for applications in fast dynamics—like impact response, direct computation should
preferably be used.

In the first part of the paper, linear fracture mechanics equations are described and applied to harmonic
problems. The modal recombination approach is derived and specialized to a cracked structure. This approach
is based on the definition of modal stress intensity factors. Modal SIFs can be computed either by a classical
crack-tip-opening-displacement method (CTOD) or by an energy method, which is detailed in the third part.
This energy method is based on the computation of a bilinear form issued from the energy release rate
quadratic form. In the formula used, the singular solutions of elastodynamics are replaced by the static ones,
and the quality of the approximation is evaluated. It turns out to be very satisfactory in a large range of
frequencies, up to moderate frequencies.

In the last part, the modal approach is applied to a 2D and a 3D problem successively.
2. Linear fracture mechanics for dynamic loadings

2.1. Definitions and general equations

Consider an elastic body O, containing a crack of length l, denoted by Gl. For the sake of simplicity,
the presentation is restricted to 2D problems. The displacement is prescribed to the value up on a part GU of
the boundary of the solid, initially at rest and stress-free and subjected to dynamic loading consisting
of surface traction R on the remaining part GR of its boundary and of body forces f. Denoting by u

the displacement field and by _u its time derivative, the energies entering into the mechanical analysis of the
solid are:

elastic energy : W elðuÞ ¼
1

2

Z
O
A : �ðuÞ : �ðuÞ, (1)

kinetic energy : Wkinð _uÞ ¼
1

2

Z
O
r _u2, (2)

power of external forces : PðvÞ ¼

Z
O
f � vþ

Z
GR

R � v, (3)

where A denotes the fourth-order Hooke tensor, and r is the mass density.
The energy release rate G of the crack is classically defined as [8,9]

G ¼ �
d

dl
W elðuÞ þWkinð _uÞ � PðuÞ
� �

. (4)
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An alternative and completely equivalent formula is given in [10]

G ¼ �
q
ql

W elðuÞ
� �

. (5)

The energy release rate is used in propagation criteria, but fracture mechanics problems are more commonly
studied through the stress intensity factors (SIFs) KI, KII and KIII associated with the three opening modes
of the crack. SIFs characterize the singularity of the stress field s and of the displacement field u near the
crack tip:

KiðtÞ / lim
r!0

siðr; tÞ
ffiffi
r
p� �

,

uðx; tÞ ¼ uRðx; tÞ þ K IðtÞu
S
I ðxÞ þ K IIðtÞu

S
IIðxÞ þ KIIIðtÞu

S
IIIðxÞ, ð6Þ

where uS
I , uS

II and uS
III are the singular asymptotic parts of the solution of the dynamic elastic problem and uR is

the regular part. The three SIFs depend on the geometry and on the loading, then on time t for dynamic
situations.

The propagation of an existing crack is studied either by estimation of initiation criteria over a time
period T:

sup
t2½0;T �

GðtÞpGc; sup
t2½0;T �

K IðtÞpKc
I ; or sup

t2½0;T �
f ðK IðtÞ; K IIðtÞ; K IIIðtÞÞp0 (7)

or, for fatigue crack propagation, by Paris’ law, where n denotes the number of loading cycles and c and m are
material properties:

dl

dn
¼ cDKm

I . (8)

2.2. Application to harmonic problems

In this section, the harmonic problem is either a forced response to a prescribed load at the set pulsation o
or an eigenmode solution associated with this pulsation. In both cases, the displacement field, the velocity
field, and prescribed surface traction and displacement may be expressed as

u x; tð Þ ¼ U xð Þ cosðotþ jÞ; _u x; tð Þ ¼ �oU xð Þ sinðotþ jÞ;

R x; tð Þ ¼ r xð Þ cosðotþ jÞ; up x; tð Þ ¼ Up xð Þ cosðotþ jÞ: (9)

The definition (5) for G in harmonic dynamics gives:

GðuÞ ¼ �
q
ql

W elðuÞ
� �

. (10)

The general equation (4) with the harmonic displacement field gives another expression for G:

GðuÞ ¼ �
d

dl

1

2

Z
O
A : �ðUÞ : �ðUÞcos2ðotþ jÞ

�
þ

1

2

Z
O
ro2U2sin2ðotþ jÞ

�

Z
GR

r �Ucos2ðotþ jÞ
�

¼ �
d

dl

1

2

Z
O
A : �ðUÞ : �ðUÞ �

1

2

Z
O
ro2U2

�
�

Z
GR

r �U

�
cos2ðotþ jÞ

¼ �
d

dl
W elðUÞ �WkinðUÞ � PðUÞ
� �

cos2ðotþ jÞ. ð11Þ

The equivalence between the two expressions may be proved by using the virtual power principle with qU/ql

as virtual field Z
OðlÞ

A : �ðUÞ : �
qU

ql

� �
�

Z
OðlÞ

ro2U �
qU

ql
¼

Z
GR

r �
qU

ql
(12)



ARTICLE IN PRESS
E. Galenne et al. / Journal of Sound and Vibration 299 (2007) 283–297286
so that

�
q
qU

1

2

Z
O
A : �ðUÞ : �ðUÞ �

1

2

Z
O
ro2U2 �

Z
GR

r �U

� �
�
qU

ql
¼ 0. (13)

Note that the two last terms in the bracket of Eq. (11) have a null partial derivative with respect to the crack
length l. This feature results from the fact that derivatives of domain integrals with respect to the domain of
integration for zero volume variation (as this is the case for variation of crack surface) do not vanish if and
only if the integrand function behaves as r�1 at the crack tip. Whereas this condition is satisfied for the elastic
energy because of the r�1/2 singularity of the strain tensor field, this is not the case for the kinetic energy
(it behaves as r) and for the potential energy of volume forces as soon as the body forces are more regular
than r�3/2. Using this result and Eq. (13), identity between the total derivative of the mechanical energy with
respect to the crack length and the partial derivative of the elastic energy with respect to the crack length is
established.

The total derivative of energy quantities may be computed by efficient techniques stemming from domain
variation theory (so-called theta methods) or from invariant theory (contour invariant integrals), therefore it is
more suited for computation.

Lastly, and similarly to the well-known formula for the energy release rate in elastostatics, a formula may be
derived thanks again to the virtual power principle:

G ¼
1

2

Z
GR

r �
qU

ql
�

Z
GU

s
qU

ql

� �
�U � n

� �
cos2 ðotþ jÞ. (14)

For the case of a free vibration problem, U is an eigenmode associated with the eigenfrequency 2p/o. With
the preceding expression of G, the notion of modal energy release rate may be defined:

GoðUÞ ¼ �
d

dl

1

2

Z
O
A : �ðUÞ : �ðUÞ �

1

2

Z
O
ro2U2

� �����
o¼cste

,Z
O
rU2 ¼ 1. ð15Þ

Here the eigenfrequency 2p/o is naturally a function of the crack length. However, attention must be paid
to keep o constant during the total derivation involved in the definition of the modal energy release rate. This
perhaps paradoxical feature may be explained by using the Rayleigh quotient property:Z

O
A : �ðUÞ : �ðUÞ �

Z
O
ro2U2 ¼ 0 or o2 ¼

R
O A : �ðUÞ : �ðUÞR

O rU2
, (16)

so that we obtain the following result:

d

dl

1

2

Z
O
A : �ðUÞ : �ðUÞ �

1

2

Z
O
ro2U2

� �
¼ 0, (17)

which shows that a trivial result is obtained if o is not kept constant during the total derivation in Eq. (15). It
also leads to an interesting characterization of the modal energy release rate:

GoðUÞ ¼ �
1

2

do2

dl
. (18)

2.3. Analytical illustration

The purpose of this section is to apply and to compare the two different expressions of modal energy release
rate for a simple case for which the energy is analytically known. Consider a structure composed of two
springs, one of them being of variable stiffness k(a), see Fig. 1. Here a plays the role of a ‘‘damage parameter’’.
This model may be seen as the representation of a cracked specimen (rigidity equal to k(a)) subjected to a load
through a machine test, whose rigidity is k0.
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Fig. 1. The two-spring structure.
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The structure is subjected to a prescribed harmonic force or to a prescribed harmonic displacement at point
P2. Equal masses m are placed at P1 and P2. The displacement field is written as xiðtÞ ¼ X i cosðotÞ, i ¼ 1, 2.

Eq. (10) applied to the two-spring structure gives the simple expression of energy release:

G ¼ �
q
qa

1

2
kðaÞx2

1 þ
1

2
k0ðx1 � x2Þ

2

� �
¼ �

1

2
k0ðaÞx2

1. (19)

The dynamic equilibrium equations for lumped masses P1 and P2 are

ðk0 þ kðaÞ �mo2ÞX 1 � k0X 2 ¼ 0;

ðk0 �mo2ÞX 2 � k0X 1 ¼ Q:

(
(20)

For harmonic displacement X cos (ot) prescribed at P2, the solutions for the displacements are then

X 2 ¼ X ; X 1 ¼
k0

kðaÞ þ k0 �mo2
X . (21)

So that the energy release rate (10) is

GX ¼ �
1

2

k0ðaÞk2
0

kðaÞ þ k0 �mo2ð Þ
2

X 2 cos2 ot. (22)

For a harmonic force Q cos ðotÞ prescribed at P2, the solutions for the displacements and the modal energy
release rate are:

X 1 ¼
k0

DðoÞ
Q; X 2 ¼

k0 þ kðaÞ �mo2

DðoÞ
Q, (23)

GQ ¼ �
1

2

k0ðaÞk2
0

D2ðoÞ
Q2 cos2ot, (24)

with DðoÞ ¼ k0kðaÞ �mo2 2k0 þ kðaÞð Þ þm2o4.
It is notable that GQ and GX are equal when Q and X are related via the solution of the elastic dynamic

equilibrium equations (20) as this is the case in elastostatics. It may also be easily verified that the results are
the same with the alternative equation (11). Indeed, for the case of prescribed displacement X:

G ¼ �
d

da
1

2
kðaÞx2

1 þ
1

2
k0ðx1 � x2Þ

2
�

1

2
mo2ðx2

1 þ x2
2Þ

� �

¼ �
d

da
1

2
Qx2

� �
¼ �

1

2

d

da
k0 �mo2
� ��

�
k2
0

k0 þ kðaÞ �mo2

�
X 2 cos2ot, ð25Þ

which is the result of Eq. (22).
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For the case of the prescribed force Q, Eq. (4) is

G ¼ �
d

da
1

2
kðaÞx2

1 þ
1

2
k0ðx1 � x2Þ

2

�
�

1

2
mo2ðx2

1 þ x2
2Þ �Qx2

�

¼ �
d

da
�
1

2
Qx2

� �
¼

1

2
Q2 k0ðaÞ

D

�
�
ðk0 þ kðaÞ �mo2Þ

D2
ðk0 �mo2Þk0ðaÞ

�
cos2ot

¼ �
1

2

k0k
0
ðaÞ

D2
Q2 cos2ot, ð26Þ

which again is the result of Eq. (24).

3. Modal decomposition for the dynamic response of a cracked solid

3.1. Modal recombination and crack singularity

The displacement u(x, t) solution of a dynamic linear problem may be approximated by its decomposition
on a truncated basis of eigenmodes Fi(x) according to the Ritz Method [11]

uðx; tÞ ¼
XM
i¼1

aiðtÞ � FiðxÞ. (27)

The accuracy of the modal recombination depends on the number M of eigenmodes in the basis, and
convergence results exist for the displacement field and the strain field [12].

At the tips of the crack, the jump of the displacement field may be described by the three SIFs. If (N,T,V) is
a local direct Cartesian frame located at a point M of the crack tip with the normal (N) to the tangent plane to
the crack and the tangent vector (T) to the crack tip curve, the following asymptotic relations hold:

K I s; tð Þ ¼ lim
r!0

E

8 1� n2ð Þ
1uN ðr; s; tÞU�

ffiffiffiffiffiffi
2p
r

r !
,

KII s; tð Þ ¼ lim
r!0

E

8 1� n2ð Þ
1uT ðr; s; tÞU�

ffiffiffiffiffiffi
2p
r

r !
,

K III s; tð Þ ¼ lim
r!0

E

8 1þ nð Þ
1uV ðr; s; tÞU�

ffiffiffiffiffiffi
2p
r

r !
, ð28Þ

where r is the distance to the crack tip point, in the (N,T) plane, s is the curvilinear abscissa along the crack
front and 1 �U denotes the jump operator across the crack along the local normal (V) to the crack front,
directed towards the interior of the solid.

Combining Eqs. (27) and (28) gives a new expression of the SIFs (in the sequel expression, it is given for
mode I):

K Iðs; tÞ ¼
XM
i¼1

aiðtÞ � K
i
IðsÞ, (29)

where Ki
IðsÞ is the modal stress intensity factor of the ith eigenmode:

Ki
IðsÞ ¼ lim

r!0

E

8 1� n2ð Þ
1Fiðr; sÞU�

ffiffiffiffiffiffi
2p
r

r !
. (30)

For in-plane propagation, the modal energy release rate Goi
defined in Eq. (14) and the modal SIFs are

related by Irwin’s formula, which is the same in dynamic problems as in static problems [10]:

Goi
¼

1� n2

E
Ki

I

� �2
þ Ki

II

� �2	 

þ

1

m
Ki

III

� �2
, (31)
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where E is Young’s modulus, n the Poisson’s ratio and m the second Lamé coefficient. For crack growth under
mixed mode conditions and bifurcation, Eq. (30) is no longer used and propagation criteria are written as a
function of the three SIFs like in Eq. (7).

The modal stress intensity factors are time-independent quantities: for 3D problems, they depend on the
curvilinear abscissa; for 2D problems, they are scalars.

The crucial point here is that the coefficients ai(t) of the combination (29) are the same as the coefficients of
Eq. (27) for the displacement field. These coefficients are computed in most of the standard finite element
codes dealing with low frequency dynamical applications.

Once the linear dynamical response of the structure for the prescribed load has been computed on the
subspace generated by the number M of eigenmodes (i.e., identification of [ai(t)]), solving the fracture
mechanics problem may then be achieved in two steps:
�
 identification of the M first modal SIFs (a computation that is independent of the loads prescribed to the
structure; and may be done once and for all); and

�
 recombination through Eq. (29) to obtain the time-dependent SIFs.

This approach is clearly more computationally efficient than the classical one. Indeed the classical approach
consists of computing at each time step the estimation of the SIFs via Eq. (28). With the modal approach, the
maximum values of linear fracture mechanics parameters such as KI or the energy release rate G, may then be
assessed with the highest precision.

3.2. Computation of modal stress intensity factors

The asymptotic relation (29) provides a technique to extract the modal SIFs from a known (computed)
eigenmode via the Crack Tip Opening Displacement method. In the sequel, a refined version of the CTOD
method by a least square identification procedure based on the displacement jump across the crack tip is used.
More specifically, given a small length rm, an approximation of the SIF KI is computed as the solution of the
least-squares minimization problem:

~K
i

IðsÞ ¼ arg min
k

Z rm

0

E
ffiffiffiffiffiffi
2p
p

8ð1� n2Þ
1Fiðr; sÞU� � k

ffiffi
r
p

 !2

dr. (32)

This problem has a closed form solution which is a linear function of the displacement field for a given
length rm:

~K
i

IðsÞ ¼
E
ffiffiffiffiffiffi
2p
p

4ð1� n2Þr2m

Z rm

0

1Fiðr; sÞU�
ffiffi
r
p

dr. (33)

The CTOD method is well known for its simplicity and its ease of implementation in a FEM software
package. Its accuracy is satisfactory and may be improved by the use of quarter-point elements at the crack tip
[13]. In the following section, computation of modal SIFs based on an energy approach, which is less sensitive
to the quality of the mesh and to the value of parameter rm, is presented.

4. A stable energy method for the computation of modal stress intensity factors

4.1. Bilinear form of the static energy release rate

For static problems, a bilinear form can be defined from the classical quadratic form of the energy release
rate G, with the following properties:

gðu; vÞ 2 LðH1ðOÞ �H1ðOÞÞ;

gðu; vÞ ¼ 1
4

Gðuþ vÞ � Gðu� vÞð Þ:

(
(34)
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The bilinear form of G is very useful as it separates the three opening modes of the crack:

g u; uS
I

� �
¼

1� n2

E
K IðuÞ; g u; uS

II

� �
¼

1� n2

E
KIIðuÞ; g u; uS

III

� �
¼

1

2m
K IIIðuÞ, (35)

where uS
I , uS

II and uS
III are the singular solutions corresponding to the three opening modes of the crack.

uS
I ¼

1þ n
E

ffiffiffiffiffiffi
r

2p

r
ðk � sin yÞ cos

y
2

� �
~eV þ sin

y
2

� �
~eN

� �
;

uS
II ¼

1þ n
E

ffiffiffiffiffiffi
r

2p

r
k þ cos yþ 2ð Þ sin

y
2

� �
~eV þ cos

y
2

� �
~eN

� �
;

uS
III ¼

4 1þ nð Þ

E
sin

y
2

� � ffiffiffiffiffiffi
r

2p

r
~eT ;

8>>>>>>>><
>>>>>>>>:

(36)

in the local Cartesian frame (N,T,V) as defined in Section 3.1, with k ¼ 3� 4n. The singular displacements are
analytically calculated for 2D problems only (plane and antiplane), but it is shown in Ref. [9] that the
displacement field near the crack front in 3D may be obtained by the sum of the three classical singular
displacements and of four other particular displacements, which nevertheless are more regular. If the crack
front is sufficiently regular, the displacement field has the same asymptotical behavior.

The properties of g stated in Eq. (35) is a consequence of the orthogonality of singular displacements for the
bilinear application g(u, v) and is demonstrated by using the Rice J-integral (with J ¼ G in linear elastic
fracture mechanics), with considerations of symmetry of singular displacements and with the Irwin formula.
This approach, developed by Bui [14], provides a new computation method for SIFs and is quite commonly
used [15].

From a numerical point of view, the energy release rate G and, then, its associated bilinear form g may be
calculated by a y-method [16–18]. The method is based on a virtual displacement field y and all derivatives
with respect to the crack growth can be computed by using a Lagrangian method. For 3D problems, local
values G(s) and K(s) are computed by introducing local y fields. y fields are geometrically defined from two
rings around the crack front (radius Rinf and Rsup) but G is theoretically independent of this rings. The
geometrical definition of the y field around the crack tip and the variation of |y| as a function of the distance to
the crack tip are given in Fig. 2. Comparisons with other computation methods [19] show that the y-method is
very accurate and to a large extent, mesh-independent.

4.2. Extension to harmonic problems

The properties (35) of the bilinear form associated with the static energy release rate G may be extended
without any difficulty to harmonic problems. However, the singular harmonic displacements uS

I , uS
II and uS

III

for a given circular frequency are up to now not available. Antiplane problems are the only case where the
singular harmonic field, reduced to a scalar, can be expressed and it is found to be proportional to sin(or)/or:
although this is clearly dependent on the circular frequency, it is easy to ascertain that the asymptotic behavior
is exactly the static antiplane singular solution field [10].
Rinf

n

| | =0

| | = | |

Rsup

�

� �0

0

| |

| |

Rinf Rsup

�

�0

Fig. 2. Geometrical definition of the y field around the crack tip and variation of |y| as a function of the distance to the crack tip.
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For other situations, it is however possible to assume that the singular harmonic displacements have the
same asymptotic form as in elastostatics, so that an estimation of the modal SIFs may be obtained by using
the static singular displacement fields. The results will however no longer be independent of the geometrical
definition of the integration area and of the frequency. The error introduced by the static singular
displacements in the computation of jth modal SIF may be estimated with:

EjðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIrwin

y ðjj ; u
S
I ; u

S
II; u

S
IIIÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GyðjjÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GyðjjÞ

p
������

������, (37)

where GIrwin
y is the energy release rate identified with the Irwin formula (31) from the modal SIF obtained by

the y-method and Eq. (35). The exact value Gy is directly computed from the eigenmode Fj by the y-method
and is independent of the integration area.

In Fig. 3, the error Ej(y) is depicted (for the 2D example described in the following section) for three
different integration areas characterized by the radius Rsup of their outer y-ring. The radius Rinf of their inner
y-ring is constant. The error increases with the order of the eigenmode, thus with the eigenfrequency, but it is
notably less important for the two smaller integration areas. Note that the evolution of Ej(y) is not monotonic
with j. This is a consequence of the modal effect on the crack, which is very different from one mode to the
other. The error in the 50th mode is less than 1% for an outer integration ring corresponding to one fifth of the
crack length.

The energy method proposed here is accurate for moderate frequencies if the integration area remains in the
vicinity of the crack front. The integration area must be smaller as the frequency increases.

5. Applications

The presented modal approach will be successively applied to a 2D simple model and to a 3D example and
will be illustrated with an industrial application. All numerical computations were performed with the
Code_Aster [20], which is the numerical simulation software package for structural analysis developed by EDF
R&D.

5.1. 2D simple test

In this section, the structure is a slender 2D beam (plane stress model). The dimensions of the beam
are chosen so as to approach the industrial case of the final blade of a turbine of nuclear power stations.
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Fig. 4. Deformed mesh of the cracked 2D beam at time t and definition of the ramp bending load.
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A small crack (15% of total width) is positioned at the 2/5 of the height of the beam, see Fig. 4. The
mesh of the beam has 2000 nodes and 700 quadratic elements and is refined around the crack tip. The
first frequency f1 of this structure lies at 340Hz. A slight damping coefficient is introduced in material
properties.

The nodes of the lower segment of the beam are fixed; the mechanical load is a prescribed force Fx on the
nodes of the higher segment in horizontal direction. The amplitude of the force is time-dependent:

Fx ¼ 0 for to0; F x ¼ 1 for t4t; F x is linear for t in �0; t½.

t characterizes the slope of the ramp load. A static vertical force is also imposed on the upper part of the beam
so as to have an open crack at all times. The mechanical problem is then linear. Only the opening mode of
crack, characterized by the value of KI, is considered. KII is much lower than KI.

The variation of KI as a function of time is depicted in Fig. 5. During the loading phase KI is increas-
ing; when Fx is constant KI is oscillating at the beam’s first frequency. The amplitude of the vibration is
increasing with the ramp rate t: the maximum of KI(t) is 1:1K stat

I for t ¼ 3=f 1 and 1:85K stat
I for t ¼ 0:3=f 1,

where K stat
I is the static value of KI for Fx ¼ 1. It is notable that the time course of KI is relevant to the

usual time course of displacements for such ramp loads since the SIFs are linear functions of the displacement
field (33).

The difference between the modal SIFs identified by the CTOD method and by the energy method is
between 0.5% and 5%, but the energy method is notably less dependent on the integration area geometrical
parameters: a multiplication by two of the number of elements in the integration area leads to a mean KI

variation of 0.6% in the energy method and of 4.6% in the CTOD method.
The precision of the modal approach is studied by comparison with results of a full explicit computation of

the transient problem (Newmark explicit integration scheme). Denoting by qn, a time-dependent quantity
calculated by modal recombination from n modes and by qexp, the same quantity computed by an explicit
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Fig. 5. Influence of ramp rate t on the variation of KI(t) (MPaOm): t ¼ 3=f 1 (solid line) and t ¼ 0:3=f 1 (dotted line).
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method, the error in q is defined as

EqðnÞ ¼ 1�
supt qnðtÞ

supt qexpðtÞ
. (38)

The convergence of the computation with the number of modes of the recombination is depicted in Fig. 6
for t ¼ 3f 1. Convergence rates of the SIFs computed with the two methods are very close and comparable
with the convergence rate of the displacements (here the horizontal displacement ux extracted in the middle of
the highest segment of the beam). With 30 recombination modes, the error in the three quantities is around
0.1% and accumulated mass is about 97% of total mass.

The convergence rates of SIFs are however very irregular, which can be explained by a study of modal
quantities: modal SIFs are very heterogeneous ðK12

I =K11
I ¼ 50Þ whereas all modal displacements have the same

order of magnitude ðu12
x =u11

x ¼ 0:5Þ. General results do not exist to determine the number of required modes
for each problem. However, some criteria as for instance, accumulated mass are used in practice by engineers;
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these criteria can also be used for fracture mechanics, as the convergence rate of the SIFs is coherent with the
convergence rates of displacements and of the accumulated modal mass.

The computation of a dynamic problem by means of a modal approach is very less time-consuming than full
explicit computation. Identification and recombination of modal SIFs is also faster than identifying the SIFs
from explicit displacement field at each time step. The modal approach to fracture mechanics takes
approximately 40 times less computation time than the explicit scheme.
5.2. 3D Example

The 3D structure is generated by extrusion of the previous 2D mesh with 10 elements in its depth, see Fig. 7.
The cracked beam, whose thickness is a tenth of its width, is subjected to a ramp-bending load. The load rate t
is equal to 0:3f 1

x where f 1
x is the frequency of the first flexion mode in direction x, see Fig. 4. The load is defined

in such a way that the three opening modes of the crack are activated (FzðtÞ ¼ 0:4F xðtÞ; Fy ¼ constant).
The variation of the three SIFs versus time is depicted in Fig. 8. The vibration of the beam on the first

flexion mode in direction x leads to slight oscillations of KI(t); vibrations on the first flexion mode in direction
z lead to slower and pronounced oscillations of KI(t) and KIII(t). KII and KIII are less important than KI but
not negligible.

The first two flexion modes are notably predominant on the cracked structure behavior. The results of the
modal approach are successfully compared to the results of an explicit scheme (Newmark explicit integration
Fig. 7. Mesh of the cracked 3D beam.
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scheme). The number of modes in the recombination basis must nevertheless be larger for this
3D computation than in the previous 2D-example: with 60 recombination modes the error in KI

is less than 2%, the error in vertical displacement is 0.3% and accumulated mass is around 95% of
total mass. The computation times of the modal approach are again much lower than those of the explicit
scheme.

5.3. Industrial application

In this section, the strategy exposed earlier is used for an industrial application. Let us consider a
large blade of a low-pressure steam turbine. The blade is 1.5m long and it is located at about 1.2m
from the axis of rotation. Hence, the blade is exposed to very high mechanical stresses due to centri-
fugal effects at high rotational speed (1500 rpm) and to dynamic stresses induced by flow pressure fluctu-
ations. A crack is located in the upper hook of the root of the fir-tree blade and its depth is equal
to 40% of total blade length, see Fig. 9a. The purpose of this simulation is to determine whether the
crack might propagate or not due to both centrifugal and dynamic stresses. The finite element mesh includes
40,000 nodes.

Centrifugal load: The centrifugal load tends to open the crack. The maximum opening of the lips is 1.8mm.
Von Mises’ stress field on the deformed blade is depicted in Fig. 9. The classical CTOD method gives a stress
intensity factor value for each node of the crack front. The crack response is mainly on its first mode.
Consequently, only the first opening mode is taken into account in the following.

These stress intensity factors are compared to the crack propagation threshold (10MPaOm). It confirms
that the crack is growing for each start and stop of the turbine. However, by using Paris’ principle (8), it could
be noted that this growth is very small. Insofar that the number of start and stop cycles is less than one
hundred, this propagation remains negligible.

Dynamical load: The dynamic load is unknown and difficult to compute. Preferably, a tip timing
measurement method is used to identify the vibration amplitudes: the peaks of a Fast Fourier Transform
(FFT) frequency spectrum give the modal contributions. The first three vibration modes are predominant and
their maximum modal amplitudes are: amax

1 ¼ 1:51, amax
2 ¼ 0:0021 and amax

3 ¼ 0:184, respectively.
Fig. 9. Deformation of the cracked fir-tree attachment blade subjected to a centrifugal load (a) and Von Mises’ stress near the crack

front (b).
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The modal approach to fracture mechanics is used to compute the maximum of SIF K
dyn_max
I due to the

dynamic load:

K
dyn_max
I ðsÞ ¼ max

t

X1
i¼1

aiðtÞK
i
IðsÞ

 !

� max
t

X3
i¼1

aiðtÞK
i
IðsÞ

 !
p
X3
i¼1

amax
i Ki

IðsÞ. ð39Þ

The amplitude of KI due to the dynamic load is depicted in Fig. 10 and is equal to 2K
dyn_max
I as the static

SIF is much greater than the dynamic one. The amplitude of KI is higher than the crack propagation threshold
and corresponds to fast propagation at each vibration of the structure and, will consequently lead to the
failure of the blade. This kind of large crack is unacceptable for in-service conditions, when the dynamic load
is as severe as measured in this turbine.
6. Conclusion

The energy method prescribed to compute the modal stress intensity factors proves to be satisfactory in a
large domain of frequencies. This method based on the energy release rate quadratic form is less dependent on
the mesh and on the integration area than the classical crack-tip-opening-displacement method.

The convergence rate of the modal recombination of SIFs is on average the same as the convergence rate of
the modal recombination of the displacement field. The modal approach is also significantly less time-
consuming than an explicit computation method: in the 2D and 3D-examples, the modal recombination takes
10–40 times less time than Newmark’s explicit computation.

The modal approach to fracture mechanics is then an efficient and accurate method for studying the fatigue
propagation of cracks in structures under dynamic load conditions. Once the linear dynamical response of the
structure for the prescribed load has been computed on the subspace generated by a number M of eigenmodes,
only two steps are required:
�
 identifying the M first modal SIFs with the energy method (a computation that is independent of the loads
prescribed to the structure and may be done once and for all); and

�
 modal recombination to obtain the time dependent SIFs.

With the modal approach, dynamic studies on 3D-structures may then be carried out, which were up to now
very difficult or even impossible. The maximum values of linear fracture mechanics parameters are easy to
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compute with the highest precision and even, as a consequence of Eq. (18), the change in the eigenfrequencies
of a structure with the propagation of the crack from the modal energy release rate may be predicted.
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