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Abstract

Nonlinear free transverse vibration of an axially moving beam is investigated. A partial-differential equation governing the

transverse vibration is derived from the Newton’s second law. Under the assumption that the tension of beam can be replaced

by the averaged tension over the beam, the partial-differential reduces to a widely used integro-partial-differential equation for

nonlinear free transverse vibration. The method of multiple scales is applied directly to two equations to evaluate nonlinear

natural frequencies. Numerical examples are presented to demonstrate the analytical results and to highlight the difference

between two models. Two models yield the essentially same results for the weak nonlinearity, the small axial speed and the low

mode, while the difference between two models increases with the nonlinear term, the axial speed, and the order of mode.

r 2006 Published by Elsevier Ltd.
1. Introduction

Axially moving beams can represent many engineering devices. Understanding transverse vibrations of
axially moving beams is important for the design of the devices. The transverse motion of an axially moving
beam can be regarded as free vibration if both external excitations and parametric excitation are not taken
into consideration. Barakat [1] and Simpson [2], respectively studied the unstressed moving beam, while their
models did not account for the effect of tension. Mote [3] first investigated the effect of tension in an axially
moving beam and computed numerically the first three frequencies and modes for simply supported boundary
conditions. Wickert and Mote [4] presented a complex modal method for axially moving continua including
beams where natural frequencies and modes associated with free vibration serve as a basis for analysis. Öz and
Pakdemirli [5] and Öz [6] calculated the natural frequencies in the cases of pinned–pinned ends and
clamped–clamped ends, respectively. Özkaya and Öz applied artificial neural networks to determine the
natural frequencies of axially moving beams [7]. Öz [8] computed natural frequencies of an axially moving
beam in contact with a small stationary mass under pinned–pinned or clamped–clamped boundary conditions.
ee front matter r 2006 Published by Elsevier Ltd.
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Kong and Parker [9] combined perturbation techniques for algebraic equations and the phase closure principle
to derive closed-form approximate natural frequencies of an axially moving beam with small flexural stiffness.
All these free vibration analysis referred adopted the linear mode. Thurman and Mote [10] derived a nonlinear
mode for coupled longitudinal and transverse vibration of axially moving beams from Hamilton’s principle,
and developed a perturbation method to calculate the nonlinear period. Wickert [11] supposed that the
influence of longitudinal inertia could be neglected (the so-called ‘‘quasi-static stretch’’ assumption) to
establish a decoupled transverse equation of motion, an integro-partial-differential equation, and modified the
asymptotic method of Krylov, Bogoliubov, and Mitropolsky to analyze the effect of nonlinearity on the
fundamental frequency. Based on the same governing equation, Pellicano and Zirilli [12] presented a boundary
layer analysis for transverse vibration of an axially moving beam with vanishing flexural stiffness and small
nonlinearities. Pellicano and Vestroni [13] used the Galerkin method to discretize the governing equation to
study the stability and bifurcation. Without using the ‘‘quasi-static stretch’’ assumption, Chen and Zu [14]
studied energetics and defined a conserved functional for moving beams undergoing nonlinear free vibration.

In the present study, a nonlinear partial-differential equation governing transverse motion of an axially
moving beam is derived from the Newtonian second law. The equation reduces to the integro-partial-
differential equation in Refs. [11–13] if the axial tension is replaced by its averaged value over the entire beam.
The method of multiple scales is applied directly to the partial-differential equation and the integro-partial-
differential equation to evaluate nonlinear natural frequencies. Numerical examples are presented to
demonstrate the analytical results and to highlight the difference between two models.

2. Equations of motion

A uniform axially moving beam, with linear density rl, cross-sectional area A, cross-sectional area moment
of inertial I and initial tension P0, travels at the constant axial transport speed c between two boundaries
separated by distance L. The material of the beam is linear elastic, defined by Hooke’s law:

sðX ;TÞ ¼ E�LðX ;TÞ, (1)

where sðX ;TÞ and �LðX ;TÞ are respectively the axial disturbed stress and strain at the longitudinal coordinate
X and time T, and E is the elastic modulus. Consider only the bending vibration described by the transverse
displacement UðX ;TÞ. The Lagrangian strain

�LðX ;TÞ ¼
1

2

qUðX ;TÞ

qX

� �2
(2)

is used to account for geometric nonlinearity due to small but finite stretching of the beam. The Newton
second law of motion yields
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where EI is the flexural rigidity of the beam.
If the spatial variation of the tension is rather small, then one can use the averaged value of the disturbed

tension 1=L
R L

0
Asdx to replace the exact value As. In this case, Eq. (3) becomes
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Substitution of Eqs. (1) and (2) into Eq. (3) or (4) respectively leads to the dynamic models of nonlinear free
transverse vibration of an axially moving beam
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Introduce the transformation
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where the small real number e is a booking device. Substation of Eq. (7) into Eqs. (5) and (6) respectively yields
the dimensionless form

q2u
qt2
þ 2g

q2u
qtqx
þ ðg2 � 1Þ

q2u
qx2
þ k2

f

q4u

qx4
¼

3

2
�k2

1

q2u
qx2

@u

@x

� �2

, (8)

q2u
qt2
þ 2g

q2u

qtqx
þ ðg2 � 1Þ

q2u

qx2
þ k2

f

q4u
qx4
¼

1

2
�k2

1

q2u

qx2

Z 1

0

qu

qx

� �2

dx. (9)

Obviously, Eq. (8) is a nonlinear partial-differential equation, while Eq. (9) is an integro-partial-differential
equation.

Eq. (8) can be derived from the governing equation for coupled longitudinal and transverse vibration under
the assumption that u45u2 (Eqs. (15) and (16) in Ref. [10]) by considering the transverse vibration only and
setting all longitudinal variables to zero. Eq. (9) has been obtained through uncoupling the governing equation
for coupled longitudinal and transverse vibration under the ‘‘quasi-static stretch’’ assumption (Eq. (30)
in Ref. [11]). The assumption means the dynamic tension component to be a function of time alone. In
traditional derivation, Eq. (9) seems more exact than Eq. (8) because it is the transverse equation of motion in
which the longitudinal displacement field is taken into account. However, the derivation here indicates that
Eq. (8) can be reduced to Eq. (9) based on the ‘‘quasi-static stretch’’ assumption.

In present study, the simply support conditions are considered. Therefore, the boundary conditions in
dimensionless form are:

uð0; tÞ ¼ uð1; tÞ ¼ 0;
q2u

qx2

����
x¼0

¼
q2u
qx2

����
x¼1

¼ 0. (10)

3. Analysis via the method of multiple scales

The method of multiple scales will be directly employed to solve Eq. (11). A first-order uniform
approximation is sought in the form

uðx; t; �Þ ¼ u0ðx;T0;T1Þ þ �u1ðx;T0;T1Þ þ . . . , (11)

where T0 ¼ t and T1 ¼ et are the fast and slow time scale, respectively. Substitution of Eq. (11) and the
following relationship:
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into Eq. (8) and grouping of terms of like-order yield
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The solution to Eq. (13) has been given by Wickert and Mote [4] as

u0 ¼
X

n¼0;�1;...
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where on and fn are respectively the nth natural frequency and complex mode function of the corresponding
linear homogeneous system. Under the boundary conditions (10), the mode function is [5]
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where bjn (j ¼ 1,2,3,4) are four roots of the following fourth-order algebraic equation:

k4
f b

4
jn þ ð1� g2Þb2jn � 2onbjn � o2

n ¼ 0. (17)

In the case without internal resonance, when one calculates the nth nonlinear frequency, it does not lose
generality for u0 to include only the nth mode vibration:

u0 ¼ fnðxÞAnðT1Þe
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Substitution of Eq. (18) into Eq. (14) gives
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where cc represents complex conjugate to the previous term, and NST denotes the terms that will not bring
secular terms into the solution.

Eq. (19) has a bounded solution only if a solvability condition holds. The solvability condition demands
that the right side of Eq. (19) be orthogonal to every solution of the homogeneous problem. That is
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where the inner production is defined by
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Eq. (20) can be cast into the form
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Express the solution to Eq. (22) in polar form

An ¼ ane
ibn . (24)

In Eq. (24), an and bn, are respectively the amplitude and the phase angle of the nonlinear free vibration.
Substituting Eq. (24) into Eq. (22) and separating the resulting equation into real and imaginary parts gives
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where kn
I is the imaginary part of kn. Integrating Eq. (25) yields
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where a0n and b0n are constants. Inserting Eq. (26) into Eq. (24) and then inserting the resulting equation into
Eq. (18) gives the nth frequency of nonlinear free vibration:

oNL
n ¼ on þ

1
4
�kI

na2
0n. (27)

Similarly, one can calculate the corresponding coefficient kn for Eq. (9) as
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In fact, such expression has been obtained in Ref. [15].

4. Results and comparisons

Unlike axially moving strings, axially moving beams have no explicit expression of their linear natural
frequencies on, and coefficients bjn (j ¼ 1,2,3,4) in the expression of their linear mode (16) cannot be
determined analytically. In this section, numerical calculations are performed to investigate the nonlinear
effects modeled by Eq. (8) or (9). In all calculations, kf ¼ 1.0 and k1 ¼ 2.0. The linear critical axial speeds for
the first two modes are, respectively g1cr ¼ 2.7045 and g2cr ¼ 5.2728.

In Eqs. (8) and (9), the magnitude of nonlinear term depends on the value of nonlinear coefficient k1
2.

However, Eq. (27) indicates that the nonlinear characteristic of the vibration is represented by kn
I, while there

is no nonlinear effect when kn
I
¼ 0. From Eqs. (23) to (28), the nonlinear characteristic kn

I is proportional to
k1
2, as k1

2 is a real number. This fact is physically obvious. However, Eqs. (23) and (28) also indicate that the
nonlinear characteristic kn

I varies with the axial speed g. Fig. 1 shows the change of the nonlinear
characteristic kn

I varies with the axial speed g, where the dashed line and the solid line represent the results
evaluated from Eqs. (23) and (28), respectively. For both models, the nonlinear characteristic increases with
the growth of the axial speed, and it increases dramatically for the speed approaching the critical speed.
Besides, the higher order mode has the larger nonlinear characteristic. From Eq. (27), it can be concluded that
the difference between the nonlinear frequency and linear natural frequency increases with the axial speed and
the order of the mode. For the same parameters, the nonlinear characteristic of Eq. (8) is larger than that of
Eq. (9). Therefore, averaging the tension along the beam makes the nonlinearity weaker.

Based on Eq. (27), the frequency of nonlinear free vibration can be numerically calculated. Figs. 2 and 3
show the relationship between nonlinear frequencies and amplitudes at different axial speed for e ¼ 0.005 and
0.05, respectively. In these figures, the dashed line and the solid line represent the results for Eqs. (8) and (9),
respectively. The numerical simulations indicate that two models are qualitatively same, while there exist
quantitative differences. Both models predict the same trends of the nonlinear free vibration frequencies
varying with the initial amplitudes, the axial speed, and the nonlinear term. Such trends were obtained in
Ref. [11] via the asymptotic method of Krylov, Bogoliubov and Mitropolsky for Eq. (9). The frequencies
Fig. 1. Nonlinear characteristics varying with the axial speed: (a) the first mode; (b) the second mode. - - - - - for Eq. (23), — for Eq. (28).
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Fig. 2. The relationship between frequencies and amplitudes at different axial speed (e ¼ 0.005): (a) the first mode; (b) the second mode.

- - - - - for Eq. (23), — for Eq. (28).

Fig. 3. The relationship between frequencies and amplitudes at different axial speed (e ¼ 0.05): (a) the first mode; (b) the second mode.

- - - - - for Eq. (23), — for Eq. (28).
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increase with the initial amplitudes. When the initial amplitude is zero, Eq. (27) yields the frequencies of the
conresponding linear system, which is same for both the nonlinear model. The larger axial speed leads to the
smaller frequencies and the rapider increase of the frequencies with the initial amplitudes. The larger nonlinear
term results in the rapider increase of the frequencies with the initial amplitudes, and the increase becomes
substantial when the axial speed is close to the critical one. Besides, the effects of the initial amplitudes, the
axial speed, and the nonlinear term is more significant in the higher order mode. Quantitative, the two models
yield the almost same results for weak nonlinearity, small axial speed and low mode, while the difference of the
two models increases with the nonlinear term, the axial speed, and the order of the mode, especially, it
increases rapidly when the axially speed is near the critical speed.

5. Conclusions

Nonlinear free vibration of an axially moving beam is investigated in the paper. A governing equation of
transverse vibration is derived from Newton’s second law. Under the assumption that the tension of beam can
be replaced by the averaged tension over the beam, the equation reduces a widely used model. The nonlinear
frequencies of two models are obtained via the method of multiple scales modes. Numerical calculations show
that the models have the same tendencies to change with related parameters, and the two models give the
essentially same results for weak nonlinearity, small axial speed and low mode. However, the difference
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between two models increases when the nonlinear term strengthens, the axial speed grows, or the order of
mode becomes large.
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