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Abstract

A boundary perturbation method is developed to determine the fundamental frequency of vibrating plates. The method

is then applied to wavy, star shape and polygonal plates with clamped boundary conditions. Approximate analytical

solutions of the fundamental frequency are obtained with an accuracy of O(e4), where e is the deviation from the unit circle.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The governing equation for the transverse vibration of a thin plate is given by

r4W � k4W ¼ 0, (1)

where k2
¼ oL2

ffiffiffiffiffiffiffiffiffi
r=D

p
, o is the natural frequency, r is the density, D is the flexural rigidity, and L is some

length scale. The fundamental frequency, which is the smallest eigenvalue of Eq. (1), plays a crucial role when
designing plates in applied sciences. The eigenvalue problem has a general analytical solution in a circular
domain in terms of a linear combination of the Bessel functions [1]. If the domain is rectangle, Navier’s double
series solution and Levy’s single series solution is possible for certain boundary conditions [1]. But for other
domains, numerical methods are necessary [2–5].

The purpose of the present work is to use an analytic perturbation method to solve for the fundamental
frequencies of wavy, star, and polygonal plates with clamped boundary conditions.
2. General perturbation method for clamped plates

Consider a thin, nearly circular plate with constant thickness. Let L be the average radius and the boundary
is given by r ¼ 1þ �f ðyÞ, where f(y) is the boundary function of zero mean and e is the small amplitude of
the boundary. Then we perturb the solution W(r, y) and the fundamental frequency k about the circular state
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as follows:

W r; yð Þ ¼W 0ðrÞ þ �W 1ðr; yÞ þ �2W 2ðr; yÞ þOð�3Þ, (2)

k4
¼ k4

0 1þ �2bþOð�4Þ
� �

, (3)

where e2b is the correction to the square of the fundamental frequency and b ¼ ðk1=k0Þ
4. Expanding W ð1þ

�f ðyÞ; yÞ into Taylor series and applying the perturbation (2) gives

W 1þ �f ðyÞ; yð Þ ¼W 0ð1Þ þ � W 1ð1; yÞ � F1ð1; yÞ½ � þ �2 W 2ð1; yÞ � F2ð1; yÞ½ � þ � � � , (4)

where F1(1, y) and F2(1, y) are given in Appendix. Similarly, the normal derivative at the boundary can be
expanded as

qW

qn

����
r¼1þ�f ðyÞ

¼W 0r
þ � W 1r

ð1; yÞ �Cc
1ð1; yÞ

� �
þ �2 W 2r

ð1; yÞ �Cc
2ð1; yÞ

� �
þ � � � , (5)

where Cc
1ð1; yÞ and Cc

2ð1; yÞ are also given in Appendix. Eqs. (4) and (5), being zero, give the perturbed
clamped boundary conditions.

Substituting (2) and (3) into Eq. (1), we obtain the following sequential boundary value problems:

r4W 0ðrÞ � k4
0W 0ðrÞ ¼ 0;

r4W 1ðr; yÞ � k4
0W 1ðr; yÞ ¼ 0;

r4W 2ðr; yÞ � k4
0W 2ðr; yÞ ¼ bk4

0W 0ðrÞ;

..

.

8>>>>><
>>>>>:

(6)

Solutions of sequential Eqs. (6) with clamped boundary conditions (4) and (5) of specific shapes are
given below.

3. Wavy boundary plates

Consider wavy circular boundary by taking f(y) ¼ cos(My) in the previous section, then r ¼ 1þ � cosðMyÞ;
where �51 is the small amplitude and MX2 is the number of circumferential waves. As an example, we will
consider the M ¼ 6 case.

The zeroeth order equation with corresponding zeroeth order homogenous clamped boundary conditions

r4W 0ðrÞ � k4
0W 0ðrÞ ¼ 0;

W 0ð1Þ ¼W 0r
ð1Þ ¼ 0

(7)

which corresponds to a clamped circular plate, has the following solution (axisymmetric case in which no
nodal diameter occurs)

W 0ðr; yÞ ¼ J0ðk0rÞ þ a0I0ðk0rÞ, (8)

where a0 ¼ J1ðk0Þ=I1ðk0Þ and Jn, In are Bessel functions. The fundamental frequency of the clamped circular
plate is k0 ¼ 3.1937 which is the first root of the characteristic equation J0ðk0ÞI1ðk0Þ þ J1ðk0ÞI0ðk0Þ ¼ 0.

The first-order equation with corresponding first-order clamped boundary conditions are

r4W 1ðr; yÞ � k4
0W 1ðr; yÞ ¼ 0;

W 1ð1; yÞ ¼ 0; W 1r
ð1; yÞ ¼ Cc

1ð1; yÞ:
(9)

The general solution of (9) is given by W 1ðr; yÞ ¼
P1

n¼1W
nM
1 ðrÞ cosðnMyÞ; where W nM

1 ðrÞ ¼

Cn
11JnM ðk0rÞ þ Cn

12InM ðk0rÞ. The boundary conditions of (9) suggest that the first-order equation has a
solution

W 1 r; yð Þ ¼ C1
11JM k0rð Þ þ C1

12IM k0rð Þ
� �

cos Myð Þ, (10)
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where

C1
11 ¼ �

2IM ðk0Þ

H
W 0rr
ð1Þ,

C1
12 ¼

2JMðk0Þ

H
W 0rr
ð1Þ

and

H ¼ k0 �JM ðk0Þ IM�1ðk0Þ þ IMþ1ðk0Þ½ � þ IMðk0Þ JM�1ðk0Þ þ JMþ1ðk0Þ½ �
� �

.

The second-order equation with corresponding second-order clamped boundary conditions are

r4W 2ðr; yÞ � k4
0W 2ðr; yÞ ¼ bk4

0W 0ðrÞ;

W 2ð1; yÞ ¼ Fc
2ðr; yÞ; W 2r

ð1; yÞ ¼ Cc
2ð1; yÞ:

(11)

The boundary conditions of (11) consist of two parts:

Fc
2ðr; yÞ ¼ jc

0ðrÞ þ jc
2ðrÞ cosð2MyÞ;

Cc
2ðr; yÞ ¼ xc

0ðrÞ þ xc
2ðrÞ cosð2MyÞ; (12)

where jc
0ðrÞ ¼W 0rr

ðrÞ=4 and xc
0ðrÞ ¼M2W M

1 ðrÞ=2�W M
1rr
ðrÞ=2�W M

1rr
ðrÞ=4. The second-order boundary

conditions suggest that we have a solution of the type W 2ðr; yÞ ¼ UðrÞ þ V ðrÞ cosð2MyÞ. The contribution
to the fundamental frequency comes from the y independent terms of r4Uðr; yÞ � k4

0Uðr; yÞ ¼ bk4
0W 0ðrÞ which

has the following general solution:

UðrÞ ¼ B1J0ðk0rÞ þ B2I0ðk0rÞ �
bk0r

4
J1ðk0rÞ � a0I1ðk0rÞð Þ. (13)

Imposing the boundary conditions Uð1Þ ¼ j0ð1Þ; Urð1Þ ¼ xc
1ð1Þ into Eq. (13) and solvability condition into

the resulting linear system of equations, we obtain a unique solution of b,

b ¼
I1ðk0Þjc

0ð1Þ � I0ðk0Þx
c
0ð1Þ

I0ðk0ÞF
0
cð1Þ � I1ðk0ÞF cð1Þ

, (14)

where

FcðrÞ ¼
k0r

4
J1ðk0rÞ � a0I1ðk0rÞð Þ.

The product e2b is the first correction to the square of the fundamental frequency of a clamped wavy
boundary plate. Table 1 below lists the values of the fundamental frequencies k with various e and M. Notice
that for e ¼ 0, the fundamental frequency of clamped circular plate is recovered.

4. Polygonal plates

Let a be the normalized radius of the inscribing circle of a regular polygon with M sides. Then in polar
coordinates (r, y) one side is given by

r ¼
a

cos y
; �bpypb, (15)
Table 1

Fundamental frequency k of clamped wavy boundary plate

M\� 0 0.02 0.04 0.06 0.08 0.1

5 3.19622 3.20182 3.21846 3.24563 3.28256 3.32828

6 3.19622 3.20311 3.22352 3.25671 3.30152 3.35659

7 3.19622 3.20439 3.22854 3.26761 3.32007 3.38406

8 3.19622 3.20567 3.23351 3.27838 3.33827 3.41081

12 3.19622 3.21073 3.25313 3.32031 3.40802 3.51167
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where b is the half-central angle p/M. We determine a such that the mean radius of the polygon is 1 by setting

a ¼
1

1=b
R b
0

1
cos y dy

¼
b

ln tan p
2
þ

b
2

� �h i . (16)

Expanding Eq. (15) in a Fourier series, the boundary is given by

r ¼ 1þ f ðyÞ ¼ 1þ
X1
n¼1

cn cosðnMyÞ, (17)

where

cn ¼
2a

b

Z b

0

cosðnMyÞ
cos y

dy. (18)

The Fourier coefficients cn are less than 0.1 and alternate in sign and decrease rapidly with n, especially if M

is large. For tabulated values of cn see Wang [6]. Thus the boundary perturbation in Section 2 applies to
r ¼ 1þ f ðyÞ with f being O(e) understood. The more terms retained in the Fourier series (17) will result in a
better approximated polygon. Fig. 1 shows the approximations of a hexagon using truncated series.

The perturbation process in Section 3 is applied to the boundary function f(y) in (17) of the polygon. The
zeroeth order O(1) solution is given by (8). The first-order O(e) solution is

W 1ðr; yÞ ¼
X1
n¼1

W nM
1 ðrÞ cosðnMyÞ, (19)

where W nM
1 ðrÞ ¼ Cn

11JnM ðk0rÞ þ Cn
12InM ðk0rÞ, and the coefficients are

Cn
11 ¼

�cnInM ðk0ÞW 0rr
ð1Þ

JnM ðk0ÞI
0
nM ðk0Þ � J 0nM ðk0ÞInM ðk0Þ

,

Cn
12 ¼

�cnJnM ðk0ÞW 0rr
ð1Þ

JnM ðk0ÞI
0
nM ðk0Þ � J 0nM ðk0ÞInM ðk0Þ

. ð20Þ

The non-homogenous part of the second-order O(e2) Eq. (11), r4U � k4
0U ¼ bk4

0W 0, has the general
solution (13) and its boundary conditions are the y-independent parts of Fc

2ðr; yÞ and Cc
2ðr; yÞ: Then the

boundary conditions for U(r) become Uð1Þ ¼ jc
2ð1Þ; Urð1Þ ¼ xc

2ð1Þ, where

jc
2ðrÞ ¼

1

4
W 0rr
ðrÞ
X1
n¼1

c2n, (21)
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Fig. 1. Hexagon (M ¼ 6) shapes using finite number of terms: (a) n ¼ N ¼ 5, (b) n ¼ N ¼ 10 and (c) n ¼ N ¼ 12.
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xc
0ðrÞ ¼

1

2
M2

X1
n¼1

n2cnW nM
1 ðrÞ �

1

2

X1
n¼1

cnW nM
1rr
ðrÞ �

1

4
W 0rr
ðrÞ
X1
n¼1

c2n. (22)

The frequency correction e2b can be determined by imposing the above boundary conditions and employing
the solvability condition for the resulting augmented system of equations. Thus

I0ðk0Þ jc
0ð1Þ þ bF cð1Þ

I1ðk0Þ xc
0ð1Þ þ bF 0cð1Þ

�����
����� ¼ 0, (23)

where F cðrÞ ¼ k0r J1ðk0rÞ � a0I1ðk0rÞð Þ=4, and hence

b ¼
I1ðk0Þjc

0ð1Þ � I0ðk0Þx
c
0ð1Þ

I0ðk0ÞF
0
cð1Þ � I1ðk0ÞF cð1Þ

. (24)

The fundamental frequency k of a clamped polygonal plate for M ¼ 6 (hexagon) with N ¼ 12 is found to
be 3.26809. In practice the corners may not be mathematically sharp and a finite N would be desirable. From
Fig. 1 the boundary function f(y) gives an acceptable approximation to an hexagon for N ¼ 12. Table 2 shows
the convergence of the frequency approximation to various clamped polygonal plates inscribed by a circle of
radius a as N increases.

All the published values of the fundamental frequencies are normalized with respect to either inscribing or
circumscribing radius of a circle for a polygonal plate. The present result however is normalized with respect
to the normalized radius of the averaging circle. In order to be able to compare out result, the frequencies in
Table 2 are recalculated with respect to the normalized radius of an inscribed circle and the frequency values
are tabulated in Table 3. Table 4 compares the present fundamental frequencies (fundamental eigenvalues)
with those obtained by other authors. The present result agrees well with those obtained by Irie et al. [3,8] and
Walkinshaw and Kennedy [7]. Irie et al. [8] used conformal mapping to obtain fundamental frequencies. Other
authors in Table 4 obtained frequencies by numerical methods. However, the present work gives an analytical
approximation method of finding fundamental frequencies of plates. The order of the error in our frequency
results is O(e4).

Conformal mapping method was used by Gutierrez et al. [11] to obtain the fundamental frequency of
clamped and simply supported regular polygonal plates normalized by the side of the polygons. In the case of
the hexagon they found that the fundamental frequency of 3.58189. Our perturbation method gives the
frequency of 3.62929 normalized with respect to the side of the hexagon.
Table 2

Fundamental frequency k of regular polygonal clamped plates (using normalized averaging circle)

M\N 3 6 12 24 48 96 192

5 3.31667 3.321 3.32235 3.32273 3.32283 3.32286 3.32286

6 3.26493 3.26715 3.26784 3.26803 3.26808 3.26809 3.26809

7 3.23915 3.24045 3.24085 3.24096 3.24099 3.24099 3.24099

8 3.22485 3.22568 3.22593 3.226 3.22602 3.22602 3.22602

12 3.20466 3.20488 3.20495 3.20497 3.20497 3.20498 3.20498

Table 3

Fundamental frequency k of regular polygonal clamped plates (using normalized inscribed circle)

M\N 3 6 12 24 48 96 192

5 3.04764 3.04912 3.04943 3.04948 3.04949 3.04949 3.04949

6 3.09128 3.09215 3.09234 3.09237 3.09238 3.09238 3.09238

7 3.11721 3.11778 3.1179 3.11793 3.11793 3.11793 3.11793

8 3.13423 3.13462 3.13471 3.13473 3.13473 3.13473 3.13473

12 3.16652 3.16665 3.16668 3.16669 3.16669 3.16669 3.16669
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Table 4

Comparison of fundamental frequency k of regular clamped plates

M 5 6 7 8 12

Present 3.04949 3.09238 3.11793 3.13473 3.16669

Irie et al. [8] 3.062 3.097 3.120 3.136 —

Shahady et al. [9] 3.075 3.104 3.125 3.138 —

Yu [10] 3.144 3.155 3.165 3.171 —

Irie et al. [3] 3.068 3.106 3.128 3.145 —

Walkinshaw and Kennedy [7] 3.061 3.098 3.120 3.137 —

a

0

r

�

�
�

Fig. 2. A tip of a star in polar coordinates.
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5. Star shape plates

Let a star have M0 tips, and let the tip angle be 2a as shown in Fig. 2. Notice that a ¼ ðp=sÞ � b; where
1osoM 0 gives a star and s ¼ 2 results in a regular polygon. Then in polar coordinates (r, y)

r ¼ a
d

cos y� cotðaþ bÞ sin y
; �bpypb, (25)

where d ¼ cos b� cotðaþ bÞ sin b and b is the half-central angle p/M0. We determine a such that the mean
radius of the star is 1 by

a ¼
1

b

Z b

0

d

cos y� cotðaþ bÞ sin y
dy

	 
�1
. (26)

Expanding Eq. (25) in a Fourier series, the boundary is given by

r ¼ 1þ f ðyÞ ¼ 1þ
X1
n¼1

cn cos nM 0yð Þ, (27)

where

cn ¼
2a

b

Z b

0

d

cos y� cotðaþ bÞ sin y

	 

cos nM 0yð Þdy. (28)

Table 5 shows that for M 0
X5 and for a ¼ ðp=3Þ � b all cn are less than 0.1. Also, cn alternate in sign and the

sequence corresponding to each sign decrease rapidly with n, especially if M0 is large.
In practice, the infinite sum is truncated to N terms. Fig. 3 shows the approximations of a star with six tips

using truncated series. More terms are retained in the Fourier series Eq. (27) will result in a better
approximated star.
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Table 5

Coefficients of regular star shape plates with M0 tips, where s ¼ 2M 0=ðM 0 � 2Þ

M A fcng

5 1.54595 �0:301180; 0:075944; �0:049344; 0:022382; �0:018935; 0:010377; �0:009866; . . .f g

6 1.36416 �0:220557; 0:0439395; �0:031449; 0:012127; �0:011705; 0:005513; �0:006033; . . .f g

7 1.27094 �0:173268; 0:028760; �0:022901; 0:007680; �0:008413; 0:0034619; �0:004318; . . .f g

8 1.21459 �0:142272; 0:020324; �0:017960; 0:005326; �0:006555; 0:002390; �0:003357; . . .f g

9 1.17702 �0:120452; 0:015140; �0:014758; 0:003921; �0:005365; 0:001755; �0:002745; � � �f g

10 1.15029 �0:104297; 0:011722; �0:012519; 0:003012; �0:004540; 0:001345; �0:002321; . . .f g

12 1.11495 �0:082043; 0:007630; �0:009599; 0:001942; �0:003472; 0:000866; �0:001773; . . .f g

20 1.05833 �0:043866; 0:002438; �0:004959; 0:000613; �0:001787; 0:000272; �0:000912; . . .f g

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(a) (b) (c)

Fig. 3. Star (M ¼ 6, s ¼ 3) shape using finite number of terms: (a) n ¼ N ¼ 5, (b) n ¼ N ¼ 10 and (c) n ¼ N ¼ 12.
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The perturbation process in Section 3 is applied to the boundary function f(y) in Eq. (27) of the star. The
zeroeth order O(1) solution is given by Eq. (8). The first-order O(e) solution is given by Eq. (19) with star shape
plate coefficients given in Table 5. Thus, the frequency correction b can be determined by Eq. (24) with respect
to these coefficients. Table 6 shows the frequency approximation to star shape plates with various number of
tips M0 and tip angles 2a, where a ¼ ðp=sÞ � b for 1osoM 0 for N ¼ 24. Small tip angle (i.e., large soM 0)
makes clamped star plate more rigid and therefore it results in a larger frequency value. Note also that for
s ¼ 2 (the last row in Table 6) we have fundamental frequency values of regular polygons which agree with the
result given in Table 2.
6. Conclusions

A boundary perturbation method is developed to extract the fundamental eigenvalue of the biharmonic
equation. The method is then applied to wavy, polygonal, and star shape plates with clamped boundary
conditions. For simplicity we started with wavy boundary plates and generalized the boundary function from
polygon to star. Perturbed results of fundamental frequencies of clamped polygonal plates are found to be in
good agreement with those that are available in the literature. Also, approximate analytical solutions of the
biharmonic problem and formulations of the fundamental frequency for general plates are obtained. We
remark that this method can also be used for other boundary conditions as well.
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Table 6

Fundamental frequency k of regular star shaped plates

s\M 0 5 6 7 8 12

7 — — — 8.17093 5.2750

6 — — 7.48178 6.13904 4.70888

5 — 6.73955 5.56478 5.03411 4.21922

4 5.92408 4.93754 4.50228 4.24753 3.7919

3 4.2350 3.9195 3.74554 3.63588 3.43405

2 3.32273 3.26803 3.24096 3.2260 3.20497

H. Yüce, C.Y. Wang / Journal of Sound and Vibration 299 (2007) 355–362362
Appendix

The clamped boundary conditions are given by the following functions:

Fc
1ð1; yÞ ¼ �f ðyÞW 0r

ð1; yÞ, (29)

Fc
2ð1; yÞ ¼ �f ðyÞW 1r

ð1; yÞ � 1
2

f 2
ðyÞW 0rr

ð1; yÞ, (30)

Cc
1ð1; yÞ ¼ f 0ðyÞW 0yð1; yÞ � f ðyÞW 0rr

ð1; yÞ, (31)

Cc
2ð1; yÞ ¼ � 2f ðyÞf 0ðyÞW 0y ð1; yÞ þ f 0ðyÞW 0y ð1; yÞ � f ðyÞW 1rr

ð1; yÞ

þ f ðyÞf 0ðyÞW 0ry ð1; yÞ �
1
2

f 2
ðyÞW 0rrr

ð1; yÞ. ð32Þ
References

[1] A.W. Leissa, Vibration of Plates, NASA SP-160, 1969.

[2] R. Jones, An approximate expression for the fundamental frequency of vibration of elastic plates, Journal of Sound and Vibration 38

(1975) 503–504.

[3] T. Irie, G. Yamada, Y. Narita, Free vibration of clamped polygonal plates, Bulletin of the JSME 21 (1978) 1696–1702.

[4] T. Irie, G. Yamada, K. Umesato, Free vibration of regular polygonal plates with simply supported edges, Journal of the Acoustical

Society of America 69 (1981) 1330–1336.

[5] R.B. Bhat, Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables, Journal of Sound and

Vibration 114 (1987) 65–71.

[6] C.Y. Wang, Flow between nested regular polygonal ducts, Chemical Engineering Science 53 (1998) 1107–1109.

[7] D.S. Walkinshaw, J.S. Kennedy, On forced response of polygonal plates, Ingenieur-Archiv 38 (1969) 358–369.

[8] T. Irie, G. Yamada, M. Sonoda, An analytical method for determination of natural frequencies of polygonal plates, Journal of Sound

and Vibration 85 (1982) 287–291.

[9] P.A. Shahady, R. Passarelli, P.A.A. Laura, Application of complex-variable theory to the determination of the fundamental

frequency of vibrating plates, Journal of the Acoustical Society of America 42 (1967) 806–809.

[10] J.C.M. Yu, Application of conformal mapping and variational method to study of natural frequencies of polygonal plates, Journal of

the Acoustical Society of America 49 (1971) 781–785.

[11] R.H. Gutierrez, P.A.A. Laura, C.A. Rossit, Frequency of transverse vibration of regular polygonal plates with a concentric, circular

orthotropic patch, Journal of Sound and Vibration 238 (2) (2000) 363–367.


	Fundamental frequency of clamped plates with circularly periodic boundaries
	Introduction
	General perturbation method for clamped plates
	Wavy boundary plates
	Polygonal plates
	Star shape plates
	Conclusions
	References


