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Abstract

In active structural vibration control, actuator’s saturation and robust stability with respect to parameter uncertainties

are practical and important issues. Saturated sliding mode controller and robust saturation controller, which were

presented in previous researches, are suitable in this case. In this paper, robust stabilities of the two controllers are

examined and compared through numerical simulations for a 2dof vibrating system.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In active structural vibration control, controller design, which involves both actuator’s saturation and
parameter uncertainties, is needed. Large structures as ships and high-rise buildings are very massive and very
large active control input force, which is often unrealistic, is demanded correspondingly. And as the structures
are bigger and higher or more complex, it is more difficult to know exact values of their masses and stiffnesses.
Therefore, in controller design for active structural vibration control, actuator’s saturation needs to be
considered and the controller should be designed to be robust with respect to parameter uncertainties.

There have been many researches on controller design including only actuator’s saturation in the field of
active structural vibration control [1–6]. Even though these controllers guarantee stability in nominal system
with actuator’s saturation, they cannot do robust stability in uncertain system with parameter uncertainties.
The controller, which does not consider parameter uncertainties, may lose stability in uncertain system with
parameter uncertainties. Therefore, controllers considering both actuator’s saturation and parameter
uncertainties have been presented to serve the purpose for robust stability. Yang et al. [7,8] presented a
saturated sliding mode controller (SSMC) based on the theory of the traditional sliding mode control (SMC)
and proved it to be effective method in active structural vibration control. Even though this controller is
robust with respect to parameter uncertainties of system, it cannot prescribe bounds of parameter
uncertainties of system within which closed-loop robust stability is guaranteed certainly. On the other hand,
Lim et al. [9] developed a robust saturation controller (RSC) for linear time-invariant system based on the
affine quadratic stability definition and multi-convexity concept and showed the availability of this controller
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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for linear vibrating system. This RSC can analytically address bounds of parameter uncertainties within which
closed-loop robust stability is guaranteed.

In the previous paper [9], control performances for the SSMC and the RSC are compared through
numerical simulations for a 3dof linear vibrating system. In this paper, robust stabilities of the SSMC and the
RSC are examined and compared more precisely through numerical simulations. A 2dof linear vibrating
system is selected and several numerical simulation results for the two controllers are shown.
2. Saturated sliding mode controller

In the SSMC, the following nominal linear time-invariant system (1) is considered and the controller is
designed based on the theory of the traditional SMC

_xðtÞ ¼ A0xðtÞ þ BuðtÞ; xð0Þ ¼ x0, (1)

where x ¼ ½x1 x2 . . . xn�
T is an n� 1 state vector, A0 is an n� n nominal system matrix and is assumed to be

stable, B is an n� 1 control input vector, and u is a scalar control input with control input constraint (2)

uðtÞ
�� �� � umax. (2)

The theory of the SMC is to design controllers to drive the system’s response into the sliding surface on
which the motion is stable. Let s ¼ 0 be the sliding surface

s ¼ Psx ¼ 0, (3)

where Ps is an 1� n vector to be determined such that the motion on the sliding surface is stable. The method
of linear quadratic regulator is used to determine Ps [8]. Ps is obtained by minimizing Js as follows:

Js ¼

Z 1
0

xTQsxdt; (4)

where Qs is an n� n positive-definite matrix.
The controllers are designed to drive the state trajectory into the sliding surface s ¼ 0. To achieve this goal,

the following Lyapunov function is considered:

VsðxÞ ¼
1
2
sTs ¼ 1

2
xTPT

s Psx. (5)

The sufficient condition for the sliding mode s ¼ 0 to occur as time goes to N is _V sðxÞ ¼ sT _so0. Taking the
time derivative and using state equation (1), one obtains the following:

_V sðxÞ ¼ xTPT
s PsA0xþ xTPT

s PsBu. (6)

For _VsðxÞo0 with control input constraint (2), the following controller of saturation type was suggested by
Yang et al. [7,8]:

uðtÞ ¼ �sat½ðasðPsBÞ
�1PsA0 þ dsB

TPT
s PsÞxðtÞ�, (7)

where 0pasp1 and ds40 is referred to as the sliding margin.
Robust stability of the SSMC (7) is explained only using the property of the robustness of the SMC with

respect to parameter uncertainties. Even though the SMC is robust with respect to parameter uncertainties of
system, it cannot prescribe bounds of parameter uncertainties of system within which closed-loop robust
stability is guaranteed certainly. The complete response of a SMC system consists of two phases of different
modes: the reaching mode and the sliding mode. Robustness of the SMC with respect to parameter
uncertainties is guaranteed only in the sliding mode. Therefore, the robustness of the SMC is not guaranteed
over the complete response of a SMC system. Furthermore, system’s response applying the SSMC remains in
the reaching mode for much time than unsaturated system applying the SMC and bounds of parameter
uncertainties within which robust stability is guaranteed are narrower than unsaturated SMC system. This will
be shown through numerical simulations later.
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3. Robust saturation controller

In the RSC, the following uncertain linear time-invariant system (9) is considered and the controller is
designed based on the affine quadratic stability definition and multi-convexity concept

_xðtÞ ¼ ðA0 þ DAðyÞÞxðtÞ þ BuðtÞ; xð0Þ ¼ x0, (9)

where x ¼ ½x1 x2 . . . xn�
T is an n� 1 state-vector, A0 is an n� n nominal system matrix, y ¼ ðy1; y2; . . . ; ykÞ 2

<k is a vector of uncertain real parameters, DA(y) is time-invariant uncertainties, A0 þ DAðyÞ is assumed to be
stable, B is an n� 1 control input vector, and u is a scalar control input with control input constraint (2).

We assume that lower and upper bounds are available for the parameter values. Specifically, each parameter
yi ranges between known external values yi and yi

yi 2 ½yi; yi� for i ¼ 1; 2; . . . ; k. (10)

This means that the parameter vector y is valued in a hyper-rectangle called the parameter box. In the sequel

Y :¼ fðo1;o2; . . . ;okÞ : oi 2 fyi; yigg (11)

denotes the set of the 2k vertices or corners of these parameters.
The uncertain system matrix A(y) depends affinely on the uncertain parameters of yi and is described by the

system with structured real parameter uncertainties. That is

AðyÞ ¼ A0 þ DAðyÞ ¼ A0 þ y1A1 þ y2A2 þ � � � þ ykAk, (12)

where A0;A1;A2; . . . ;Ak are known fixed matrices.
The following notion of parameter-dependent quadratic Lyapunov function is defined

V ðx; yÞ ¼ xTPðyÞx, (13)

where P(y) is a symmetric positive-definite matrix and is an affine function of y

PðyÞ ¼ P0 þ y1P1 þ y2P2 þ � � � þ ykPk. (14)

The time derivative of the Lyapunov function (13) is of the following:

_V ðx; yÞ ¼ xT½AðyÞTPðyÞ þ PðyÞAðyÞ�xþ 2xTPðyÞBu. (15)

For _V ðx; yÞo0 with control input constraint (2), the following controller of saturation type was proposed by
Lim et al. [9]

uðtÞ ¼ �sat½dBTP0xðtÞ�, (16)

where k þ 1 symmetric matrices P0;P1;P2; . . . ;Pk, and symmetric positive-definite matrix Ma satisfy 2k+1+k

LMI conditions of Eqs. (17)–(19) and d40 satisfies Eq. (20) for these matrices P0;P1;P2; . . . ;Pk and Ma.

PðoÞ40 for all o 2 Y, (17)

AðoÞTPðoÞ þ PðoÞAðoÞ þMao0 for all o 2 Y, (18)

AT
i Pi þ PiAiX0 for i ¼ 1; 2; . . . ; k, (19)

Ma þ df2P0BBTP0 þ
Xk

i¼1

yiðP0BBTPi þ PiBBTP0Þg40 for all o 2 Y. (20)

Note that Ma is a controller design parameter and dmax, maximum value of d, satisfying Eq. (20) is finite in
uncertain system. LMIs of Eqs. (17)–(20) can be easily solved using commercial Matlabs and LMI control
toolbox [10].

Unlike the SSMC (7), the RSC (16) is robustly stable with respect to parameter uncertainties over the
prescribed upper and lower bounds because bounds of parameter uncertainties are considered analytically in
the design of this controller.
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4. Numerical simulations

In the following numerical simulations, robust stabilities of the SSMC (7) and the RSC (16) are examined
and compared. A 2dof linear vibrating system with one control input force is considered as shown in Fig. 1.
The masses, stiffnesses, and damping coefficients for nominal system are m1 ¼ m2 ¼ 1 kg, k1 ¼ k2 ¼ 1N=m,
and c1 ¼ c2 ¼ 0:01N s=m, respectively. The maximum control input force umax ¼ 1N. Let uncertainties of
stiffnesses be y1 and y2, then the admissible trajectories are given by k1ð1þ y1Þ and k2ð1þ y2Þ specified in
multiplicative form and this uncertain system can be described by state-space equation as in Eq. (9). In this
case, state vector x ¼ ½x1 x2 _x1 _x2�

T, control input vector B ¼ [0 0 1/m1 0]
T, and uncertain system matrix A(y) is

described by Eq. (21)

AðyÞ ¼ A0 þ y1A1 þ y2A2, (21)

where

A0 ¼

0 0 1 0

0 0 0 1

�
k1 þ k2

m1

k2

m1
�

c1 þ c2

m1

c2

m1

k2

m2
�

k2

m2

c2

m2
�

c2

m2

2
66666664

3
77777775
; A1 ¼

0 0 0 0

0 0 0 0

�
k1

m1
0 0 0

0 0 0 0

2
66664

3
77775;

A2 ¼

0 0 0 0

0 0 0 0

�
k2

m1

k2

m1
0 0

k2

m2
�

k2

m2
0 0

2
66666664

3
77777775
:

Simulation results for the case with parameter uncertainties of k1ð1� ysÞ and k2ð1þ ysÞ are presented under
initial condition x0 ¼ [0 0 0 6]T.

Robust stability of the SSMC is firstly examined. The method of linear quadratic regulator is used for the
design of the sliding surface with a diagonal weighting matrix Qs ¼ diagð10; 10; 1; 1Þ. This results in a sliding
surface s ¼ Psx ¼ 4:0301x1 þ 0:4421x2 þ 1:0 _x1 þ 3:2481 _x2 ¼ 0. The SSMC is designed using ds ¼ 10 and
as ¼ 1. Fig. 2 shows displacement of x1 and control input force for nominal system applying the SSMC. As
shown in Fig. 2, stability of the SSMC for nominal system is guaranteed analytically when saturation of
x1

k1 c1
u

m1

x2

k2
c2

m2

Fig. 1. 2dof vibrating system with one actuator.
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Fig. 2. Displacement and control input force for nominal system applying the saturated sliding mode controller under x0 ¼ [0 0 0 6]T

(- - - -, No control; —, SSMC).
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Fig. 3. Displacements and control input forces for uncertain system with ys ¼ 0:2 applying the sliding mode controller and the saturated

sliding mode controller under x0 ¼ [0 0 0 6]T (- - - -, SMC w/o saturation; —, SSMC with saturation).
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control input force occurs. In case of the SMC without saturation of control input force, bounds of parameter
uncertainties within which robust stability is guaranteed are very wide. But in case of the SSMC, bounds of
parameter uncertainties within which robust stability is guaranteed are narrow. It is checked through
numerical simulations that this SSMC is unstable when ys is greater than 0.2. Fig. 3 compares displacements of
x1 and control input forces for the uncertain system with ys ¼ 0:2 applying the SMC and the SSMC. Fig. 4
compares sliding surfaces ðs ¼ PsxÞ of the two controllers for this case. The SMC without saturation of
control input force is stable even in this case because using a big control input force without saturation makes
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Fig. 4. Sliding surfaces for uncertain system with ys ¼ 0:2 applying the sliding mode controller and the saturated sliding mode controller

under x0 ¼ [0 0 0 6]T (- - - -, SMC w/o saturation; —, SSMC with saturation).
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Fig. 5. Displacement and control input force for nominal system applying the robust saturation controller under x0 ¼ [0 0 0 6]T (- - - -,

No control; —, RSC).
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the system’s response reach fast the sliding mode as shown in Fig. 4. On the other hand, the SSMC with
saturation of control input force is unstable in this case. Figs. 3 and 4 show that when parameter uncertainties
exist, robust stability of the SSMC may be not guaranteed because using control input force with saturation
makes time when system’s response reaches the sliding mode longer.

Next, robust stability of the RSC is checked. Let y1j jp0:9 and y2j jp0:9, which are somewhat wide,
for two parameter uncertainties of stiffnesses. The controller design parameter Ma ¼ 5e� 4 diagð1; 1; 1; 1Þ
is chosen. The computed value of dmax is about 6.84e�2. The control gain of designed RSC is
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dmaxBTP0 ¼ ½�1:6759e� 2 5:6598e� 3 � 3:9096 � 1:9120e� 4�: Figs. 5–7 show displacement of x1 and
control input force for nominal system, for the uncertain system with ys ¼ 0:2, and for the uncertain system
with ys ¼ 0:9, respectively, applying the RSC. Fig. 6 shows that the RSC guarantees robust stability for the
uncertain system with parameter uncertainties of ys ¼ 0:2. It is also ascertained that the RSC guarantees
robust stability within all the range of parameter uncertainties considered in controller design. It can be seen
from Fig. 7 that the RSC guarantees robust stability for the uncertain system with parameter uncertainties of
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Fig. 6. Displacement and control input force for uncertain system with ys ¼ 0:2 applying the robust saturation controller under

x0 ¼ [0 0 0 6]T (- - - -, No control; —, RSC).
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Fig. 7. Displacement and control input force for uncertain system with ys ¼ 0:9 applying the robust saturation controller under

x0 ¼ [0 0 0 6]T (- - - -, No control; —, RSC).
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ys ¼ 0:9. Simulation results show that the RSC is robustly stable with respect to parameter uncertainties over
the prescribed upper and lower bounds.

Numerical simulation results for a variety of initial conditions show that the stability margin of the SSMC
for uncertain system depends on initial condition of the system. Under initial conditions like x0 ¼ [0 0 0 7.4]T

and x0 ¼ [1.9 7 0 0]T, the SSMC makes the system unstable when ys is greater than 0.1. And under initial
conditions like x0 ¼ [0 0 0 6]T, x0 ¼ [2 6 0 0]T, and x0 ¼ [3 2 0 0]T, the SSMC is unstable when ys is greater than
0.2. Moreover, under initial conditions like x0 ¼ [2 5 0 0]T, x0 ¼ [2.9 6 0 0]T, and x0 ¼ [0 0 0 4.4]T, robust
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Fig. 8. Displacement and control input force for nominal system applying the saturated sliding mode controller under x0 ¼ [2 5 0 0]T

(- - - -, No control; —, SSMC).
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Fig. 9. Displacements and control input forces for uncertain system with ys ¼ 0:3 applying the sliding mode controller and the saturated

sliding mode controller under x0 ¼ [2 5 0 0]T (- - - -, SMC w/o saturation; —, SSMC with saturation).
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stability of the SSMC is not guaranteed when ys is greater than 0.3. As an additional simulation result, Figs. 8
and 9 show displacement of x1 and control input force for nominal system and for the uncertain system with
ys ¼ 0.3, respectively, applying the SSMC under x0 ¼ [2 5 0 0]T. But the RSC is always stable under all initial
conditions within the prescribed bounds of parameter uncertainties because they are considered in controller
design. For comparison, Figs. 10 and 11 show displacement of x1 and control input force for nominal system
and for the uncertain system with ys ¼ 0:3, respectively, applying the RSC under x0 ¼ [2 5 0 0]T.
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Fig. 10. Displacement and control input force for nominal system applying the robust saturation controller under x0 ¼ [2 5 0 0]T

(- - - -, No control; —, RSC).
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Fig. 11. Displacement and control input force for uncertain system with ys ¼ 0:3 applying the robust saturation controller under

x0 ¼ [2 5 0 0]T (- - - -, No control; —, RSC).
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5. Conclusions

In this paper, robust stabilities of the saturated sliding mode controller (SSMC) (7) and the robust
saturation controller (RSC) (16) are examined and compared through numerical simulations.

The RSC always guarantees robust stability with respect to parameter uncertainties over the prescribed
upper and lower bounds when saturation of control input occurs because bounds of parameter uncertainties
are considered analytically in the design of this controller.

On the other hand, the SSMC is designed using only nominal system and robust stability of the controller is
explained using the property of the robustness of the SMC with respect to parameter uncertainties. This
controller is always stable for nominal system when saturation of control input occurs. But bounds of
parameter uncertainties within which robust stability is guaranteed can be checked by only numerical
simulations. And system’s response applying the SSMC remains in the reaching mode for much time than
unsaturated system applying the SMC and bounds of parameter uncertainties within which robust stability is
guaranteed are narrower than unsaturated SMC system. Therefore, research on the SSMC in which bounds of
parameter uncertainties are considered analytically in the design of the controller to guarantee robust stability
of the controller over the complete response including both the reaching mode and the sliding mode is needed.
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