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Abstract

This paper describes a numerical approach, based in the frequency domain, for predicting the broadband self-noise

radiation due to an airfoil situated in a smooth mean flow. Noise is generated by the interaction between the boundary

layer turbulence on the airfoil surface and the airfoil trailing edge. Thin airfoil theory is used to deduce the unsteady blade

loading. In this paper, the important difference with much of the previous work dealing with trailing edge noise is that the

integration of the surface sources for computation of the radiated sound field is evaluated on the actual airfoil surface

rather than in the mean-chord plane. The assumption of flat plate geometry in the calculation of radiation is therefore

avoided. Moreover, the solution is valid in both near and far fields and reduces to the analytic solution due to Amiet when

the airfoil collapses to a flat plate with large span, and the measurement point is taken to the far field.

Predictions of the airfoil broadband self-noise radiation presented here are shown to be in reasonable agreement with the

predictions obtained using the Brooks approach, which are based on a comprehensive database of experimental data. Also

investigated in this paper is the effect on the broadband noise prediction of relaxing the ‘frozen-gust’ assumption, whereby

the turbulence at each frequency comprises a continuous spectrum of streamwise wavenumber components. It is shown

that making the frozen gust assumption yields an under-prediction of the noise spectrum by approximately 2dB compared

with that obtained when this assumption is relaxed, with the largest occurring at high frequencies.

This paper concludes with a comparison of the broadband noise directivity for a flat-plat, a NACA 0012 and a NACA

0024 airfoil at non-zero angle of attack. Differences of up to 20 dB are predicted, with the largest difference occurring at a

radiation angle of zero degrees relative to the airfoil mean centre line.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Airfoil self-noise is the noise produced by an airfoil situated in a smooth, non-turbulent in-flow. It is
generated by the interaction between the turbulence produced in the boundary layer on the blade surface and
the airfoil trailing edge. This paper presents a numerical approach, based in the frequency domain, for
predicting the self-noise radiation from airfoils of realistic geometry situated in a uniform mean flow.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In this paper we adopt the general approach proposed by Amiet [1], whereby the airfoil surface pressure
spectrum in the absence of the trailing edge is used as the input quantity for making self-noise predictions.
Once this surface pressure is known, it then remains to establish the relationship between the radiated
sound and the surface pressure induced by the turbulence upstream of the trailing edge. Chase [2] was one of
the first to employ this general philosophy for making trailing edge noise predictions. However, the Kutta
condition was not satisfied by this solution and mean flow effect were not included. Chandiramani [3]
subsequently obtained a solution for the acoustic field in which only the scattered pressure satisfies the
trailing edge Kutta condition. This solution was later used by Chase [4] in a model of airfoil trailing edge
noise. A more complete formulation of airfoil self-noise radiation, which includes mean-flow effects,
and which correctly satisfies the Kutta condition, was developed by Amiet [1]. Although his solution
is only valid for two-dimensional flat plate airfoil geometries, it is a closed-form result that clearly establishes
the relationship between the pressure jump across the flat plate due to the scattered pressure and the
pressure incident upon the trailing edge from one side of the airfoil. Amiet’s solution is restricted to normal-
incidence, harmonic plane wave pressure components. Howe [5] has extended this solution to include
harmonic plane wave pressure waves impinging at oblique angles to the trailing edge, but does not include
mean flow effects. Recently Roger and Moreau [17] have extended Amiet solution [1,18] to include the
leading edge correction for oblique gusts. In order to obtain an analytic solution for the far field radiated
pressure, Amiet made several assumptions: (1) the observation point is at the geometric far field; (2) the airfoil
is a flat plate; and (3) the airfoil span is large compared to acoustic wavelength. In this paper, the general
solution for the scattered surface pressure due to an oblique gust with mean flow effects, will be used,
which is obtained following the method proposed by Amiet in a subsequent paper [6]. This relationship,
together with an assumed form for the boundary layer pressure spectrum, is used in a numerical procedure
aimed at computing the aerodynamic source strengths from which the broadband self-noise radiation is then
predicted. The method presented in the paper circumvents the simplifying assumptions made by Amiet
and can take account of the effects of airfoil thickness and angle of attack, and is also valid in both the far field
and near field.
2. Coordinate systems

The analysis presented here of the radiated acoustic field from an airfoil is formulated in a Cartesian
coordinate system y ¼ (y1, y2, y3), which moves with constant velocity U, as shown in Fig. 1. It will be shown
to be useful to express the airfoil surface pressure in the curvilinear coordinate system, g ¼ (Zs, Zt), attached to
the airfoil. Here g are used as an auxiliary variable to specify the two-dimensional airfoil surface. Here,
Zs ¼ Zs(y) is the streamwise coordinate of the pressure or suction side, originating at the trailing edge, and
Zt ¼ Zt(y) is the spanwise coordinate originating at the mid-span along the suction-side or pressure-side
trailing edges. Correspondingly, we define ks and kt as the turbulence wavenumber in the Zs- and Zt-direction,
respectively. For a flat plate airfoil, (Zs, Zt) ¼ (y1, y2) and (ks, kt) ¼ (k1, k2).
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Fig. 1. Curvilinear coordinates g ¼ (Zs, Zt), spherical coordinate system (Rd, C, y), and rectangular coordinate systems x(x1, x2, x3), y(y1,

y2, y3).
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3. Green function solution

Our starting point for the prediction of airfoil broadband noise is the Green function solution of the forced
wave equation derived from the acoustic analogy. This is the fundamental equation governing the generation
of aerodynamic sound in the presence of solid boundaries, whose Green function solution takes the form (for
example, Goldstein [7], Eq. (4.10))

pðx; tÞ ¼

Z T

�T

ZZZ
nðtÞ

q2G

qyiqyj

T 0ijðy; tÞd
3y dtþ

Z T

�T

ZZ
SðtÞ

qG

qyi

f idSðyÞdtþ
Z T

�T

ZZ
SðtÞ

r0V
0
n

D0G

Dt
dSðyÞdt, (1)

where fi is the ith component of the force per unit area exerted by the boundaries on the fluid, T 0ij is Lighthill’s
stress tensor for isentropic flow in a region n(t), V 0n is the normal velocity of blade surface S(t), the superscript
primes on T 0ij and V 0n indicate the quantities are measured in the earth-fixed reference frame, t is the time
associated with the arrival of sound wave at the observation point x, t is the time associated with emission of
sound wave at the source point y and T is some large but finite interval of time. In Eq. (1), G ¼ G(x, t; y, t) is
the Green function solution for the wave equation relating to a medium with uniform mean flow. In an
unbounded medium, G is given by [8]

Gðx; t; y; tÞ ¼
1

4pR
d tþ

1

b2c0
ðRþMðy1 � x1ÞÞ � t

� �
, (2)

where b2 ¼ 1�M2, M ¼ U/c0 is the Mach number of the mean flow, d is the Dirac delta function, and R is the
mean-flow corrected distance,

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1 � x1Þ

2
þ b2ðy2 � x2Þ

2
þ b2ðy3 � x3Þ

2

q
. (3)

Note that the velocity U, which appears in the Green function G, is the airfoil velocity rather than local
incoming velocity U0 due to potential flow effects. For an infinite flat-plate airfoil, both U and U0 are
airfoil velocities with the subscript ‘0’ being used to indicate a quantity related to the source on the airfoil
surface, for example, the Mach number M0, b0, and the frequency o0 (note that source frequency and
observer frequency differ in the case of a rotor). In general, U0 is used to indicate the local mean flow velocity
at the interface of the boundary layer. In this case U0 equals U plus the local potential velocity due to the
effects of airfoil thickness and boundary layer displacement thickness. The effect of this local mean flow on the
airfoil surface pressure is taken into account through the position-dependent function of Eq. (16), and
eventually through the incident surface pressure spectrum Sqq of Eq. (10). For simplicity, it is assumed
in this paper that the airfoil does not disturb the background flow, which is assumed to be constant and
uniform, i.e., U0 ¼ U.

Neglecting viscous stresses, the ith component of force acting on the fluid per unit area by the airfoil is
given by

f iðy; tÞ ¼ �niðyÞptðy; tÞ, (4)

where ni(y) is the ith component of the unit inward normal n(y) on the airfoil surface S, and pt is
the total aerofoil surface pressure, which includes the effect of the trailing edge. Volume-quadrupole
sources generated by shear stresses in the boundary layer are assumed to be negligible compared
with the dipole sources on the airfoil surface, although the proposed method has no difficulty in
dealing with this quadrupole term in principle. For a rigid airfoil, the third term of the right-hand side
of Eq. (1) represents a steady pressure, which does not radiate sound. Thus, we are only concerned with
the second term of Eq. (1). Substituting the Green function of Eq. (2) into the second term of Eq. (1)
and performing Fourier transformation with respect to t, gives the radiated pressure at a single frequency of
the form,

p̄ðx;oÞ ¼
1

2p

Z T

�T

ZZ
S

½�niptðy; tÞ�
q
qyi

Ḡðx; y;oÞdSðyÞeiot dt, (5)
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where the overbars are used to denote complex pressure amplitudes. Here, o is the observed frequency related
to time t at the observation point x, and Ḡ is the Fourier transform of Eq. (2), given by

Ḡðx; y;oÞ ¼
1

4pR
eim RþMðy1�x1Þ½ �, (6)

where m ¼ k/b2, and k ¼ o/c0 is acoustic wavenumber related to the observer frequency o. We now consider
the computation of the total surface pressure distribution, pt, on the airfoil surface resulting from the
interaction of the hydrodynamic boundary layer pressure field with the trailing edge.
4. Spectra of ‘‘incident’’ boundary layer pressure

Following the philosophy of Chase [2] and Amiet [1] for making trailing edge noise predictions, it is
convenient to use as input data the surface boundary layer pressures measured well away from the trailing
edge. This distance, as demonstrated by Ffowcs Williams and Hall [9] and Brooks and Hodgson [10], is
approximately one hydrodynamic wavelength from the trailing edge. The scattered pressure ps may be
obtained from pi by imposing the Kutta condition, such that the incident and scattered pressures exactly
cancel at the trailing edge. Once the relationship between pi and ps is established, the problem of broadband
self-noise prediction is therefore completely determined from the spectral characteristics of the incident
pressure.

The unsteady wall pressure, pi(y, t), due to turbulence incident upon the trailing edge, can be written in
terms of its wavenumber–frequency components p̂iðk; o0Þ by the Fourier Transform relation

piðy; tÞ ¼ ~piðg; tÞ ¼
Z 1
�1

Z 1
�1

Z 1
�1

p̂iðk;o0Þe
iðk�g�o0tÞd2kdo0, (7)

where k ¼ (ks, kt), g ¼ (Zs, Zt) ¼ g(y), o0 is the angular frequency. Fourier components p̂iðk;o0Þ can be
determined from ~piðg; tÞ by the inverse relation,

p̂iðk;o0Þ ¼
1

ð2pÞ3

Z 1
�1

Z 1
�1

Z 1
�1

~piðg; tÞe
�iðk�g�o0tÞd2gdt. (8)

For broadband problems, it is useful to work with pressure wavenumber–frequency spectral densities. For
simplicity, we assume here that the turbulent pressure field is spatially homogeneous and stationary with
respect to time, i.e. the space-time correlations of the boundary layer pressure field are dependent only on the
separation distance and temporal interval. Under this assumption, the wall-pressure p̂iðk;o0Þ at different
frequencies and wavenumbers are uncorrelated and the frequency–wavenumber spectral density Sqq(k, o0) of
the boundary layer pressure is given by

E p̂n

i k;o0ð Þp̂i k0;o00
� �� �

¼ d k0 � kð Þd o00 � o0

� �
Sqq k;o0ð Þ, (9)

where the superscript ‘‘*’’ denotes complex conjugation, E[y] denotes the expected value.
The surface pressure boundary layer spectrum is dominated by pressure contributions in the convective

region [11] in which turbulent eddies convect at speeds slower than the speed of sound. In the absence of the
trailing edge, therefore, the boundary layer pressure is weakly radiating. Howe [11] has surveyed various
expressions for the frequency–wavenumber spectra of the turbulent boundary layer pressure on a flat plate.
Chase [12] has developed an empirical formula for turbulent pressure spectra with adjustable constants that
can be fixed by comparison with experimental data. A particularly simple form for the boundary layer
spectrum was proposed by Corcos [13] as the product of independent separable functions of frequency and
wavenumber of the form,

Sqqðk;o0Þ ¼ S0ðo0ÞS1ðksÞS2ðktÞ, (10)
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where S0 is the boundary layer frequency spectrum, and S1 and S2 are the wavenumber spectra in the
streamwise and transverse directions respectively, given by

S1ðksÞ ¼
l1

p
1

1þ l21ðo0=Uc � ksÞ
2

" #
; S2ðktÞ ¼

l2

p
1

1þ l22k2
t

" #
, (11,12)

where l1 and l2 are the respective boundary layer integral length-scales. If the convection speed Uc is assumed
to be constant, data obtained from experiments performed by Brooks and Hodgson [10] gives l1 ¼ Uc/(0.11o0)
and l2 ¼ Uc/(0.6o0). The separable form is the most convenient for use in airfoil noise predictions as it allows
the use of measured pressure spectra, and is the one adopted here. In this paper, we use the pressure frequency
spectrum S0(o0) presented in the book by Howe [11], based on data collated by Chase [12] for an infinite flat
plate. In non-dimensional form, it is given by

~S0ð ~o0Þ ¼
6:1409� 10�6 ~o2

0

ð ~o2
0 þ 0:0144Þ1:5

, (13)

where ~S0ð ~o0Þ ¼ S0ðo0ÞðU0=d
�
Þ=ð0:5r0U

2
0Þ

2, ~o0 ¼ o0d
�=U0 (Strouhal number with respect to d*), and d* is the

displacement thickness of the turbulent boundary layer, r0 is the density of the steady background flow. The
calculation of the displacement thickness d* as a function of chord length, angle of attack and flow speed were
made using the empirical formula based on measured data by Brooks et al. [14] on a NACA 0012 airfoil.

A substantial simplification of the boundary layer spectrum, and hence of the final expression for the
radiated noise spectrum, may be obtained by making the assumption that turbulence convects as a frozen
pattern at the convection velocity Uc. For frozen boundary layer turbulence, l1-N, which in Eq. (11) leads to
S1(ks)-d(ks�o0/Uc). In this limit the incident wall pressure spectrum of Eq. (10) may be written as [8]

ŜqqðkÞ ¼

Z 1
�1

Sqqðk;o0Þdo0 ¼ UcS0ðksUcÞS2ðktÞ. (14)

The characteristics of the boundary layer turbulence on an airfoil differ from that on a flat plate in three
important respects: (i) the boundary layer thickness grows along the streamwise direction; (ii) local incoming
velocity U0 is non-uniform due to potential flow effects; (iii) there is a pressure gradient in the streamwise
direction within the boundary layer. We assume here that the boundary layer thickness, the incoming velocity
and the pressure gradient are uniform over a small facet of the airfoil surface so that the pressure spectrum of
Eq. (10) remains locally valid. We further assume that an aerofoil with the same local inflow velocity U0(y),
and boundary layer thickness d*(y) develops the same pressure frequency–wavenumber spectrum as a flat plate
under the same conditions. The Corcos model of the pressure spectrum will therefore be extended to realistic
airfoil geometries by applying it locally to a small region on the airfoil surface, which is small compared with
an acoustic and hydrodynamic wavelength. From Eq. (7), a single frequency–wavenumber component of the
incident boundary layer surface pressure can be written as

piðy; tÞ ¼ p̄iðy;o0Þe
�io0t; p̄iðy;o0Þ ¼ p̂iðk;o0Þe

ik�g. (15a,15b)

As pointed out by Amiet [15], the use of Eq. (15) to represent the boundary layer pressure suggests that it
appears suddenly at the aerofoil leading edge, which is non-physical. A more physically realistic representation
of the incident pressure would be one in which it increased gradually from zero at the leading edge, to reach its
maximum value at the trailing edge, and which was identically zero further downstream. Accordingly, Amiet
[15] introduces an exponential decay function f p ¼ e�� ksZsj j, which multiplies the right-hand side of Eq. (15),
where e is an arbitrary decay factor chosen to give the desired behaviour. Here, we choose another function fp

in a manner that is fully consistent with the surface pressure spectral predictions made locally on the aerofoil
surface, which has the requisite behaviour of Amiet’s decay function, but does not require the selection of an
arbitrary constant. Here we define a position-dependent function in terms of pressure spectrum evaluated
locally at position y on the airfoil surface,

f pðy;k;o0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sqqðy; k;o0Þ

Sqqðy0; k;o0Þ

s
, (16)
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where y0 is a reference point chosen at the airfoil trailing edge. Note that fp has the required behaviour,
fp(yLE, k, o0) ¼ 0, for all k and o0, where yLE is a point at the leading edge. A single spectral component of the
incident surface pressure field of Eq. (15) can therefore be written as

piðy; tÞ ¼ f pðy;k;o0Þp̄iðy;o0Þe
�io0t. (17)

5. Unsteady airfoil surface pressure

The relationship between an incident harmonic component of pressure pi of the form given by Eq. (15) and
the pressure difference Dp̄s across a flat plate due to scattered pressure by the trailing edge of a two-
dimensional flat plate airfoil was derived by Amiet [6]. His solution satisfies the linear Helmholtz equation, the
Kutta condition at the trailing edge, and the no-flow condition on the blade surface. Note also that secondary
scattering by the leading edge is assumed to be negligible in this paper. According to Roger and Moreau [17],
the leading edge correction is only significant at low reduced frequency oc/c0o1, where c is the chord length.
Assuming a convection speed of Uc ¼ 0.65U0, at the peak of the hydrodynamic pressure spectrum the
condition oc/c0o1 implies a hydrodynamic wave length lh44.08M0c. If we assume a Mach number,
M0 ¼ 0.1, then lh40.408c. In this case the hydrodynamic wavelength lh is too long to be supported in the
turbulent boundary layer and is therefore physically unreasonable. Roger’s leading edge correction to the
trailing edge solution is shown to be of second order in frequency compared to the first order trailing edge
solution. Furthermore the trailing edge solution decays from trailing edge (see Fig. 3 in Roger’s paper and
Fig. 2 in this paper). The leading edge correction is therefore small compared to the principal trailing edge
term except in cases such as in underwater examples where the Mach number is small. In this paper, Roger’s
leading edge correction is therefore ignored. Following the approach first proposed by Amiet, his original two-
dimensional solution in Ref. [6] is extended here to allow for wavenumber components of boundary layer
pressure arriving at oblique angles to the trailing edge [8]. The result has been used to define a transfer function
Hs that relates the pressure jump Dp̄s to a single wavenumber component of pressure p̄i incident upon the
trailing edge,

Dp̄sðy;o0Þ ¼ Hsðy;k;o0Þp̄iðy;o0Þ, (18)

where Hs is given by

Hsðy;k;o0Þ ¼ erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðK þ m0M0 þ ksÞZs

p� 	
� 1, (19)
Fig. 2. Modulus of the transfer function Hs vs. dimensionless distance kc |y1| for various normalized spanwise wavenumber ktb0/k0,
ktb0=k0 ¼ 0, ktb0/k0 ¼ 1.0, —�— ktb0/k0 ¼ 2.0.
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and where erf(?) denotes the error function, K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m20 � ðkt=b0Þ

2
q

; m0 ¼ k0=b
2
0; k0 ¼ o0=c0 is the acoustic

wavenumber related to the source frequency o0, c0 is the speed of sound, and M0 ¼ Uc/c0 is the Mach number

related to the airfoil velocity, b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
. Eqs. (18) and (19) are consistent with the two-dimensional

solution formulated by Amiet [6] for kt ¼ 0 (with the sign of m0 and ks changed due to Amiet’s choice of time
convention, eiot), and reduces to the solution given by Howe [5] for M0 ¼ 0. Fig. 2 shows jHsj plotted against
dimensionless distance, kcjy1j, from the trailing edge for the normalized spanwise wavenumber, ktb0/k0 ¼ 0.0,
1.0, 2.0, where kc ¼ o0/Uc. Fig. 2 shows that jHsj decays rapidly with distance from the trailing edge. This
finding suggests that the equivalent sources for trailing edge noise are predominantly located close to the
trailing edge and generated by boundary layer wavenumber components arriving at angle close to normal
incidence to the trailing edge.

Eq. (18) relates to the pressure differential produced across the surface of a flat plate airfoil. For more
realistic aerofoil geometries, numerical methods such as the boundary element method may be used to
obtain more accurate solutions for Hs. However, the use of flat plate theory is anticipated to provide
a good approximation to the surface pressures generated by trailing edge interaction since the
aerodynamic sources are mostly confined to the trailing edge where the airfoil is thinnest and most
closely approximates to a flat plate. We further make the assumption of high-reduced frequency s1 ¼ kcb

(b is the airfoil semi-chord), where the hydrodynamic wavelength of turbulence is much smaller than
the chord so that the leading edge correction due to the backward scattered pressure impinging on the leading
edge can be neglected [16]. The wedge angle effect at airfoil trailing edge on the aerodynamic response function
Hs is also ignored. The airfoil response function in this case can therefore be treated as a flat plate with chord
equal to the arc length of the actual aerofoil. However, the effects of aerofoil geometry on sound radiation,
taking into account retarded time effects, are included in the formulation by integrating over the actual blade
surface.

Eqs. (18) and (19) refer to the pressure jump across the flat plate. Howe [5] has shown from a
low Mach number approximation to the trailing edge problem that the magnitudes of the scattered
pressure on each side of the flat plate airfoil are identical and equal to half the magnitude of the
pressure jump Dp̄s



 

, while the phase of the scattered pressures on the two sides differ by 1801. Taking
into account the position-dependent function fp(y, k, o) in the definition of the incident pressure pi

according to Eq. (17), the total pressure pt distributed over the surface of a real airfoil may therefore be
approximated by

ptðy; tÞ ¼
Z 1
�1

Z 1
�1

Z 1
�1

Hqðy; k;o0Þp̂iðk;o0Þe
iðk�g�o0tÞd2kdo0, (20)

where Hq is the transfer function between the surface pressure at any point on the airfoil surface g ¼ (Zs, Zt)
and a single wavenumber component of incident boundary layer pressure evaluated at the reference point y0
along the trailing edge, of the form,

Hqðy;k;o0Þ ¼
f pðy;k;o0Þ þ

1
2
Hsðy;k;o0Þ; y on the turbulence side;

�1
2
Hsðy; k;o0Þ; y not on the turbulence side:

(
(21)
6. Airfoil broadband self-noise prediction

The time-harmonic analysis of Eq. (5) is now generalized to the case of a turbulent boundary layer pressure
incident on the trailing edge from one side of the airfoil. Substituting Eq. (20) into Eq. (5) and carrying out the
integration with respect to t and o0, the expression for the radiated pressure becomes

p̄ðx;oÞ ¼
Z 1
�1

Z 1
�1

Hpðx;k;oÞp̂iðk;oÞd
2k, (22)
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where Hp is a radiation transfer function relating the radiated pressure at point x in the radiation field to each
wavenumber component k ¼ (ks, kt) of pressure on the airfoil surface, and takes the form

Hpðx; k;oÞ ¼ �
ZZ
S

Hqðy;k;oÞeik�gniðyÞ
q
qyi

Ḡðx; y;oÞdSðyÞ, (23)

where from Eq. (6),

q
qy1

Ḡðx; y;oÞ ¼ �
y1 � x1

R2
þ im

y1 � x1

R
þM

� 	� �
Ḡðx; y;oÞ (24)

and for i ¼ 2, 3,

q
qyi

Ḡðx; y;oÞ ¼ �
b2

R
þ ik

� �
yi � xi

R
Ḡðx; y;oÞ; ði ¼ 2; 3Þ. (25)

The power spectral density of the pressure at position x is given by

Sppðx;o0Þdðo0 � oÞ ¼ E p̄�ðx;o0Þp̄ðx;oÞ½ �. (26)

Substituting Eq. (22) into Eq. (26) and making use of Eq. (9) for the case of homogenous turbulence, the
pressure spectrum at any field point x may be written as

Sppðx;oÞ ¼
Z 1
�1

Z 1
�1

Hpðx;k;oÞ


 

2Sqqðk;oÞd

2k. (27)

For frozen boundary layer turbulence, S1(ks)-d(ks�o0/Uc) as l1-N[8], which in Eq. (27) gives

Sppðx;oÞ ¼
1

Uc

Z 1
�1

Hpðx;o=Uc; kt;oÞ


 

2Ŝqqðo=Uc; ktÞdkt. (28)

Since the effect of attack angle is incorporated into the formulation through the spectrum of incident
boundary layer pressure of Eq. (10) and the position-dependent function fp(y, k, o) of Eq. (16), Eqs. (27) and
(28) are valid, not only for flat plates with zero angle of attack, but also for an airfoil of arbitrary geometry
with non-zero attack angle providing that boundary layer separation does not occur and that the trailing edge
is sufficiently sharp on the scale of a hydrodynamic wavelength. Moreover, the solution is valid in both near
and far fields. It is shown in Ref. [8] to reduce to Amiet’s analytic solution [1] when the airfoil collapses to a flat
plate with large span and the measurement point is taken to the far field.

7. Numerical scheme for the evaluation of the transfer function Hp

A numerical scheme is now presented for performing the calculation of Hp for arbitrary airfoil geometries.
It is based on the observation that the hydrodynamic wavelength of the boundary layer turbulence is generally
smaller than the acoustic wavelength. The integration of Eq. (23) is then split into two parts. One is a radiation
term; the other is related to the hydrodynamic source term. The advantages of this separation are that it allows
the hydrodynamic term to be integrated analytically over a small element facet of airfoil surface thereby
improving considerably the efficiency of the computation.

In order to carry out the numerical calculation of Eq. (23) for arbitrary airfoil geometries, the airfoil surface
is discretized into finite triangular elements. Assuming that, at a single frequency, each element n(n ¼ 1, 2, 3,
y, Nef) is small compared with the acoustic wavelength and that the position-dependent function fp(y, k, o)
and niðyÞqḠ=qyi can be taken to be uniform within that element, Eq. (23) may be approximated by

Hpðx; k;oÞ ¼
XNef

n¼1

gnðx; yn;oÞhnðyn;k;oÞ, (29)

where Nef is the total number of elements. The radiation term gn in Eq. (23), is given by

gnðx; yn;oÞ ¼ Ni
nðynÞ

q
qyi

Ḡðx; yn;oÞ, (30)
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where Ni
n ¼ �ni and yn are the unit outward normal vector and the centre coordinates of the element n,

respectively. From Eqs. (23) and (29), the term hn is defined by

hnðyn;k;oÞ ¼
ZZ
Sn

Hqðy;k;oÞeik�g dSðyÞ. (31)

Eqs. (10), (13) and (16) indicate that the position-dependent function fp(y, k, o) appearing in the definition of
Hq of Eq. (21) mainly depends on the boundary layer thickness. The function fp(y, k, o) is slowly varying
compared to variations in the incident boundary layer surface pressure. When the dimensions of the element
Sn are sufficiently small compared to the airfoil chord, fp(y, k, o) can be taken out of the surface integration
and the integral of Eq. (31) can be performed analytically. For this purpose we substitute Eqs. (19) and (21)
into Eq. (31), and split the result into two parts:

hnðyn;k;o0Þ ¼

1
2

hð1Þn ðk;o0Þ þ f pðyn; k;o0Þ �
1
2

h i
hð2Þn ðkÞ; yn on turbulence side;

� 1
2 ½h
ð1Þ
n ðk;o0Þ � hð2Þn ðkÞ�; yn not on turbulence side:

8<
: (32)

where hn
(1) and hn

(2) are given by

hð1Þn ðk;o0Þ ¼

ZZ
Sn

erfð
ffiffiffiffiffiffiffi
aZs

p
Þeik�g d2g; hð2Þn ðkÞ ¼

ZZ
Sn

eik�g d2g, (33a,b)

and where a ¼ i(K+m0M+ks). The numerical scheme described above is now applied to the triangular
element Sn on the airfoil surface, expressed in curvilinear coordinates Z ¼ (Zs, Zt), as sketched in Fig. 3.

The apexes of the triangle are B(ZsB, ZtB), C(ZsC, ZtC), and D(ZsD, ZtD). The triangular element Sn is meshed
with one edge parallel to the Zs-axis, as shown in Fig. 3. The equation of any edge of the triangle, for example
the line CD, may be written as

ZCD
s ¼ pCDZCD

t þ qCD, (34)

where the constants pCD and qCD can be determined by the coordinates of the points C(ZsC, ZtC), and D(ZsD,
ZtD) on the line CD, using

pCD ¼ ðZsD � ZsCÞ=ðZtD � ZtCÞ; qCD ¼ �pCDZtC þ ZsC . (35a,b)

The line CB is also described by Eqs. (34) and (35) with the superscript CD replaced by CB, and the subscript
D replaced by B. With the above notation, the integration of Eq. (33a) can be performed analytically to give

hð1Þn ðk;o0Þ ¼ F ða; pCB; qCB; ZtD;k;o0Þ � F ða; pCB; qCB; ZtC ;k;o0Þ

� F ða; pCD; qCD; ZtD;k;o0Þ þ F ða; pCD; qCD; ZtC ;k;o0Þ. ð36Þ
o

Sn

D (�sD, �tD)B (�sB, �tB)

C (�sC, �tC)

�s

�t

Fig. 3. A triangle element Sn with apexes BCD.
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The function F, for ksa0, takes the following different forms depending on the values of p and kt:

F ða; p; q; Zt;k;o0Þ ¼

1

ipks

e�ik
0
tq Iða; kst; ZsÞ �

ffiffiffiffiffi
a

ka

r
Iðka; k

0
t; ZsÞ

� �
; pa0; kta0;

1

iks

e�iktZt Iða; ks; ZsÞ; p ¼ 0; kta0;

1

ipks

e�ik
0
tq Iða; ks; ZsÞ �

ffiffiffiffiffi
a

ka

r
I2ðka; ZsÞ

� �
; pa0; kt ¼ 0;

ZtIða; ks; ZsÞ; p ¼ 0; kt ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

(37)

where

Iða; ks; ZsÞ ¼

Z
erf

ffiffiffiffiffiffiffi
aZs

p� �
eiksZsdZs ¼

1

iks

erfð
ffiffiffiffiffiffiffi
aZs

p
ÞeiksZs �

ffiffiffiffiffi
a

ka

r
erfð

ffiffiffiffiffiffiffiffiffi
kaZs

p
Þ

� �
, (38)

I2ðka; ZsÞ ¼

Z
erf

ffiffiffiffiffiffiffiffiffi
kaZs

p� 	
dZs ¼ Zs �

1

2ka

� �
erf

ffiffiffiffiffiffiffiffiffi
kaZs

p� 	
þ

1ffiffiffiffiffiffiffiffi
pka

p
ffiffiffiffi
Zs

p
e�kaZs , (39)

and Zs ¼ pZt+q, ka ¼ a�iks, k0t ¼ kt/p and kst ¼ ks+k0t.
The integration of Eq. (33b) can be written in a similar form to Eq. (36),

hð2Þn ðkÞ ¼ F ðpCB; qCB; ZtD;kÞ � F ðpCB; qCB; ZtC ; kÞ
�
�F ðpCD; qCD; ZtD;kÞ þ F ðpCD; qCD; ZtC ;kÞ

�
, ð40Þ

where F is now given by

F ðp; q; Zt;kÞ ¼

�
1

ksðkspþ ktÞ
ei½ksðpZtþqÞþktZt�; pa0; ksa0; kta0;

�
1

kskt

ei½ksqþktZt�; p ¼ 0; ksa0; kta0;

�i
Zt

ks

eiksq; p ¼ 0; ksa0; kt ¼ 0:

8>>>>>>><
>>>>>>>:

(41)

Example calculations using this prediction scheme are presented below.

8. Numerical results

In this section, the frequency domain formulations of Eqs. (27) and (28) will be applied to predict the self-
noise radiated from a flat plate, and a NACA 0012 and NACA 0024 airfoil. The results are expressed as a
sound pressure level (Lp), defined as the spectral density of mean square pressure in a 1Hz bandwidth, in
decibels relative to pref ¼ 2� 10�5 Pa,

Lpðx; f Þ ¼ 10 log10
4pSppðx;oÞ

p2
ref

, (42)

where f ¼ o/2p is the frequency in Hertz, and the factor 4p is included to convert from a double sided
spectrum to a single sided (0oooN) spectrum, and from radian frequency to Hertz. The directivity of the
radiated sound field in decibels, defined here as

DðC; y; f Þ ¼ 10 log10 R2
d

4pSppðx;oÞ
p2
ref

� �
, (43)

where x ¼ (Rd sin y cosC,Rd cos y, Rd sin y sinC) is the observer position, p and where (Rd, C, y) is a spherical
coordinate system, as shown in Fig. 1. Here Rd is the observer distance from the origin, located at the mid-
span point at the trailing edge, C is the polar angle measured from the x1-axis in the mid-span plane, and y is
the azimuthal angle measured from the x2-axis.
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Fig. 4. Comparison of broadband self-noise prediction for a flat plate airfoil, decay factor e ¼ 0.3, Mach number M ¼ 0.3, Amiet

analytic solution, numerical method.
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The use of Eqs. (27) and (28) to compute the radiated pressure spectrum Spp assumes that the boundary
layer turbulence on the airfoil suction side and pressure side are statistically independent. The spectra of
radiated pressure due to the turbulence on each side are calculated separately and then added incoherently to
obtain the total pressure spectrum at any observer position. The contribution to the radiated pressure due to
the turbulence on each side of the airfoil is obtained by integrating the transfer functions of Eq. (23) over both
the suction side and the pressure side.
8.1. Comparison of numerical predictions with Amiet’s solution for a plate airfoil

The flat plate airfoil used for this prediction has a chord length of 2b ¼ 1.0m and a span of 2d ¼ 4.0m,
typical of a small aircraft wing. It moves in the �y1 direction with Mach number M ¼ 0.3. For the purpose of
comparison with the analytic solution due to Amiet [1], the span is chosen to comply with his assumption of
large span. The convective velocity coefficient of cu ¼ 0.8 is used. Fig. 4 shows a comparison between the
broadband self-noise spectrum predicted using Amiet’s solution [1] and the numerical solution for an observer
at the mid-span plane of x ¼ (0.0, 0.0, 150.0)m.

In the low frequency range, fo800Hz, the numerical prediction is typically 2 dB greater than that predicted
using the analytic solution. At higher frequencies, agreement is better than 0.5 dB but then becomes worse as
frequency is increased further. The discrepancy arises because Amiet makes the approximation that only
kt ¼ 0 pressure component contributes to the radiation in the mid-span plane whereas the numerical result
includes integration over all spanwise wavenumber kt.

To establish the reason why the numerical result is not exactly identical to Amiet’s solution we put
S2(kt) ¼ d(kt) in Eq. (14), consistent with Amiet’s solution in the large-span limit for mid-span observers, and
substitute it into Eq. (28) to give

Sppðx;oÞ ¼ Hpðx;o=Uc; 0;oÞ


 

2S0ðoÞ. (44)

Amiet’s analytic solution [18] can be rewritten in exactly the same form as Eq. (44)

Sppðx;oÞ ¼ HAmietðx;o=Uc; 0;oÞ


 

2S0ðoÞ. (45)
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Fig. 5. Modulus squared transfer function |Hp|
2 vs. reduced frequency s1 for the flat plate airfoil of 1.0� 4.0m, Rd ¼ 150.0m, e ¼ 0.3,

M ¼ 0.3, Amiet analytic solution, numerical method.

Fig. 6. Suction side mesh of the NACA 0012 airfoil for numerical calculation.
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where the transfer function HAmietj j2 may be expressed as

HAmietðx; k1; 0;oÞ


 

2 ¼ kbx3

2pR2
s

" #2
d2 Lðx; k1; 0;oÞ


 

2, (46)

where Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ b2ðx2

2 þ x2
3Þ

q
and Lðx; k1; k2;oÞ ¼

R 0
�2 Hqðy; k1; k2;oÞeik1bxeimbxðM�x1=RsÞ dx. Note that for a

single wave component with k2 ¼ 0, the surface pressure is coherent along the span so that the spanwise
correlation length ly ¼ d (for more discussion on Amiet’s solution see Ref. [8]). Comparing Eq. (44) with
Eq. (45), one may conclude that if |Hp|

2 of Eq. (23) is identical to |HAmiet|
2 of Eq. (46), the numerical result of

Eq. (44) and Amiet’s solution of Eq. (45) are the same. The variation of |H|2, defined in Eqs. (23) and (46),
with reduced frequency s1 ¼ kcb is plotted in Fig. 5. The observation point is taken at x ¼ (0.0, 0.0, 150.0)m.
The dash line is obtained using Amiet’s solution of Eq. (46) and the solid line obtained by the numerical
method given by Eqs. (23) and (29). Fig. 5 confirms that the numerical results are identical to the Amiet’s
solution when the conditions are made the same.

Figs. 5 suggests that Amiet’s solution is a reasonable approximation to the trailing edge noise due to flat
plate airfoils with span large compared to the acoustic wavelength for far field observers. The largest errors are
observed at high and low frequencies due to Amiet assumptions.
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Fig. 7. Comparison of broadband self-noise with Brooks empirical prediction, Brooks formulation, frozen turbulence, full

kt range, —— frozen turbulence, supersonic kt range, —�— non-frozen turbulence, supersonic kt range.
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8.2. Self-noise radiation from NACA airfoils

In this section, the theory presented above is used to predict the self-noise radiation from two NACA
airfoils. These are then compared with predictions obtained using the empirical prediction method due to
Brooks et al. [14]. The numerical method will first be applied to predict the self-noise radiation from one of the
NACA 0012 airfoils investigated by Brooks. This airfoil has 0.3048m chord, a span of 0.4752m, and which
moves in the �y1 direction with Mach number M ¼ 0.208 at an attack angle of a ¼ 41. A convective velocity
coefficient of cu ¼ 0.8 is used. Fig. 6 presents the suction-side mesh of the NACA 0012 airfoil used for
numerical calculation. Here we choose an element size le ¼ c0/(10f) ¼ 0.0115m, which is 10 times smaller than
the acoustic wavelength for a mesh that is valid up to f ¼ 3000Hz. As shown in Fig. 6, this criterion
corresponds to a mesh comprising 5952 triangle elements and 3038 nodes for the NACA 0012 airfoil used in
the Brooks experiment with the dimensions given above.

8.2.1. Comparison of airfoil self-noise prediction scheme with the brooks method

Fig. 7 shows a comparison between self-noise predictions obtained using the empirical prediction scheme
due to Brooks (solid curve) [14], and that predicted using the numerical scheme described above based on the
following three assumptions:
(i)
 Non-frozen boundary layer 0pkspN, supersonic wavenumber components 0pktpk0/b
2.
(ii)
 Frozen boundary layer ks ¼ o/Uc, supersonic and subsonic wavenumber components 0pktpN (upper
limit chosen to ensure convergence).
(iii)
 Frozen boundary layer ks ¼ o/Uc, supersonic wavenumber components 0pktpk0/b
2.
The Brook’s scheme is based on a regression analysis of the data obtained from an extensive experimental
database of self-noise radiation measurements from a NACA 0012 airfoil. The measurements were made over
a broad range of flow speeds, angles of attack and chord lengths. The prediction is made for the NACA 0012
airfoil described above, moving in the �y1 direction with Mach number M ¼ 0.208 at an attack angle of
a ¼ 41. The observation point is at x ¼ (0.0, 0.0, 1.22)m, for consistency with the Brooks experiment.

The numerical predictions are shown to be within 6 dB of the prediction obtained following Brooks et al.
Note, however, that the Brooks prediction scheme applies to 1/3 octave bands only and cannot capture the
details in the spectrum. Fig. 6 shows that the contributions from subsonic-kt components become increasingly
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Fig. 8. Polar directivity (in C-direction), D(C, p/2, o) �13.0 dB, of broadband noise for frozen incident turbulence, M ¼ 0.3, —— flat

plate, NACA 0012, NACA 0024.

Fig. 9. Polar directivity (in C-direction), D(C, p/2, o)�13.0 dB, of broadband noise for frozen incident turbulence, M ¼ 0.8, —— flat

plate, NACA 0012, NACA 0024.
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smaller as frequency increases. It also suggests that the frozen turbulence assumption gives a better
approximation at low frequency than at high frequency. The difference in the self-noise prediction between the
frozen and non-frozen gust assumptions is about 2 dB at high frequencies. Thus, the frozen-turbulence
assumption appears to be reasonably valid for making airfoil self-noise predictions.
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8.2.2. Broadband self-noise directivity and the effect of airfoil geometry

The broadband self-noise directivity and the effect of airfoil geometry on self-noise radiation are now investigated.
Figs. 8 and 9 present the polar directivities of broadband self-noise, D(C, p/2,o), evaluated in the mid-span plane, for
a flat plate, and a NACA 0012 and a NACA 0024 airfoil at Mach numbers of M ¼ 0.3 and M ¼ 0.8, respectively.
The calculation is based on Rd ¼ 10.0m, f ¼ 1042.8Hz, and a ¼ 41. The directivities for the NACA 0024 airfoil, the
NACA 0012 airfoil, and the flat plate are represented by the dark solid line, the dotted line and the solid line,
respectively. All airfoil geometries have the same chord of c ¼ 0.3048m and span of 2d ¼ 0.4752m.

The directivity patterns exhibit asymmetric behaviour due to the non-zero angle of attack assumed in these
examples. In contrast with the single wavenumber directivity functions, the broadband directivity functions
vary very slowly with polar angle. Fig. 8 indicates that airfoil geometry does not alter appreciably the
directivity pattern at low Mach number. The greatest difference is observed to occur at radiation angles close
to the airfoil chord direction, C ¼ 0, p. This effect is most pronounced at high Mach number, where at
M ¼ 0.8 differences of up to 20 dB are observed.

The reason why the thickness effect is significant at high Mach number in the airfoil chord direction is due
to unit normal vector component n1 6¼0. For a flat plate airfoil, the contribution due to n1 q=qy1

� �
Ḡ in Eqs. (23)

and (24) is zero since n1 ¼ 0. A significant contribution only arises due to the term n3ðq=qy3ÞḠ in Eqs. (23) and
(25). If Rb1 for far field observers, Eqs. (24) and (25) can be approximated by

q
qy1

Ḡ � i
1

b2
�

x1

R
þM

� 	
kḠ /

1

b2
�

x1

R
þM

� 	
, (47)

q
qy3

Ḡ � �i
x3

R
kḠ / �

x3

R
. (48)

Considering a NACA 0024 airfoil, we have n1E0.248 and n3E0.969 near the trailing edge. When the airfoil
move at M ¼ 0.8 as for the case of Fig. 9, one has n1ðq=qy1ÞḠbn3ðq=qy3ÞḠ in the airfoil chord direction (with
negative x1). Therefore, the contribution due to airfoil thickness cannot be ignored at high Mach number in
the airfoil chord direction. The thickness to acoustic wavelength ratio for the NACA 0024 airfoil is 0.24 in
both cases of Figs. 8 and 9. The thickness to hydrodynamic wavelength ratio of boundary layer turbulence is
Fig. 10. Azimuthal directivity, D(p/2, y, o) �15 dB, of broadband self-noise (in y-direction) for frozen incident turbulence, s1 ¼ 12.13,

—— C ¼ 901, flat plate, C ¼ 901, NACA 0012, C ¼ 901, NACA 0024.
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1.0 in the case of Fig. 8, while in the case of Fig. 9 this thickness ratio is only 0.37 (convective velocity
coefficient of cu ¼ 0.8 assumed). However, the difference in noise radiation due to thickness effect in the case
of Fig. 8 is weaker than in the case of Fig. 9. This indicates that the thickness effect mainly depends on the
term n1ðq=qy1ÞḠ in Eq. (23), which Amiet’s theory has ignored through the assumption of a flat plate airfoil,
rather than the term due to hydrodynamic source Hq(y, k, o)eik�g.

Consider now the directivity pattern at an arbitrary position away from mid-span plane (yap=2). Fig. 10
presents the self-noise directivity D(p/2, y, o) in the azimuthal plane C ¼ p/2 for a flat plate, and a NACA
0012 and a NACA 0024 airfoil at the Mach number of M ¼ 0.8. Fig. 10 suggests that the effect of airfoil
thickness is significant at high Mach number. The largest differences are observed in the direction near the
spanwise direction (yE0, p). The computation parameters used to calculate Fig. 10 are identical to those in
Fig. 9.

9. Conclusion

A numerical approach, based in the frequency domain, has been described for making airfoil self-noise
predictions. It is valid for arbitrary airfoil geometries at small, but non-zero, angles of attack. Moreover, the
solution is valid in both near and far fields and reduces to Amiet’s analytic solution when the airfoil collapses
to a flat plate with large span and the measurement point is taken to the far field. Numerical predictions of
broadband self-noise have been shown to be within 6 dB of the prediction obtained using the Brooks empirical
prediction scheme. Broadband self-noise predictions are made for both frozen and non-frozen boundary layer
turbulence. The assumption of non-frozen turbulence is shown to predict higher noise radiation than when the
frozen turbulence assumption is made. The effect is most pronounced at high frequency although the
difference is generally less than 3 dB, suggesting that the frozen-gust assumption is reasonably valid for
broadband noise predictions. Broadband noise directivity has been predicted for a flat-plat, a NACA 0012 and
a NACA 0024 airfoil. It is shown that Mach number has an important influence, not only on the magnitude of
the broadband self-noise radiation, but also the directivity.
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