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Abstract

A perturbation-incremental (PI) method is presented for the computation, continuation and bifurcation analysis of limit

cycle oscillations (LCO) of a two-degree-of-freedom aeroelastic system containing a freeplay structural nonlinearity. Both

stable and unstable LCOs can be calculated to any desired degree of accuracy and their stabilities are determined by the

Floquet theory. Thus, the present method is capable of detecting complex aeroelastic responses such as periodic motion

with harmonics, period-doubling (PD), saddle-node bifurcation, Neimark–Sacker bifurcation and the coexistence of limit

cycles. Emanating branch from a PD bifurcation can be constructed. This method can also be applied to any piecewise

linear systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the dynamic behaviour of aircraft structures is crucial in flutter analysis since it provides useful
information in the design of aircraft wings and control surfaces. Concentrated structural nonlinearities can
have significant effects on the aeroelastic responses of aerosurfaces even for small vibrational amplitudes. One
particular concentrated structural nonlinearity that has received much attention is the bilinear or freeplay
spring, which is a representative of worn or loose control surface hinges.

A freeplay nonlinearity in pitch was first studied by Woolston et al. [1] and Shen [2]. They showed that limit
cycle oscillation (LCO) might occur well below the linear flutter boundary. McIntosh et al. [3] performed
experimental work with a wind tunnel model having two degrees of freedom (dof). They found that the
behaviour of the airfoil was extremely dependent on the initial pitch deflection. Yang and Zhao [4] considered
LCO of a two-dimensional airfoil in incompressible flow using the Theodorsen function. Two stable LCOs of
different amplitudes were detected for some airspeeds. Hauenstein et al. [5] investigated theoretically and
experimentally a rigid wing flexibly mounted at its root with freeplay nonlinearities in both pitch and plunge
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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degrees of freedom. They obtained excellent agreement between theoretical and experimental results, and
concluded that chaotic motion did not occur with a single root nonlinearity. However, Price et al. [6,7] pointed
out that such conclusion was not true. Tang and Dowell [8] analysed the flutter instability and forced response
of a helicopter blade wind-tunnel model with no rotation. For a narrow range of airspeeds, the system
exhibited both LCO and chaotic behaviour. Kim and Lee [9] investigated the dynamics of a flexible airfoil with
a freeplay nonlinearity. They observed that LCO and chaotic motions were highly influenced by the
pitch–plunge frequency ratio.

An aeroelastic model with freeplay nonlinearity has been investigated using analytical methods based on
describing function and harmonic balance methods. By using the incremental harmonic balance (IHB)
method, Lau and Zhang [10] studied nonlinear vibrations of piecewise-linear systems in which the freeplay
nonlinearity is a special case. The main drawback of using harmonic balance methods to investigate freeplay
nonlinearity is that the second derivative of an approximate solution obtained by such methods is continuous
while that of the exact solution is discontinuous at the switching points where changes in linear subdomains
occur. Such inconsistency between the exact and approximate solutions may lead to serious error in the
prediction and analysis. To overcome this drawback, Liu et al. [11] introduced the point transformation (PT)
method which could track the system behaviour to the exact point where the change in linear subdomains
occurred. Moreover, complex nonlinear aeroelastic behaviour such as periodic motion with harmonics,
periodic doubling, chaotic motion and the coexistence of stable limit cycles can be detected. However, The PT
method is not capable of finding unstable periodic solutions and thus is not suitable for performing parametric
continuation.

Recently, Chan et al. [12] presented a perturbation-incremental (PI) method for the study of limit cycles and
bifurcation analysis of strongly nonlinear autonomous oscillators with arbitrary large bifurcation values. The
PI method is a semi-analytical and numerical process which incorporates salient features from both the
perturbation method and the incremental approach. This method was later extended to investigate coupled
nonlinear oscillators [13,14] and delay differential equations [15].

In this paper, we extend the PI method to the continuation and bifurcation analysis of an aeroelastic model
with freeplay nonlinearity. In fact, the method can also be applied to any piecewise-linear system. Both stable
and unstable periodic solutions can be calculated and their stabilities are determined by using the Floquet
theory. The paper is organized as follows. A brief description of an aeroelastic model with freeplay
nonlinearity is given in Section 2. The PI method is described in Section 3. Section 4 deals with the
computation of stability of a LCO. Bifurcation analysis is considered in Section 5, followed by conclusions in
Section 6 and two appendices.

2. The mathematical model

Fig. 1 shows a sketch of a 2 dof airfoil motion in plunge and pitch. The plunge deflection is
denoted by h, positive in the downward direction, and a is the pitch angle about the elastic axis, positive nose
up. The elastic axis is located at a distance ahb from the mid-chord, while the mass centre is located at a
distance xab from the elastic axis, where b is the airfoil semi-chord. Both distances are positive when measured
towards the trailing edge of the airfoil. The aeroelastic equations of motion for linear springs have been
derived by Fung [16]. For nonlinear restoring forces, the coupled bending-torsion equations for the airfoil can
be written as follows:

m €hþ S €aþ Ch
_hþ ḠðhÞ ¼ pðtÞ, (1)

S €hþ Ia €aþ Ca _aþ M̄ðaÞ ¼ rðtÞ, (2)

where the symbols m, S, Ch, Ia and Ca are the airfoil mass, airfoil static moment about the elastic axis,
damping coefficient in plunge, wing mass moment of inertia about elastic axis, and torsion damping
coefficient, respectively. ḠðhÞ and M̄ðaÞ are the nonlinear plunge and pitch stiffness terms, and pðtÞ and rðtÞ are
the forces and moments acting on the airfoil, respectively. By a suitable transformation as described in Refs.
[11,17,18], the two-dimensional airfoil motion without any external forces can be rewritten into a system of
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Fig. 1. Schematic of airfoil with 2 dof motion.
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eight first-order ordinary differential equations

x01 ¼ x2,

x02 ¼ a21x1 þ a22x2 þ a23x3 þ a24x4 þ a25x5 þ a26x6 þ a27x7

þ a28x8 þ j d0
ō

U�

� �2

Gðx3Þ � c0
1

U�

� �2

Mðx1Þ

 !
,

x03 ¼ x4,

x04 ¼ a41x1 þ a42x2 þ a43x3 þ a44x4 þ a45x5 þ a46x6 þ a47x7

þ a48x8 þ j c1
1

U�

� �2

Mðx1Þ � d1
ō

U�

� �2

Gðx3Þ

 !
,

x05 ¼ x1 � �1x5,

x06 ¼ x1 � �2x6,

x07 ¼ x3 � �1x7,

x08 ¼ x3 � �2x8, ð3Þ

where the 0 denotes differentiation with respect to the non-dimensional time t defined as t ¼ Ut=b with U

being the free-stream velocity. The coefficients j, a21; . . . ; a28, a41; . . . ; a48, c0, c1, d0, d1, �1 and �2 are related to
the system parameters and their expressions are given in Appendix A. The structural nonlinearities are
represented by the nonlinear functions Gðx3Þ and Mðx1Þ. In this paper, we investigate system (3) for a freeplay
spring in pitch and a linear spring in plunge, where Mðx1Þ is given by

Mðx1Þ ¼

M0 þ x1 � af ; x1oaf ;

M0 þMf ðx1 � af Þ; af px1paf þ d;

M0 þ x1 � af þ dðMf � 1Þ; x14af þ d;

8><
>: (4)

where M0, Mf , af and d are constants, and Gðx3Þ ¼ x3. A sketch of the freeplay model is given
in Fig. 2.
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Fig. 2. General sketch of a freeplay stiffness.
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According to the three linear branches of the bilinear function for a freeplay model, the phase space X 2 R8

can be divided into three regions, Riði ¼ 1; 2; 3Þ, where each corresponds to a linear system:

X 0 ¼ AX þ F1 in R1 ¼ fX 2 R8jx1oaf g, (5a)

X 0 ¼ BX þ F 2 in R2 ¼ fX 2 R8jaf ox1oaf þ dg, (5b)

X 0 ¼ AX þ F3 in R3 ¼ fX 2 R8jx14af þ dg. (5c)

The elements of A, B and F iði ¼ 1; 2; 3Þ are determined by the system parameters of the coupled aeroelastic
equations, and they are given by

A ¼
A1 A2

A3 A4

 !
; B ¼

B1 A2

A3 A4

 !
(6)

and F1 ¼ ðM0 � af ÞF , F 2 ¼ ðM0 �Mf af ÞF , F3 ¼ ðM0 � af þ d0ðMf � 1ÞÞF where Aiði ¼ 1; 2; 3; 4Þ, B1 and
the vector F are defined in Appendix B with b ¼ 1.

Stable LCOs were obtained by using the PT method as described in Ref. [11]. In the subsequent sections, we
apply the PI method to obtain both stable and unstable LCO and perform parametric continuation.

3. The PI method

In our previous studies of dynamical systems [12–15], the PI method was applied to smooth nonlinear
systems. In the present paper, we extend the PI method to piecewise-linear systems.

Consider the freeplay model shown in Fig. 2. Let the Z–Y plane represent the eight-dimensional phase
space, where Z ¼ fx1g and Y ¼ fx2;x3;x4; x5; x6; x7; x8g. Let Z1 and Z2 denote the switching subspaces Z ¼ af

and Z ¼ af þ d, respectively, where the linear systems change. The Z–Y phase space is now divided by Z1 and
Z2 into three regions R1, R2 and R3 as shown in Fig. 3(a). The system response can then be predicted by
following a general phase path. Assuming that a motion initially starts at a point X 1 in one of the switching
subspaces (say Z1) as shown in Fig. 3(a), the trajectory passes through R2, hits Z2 at X 2 and enters into R3.
Then, it returns to R2 through X 3 in Z2 and hits Z1 at X 4. It enters into R1 and hits Z1 again at X 5. The points
X i; ði ¼ 1; 2; 3; 4; 5Þ are called switching points as they are located in the switching subspaces. Let t1 be the
travelling time of the trajectory from X 1 to X 2 in region R2. Similarly, let t2, t3 and t4 be the travelling times of
the trajectory in regionsR3, R2 and R1, respectively. We note that the points X 1 and X 5 define a Poincaré map
in Z1. The trajectory becomes a LCO if X 1 coincides with X 5 (see Fig. 3(b)). Since the system of equations in
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Fig. 3. General trajectory (a) and a period-one trajectory (b) of system (10) with a freeplay stiffness in pitch.
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each region is strictly linear, the exact solutions in R1, R2 and R3 can be expressed analytically. Therefore, for a
given point X 1 in Z1, X 5 can be determined analytically.

The main idea of the PI method is to convert a LCO to an equilibrium point of a Poincaré map in a
switching subspace and consider a system of variational equations of the map for parametric continuation.
Same as in Refs. [7,11], the non-dimensional velocity U� is used as the bifurcation parameter.

The procedure of the PI method is divided into two steps. The first step is to obtain an initial solution for the
continuation of the bifurcation parameter in the second step.
3.1. Perturbation step

For a smooth dynamical system, small LCO can be obtained through Hopf bifurcation. However, Hopf
bifurcation theorems cannot be applied to a piecewise-linear system due to its low differentiability.
Nevertheless, a piecewise-linear system can undergo bifurcations which have similarities (but also
discrepancies) with the Hopf bifurcation [20]. Limit cycle bifurcation from centre in symmetric piecewise-
linear systems was investigated in Ref. [21]. A system of the form _X ¼ F ðX Þ; X 2 Rn is symmetric if it satisfies
the condition F ð�X Þ ¼ �F ðX Þ. In fact, system (3) with structural nonlinearities defined in Eq. (4) is a
symmetric piecewise-linear system. A LCO is symmetric if X ðtþ T=2Þ ¼ �X ðtÞ where T is the period. An
initial symmetric LCO may be obtained in the following way.

Assume that a pair of eigenvalues of the system in region R2 become pure imaginary (say l ¼ �io;o40) at
a specific value of the bifurcation parameter U� and u

�1
� iu
�2

are the corresponding eigenvectors. A periodic

solution in the linear subspace spanned by u
�1

and u
�2

can be expressed as

r
�
ðtÞ ¼ p0eiotðu

�1
þ iu
�2
Þ þ p̄0e�iotðu

�1
� iu
�2
Þ þ u

�0

¼ ðp1 cosot� p2 sinotÞu
�1
� ðp2 cosotþ p1 sinotÞu

�2
þ u
�0
, ð7Þ

where p1 ¼ ðp
0 þ p̄0Þ=2 2 R, p2 ¼ ðp

0 � p̄0Þ=2i 2 R and u
�0
2 R8. Since r

�
ðtÞ lies in region R2, it follows from Eq.

(5b) that

u
�0
¼

�B�1F2 if detðBÞa0;

0 if detðBÞ ¼ 0 and F2 ¼ 0
�
:

8<
: (8)
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The system parameters considered in Refs. [7,11] and Section 5 have the condition that F 2 ¼ 0
�
. The case that

detðBÞ ¼ 0 and F2 is nonzero will be discussed in Ref. [19]. If the linear subspace spanned by u
�1

and u
�2

intersects both the switching subspaces Z1 and Z2, then there exists a unique periodic solution touching both
Z1 and Z2 with maximal amplitude. Assume that, at t ¼ 0, r

�
ð0Þ is the switching point at Z1 (see Fig. 4). Then,

r
�
ðT=2Þ is the switching point at Z2 where T is the period. It follows from Eq. (7) that

af ¼ p1u11 � p2u21 þ u01;

af þ d ¼ �p1u11 þ p2u21 þ u01;

(

¼)

p1u11 � p2u21 ¼ �d=2;

u01 ¼ af þ d=2;

(
ð9a;bÞ

where ui1 ði ¼ 0; 1; 2Þ is the first component of u
�i
. Since the tangents at the switching points are orthogonal to

the Z-axis, the first component of _r
�
ð0Þ is zero. Therefore, we have, from Eq. (7),

p1u21 þ p2u11 ¼ 0. (10)

From Eqs. (9a,b) and (10), we obtain

p1 ¼
�du11

2ðu2
11 þ u2

21Þ
and p2 ¼

du21

2ðu2
11 þ u2

21Þ
. (11)

The periodic solution with maximal amplitude can be uniquely determined from Eqs. (8), (9a,b) and (11). As
the bifurcation parameter is varied from the critical value, a symmetric LCO traversing all three regions
Riði ¼ 1; 2; 3Þ may suddenly appear.

This step gives the location of the switching points and travelling time of an initial LCO, which will be used
in the incremental step.

3.2. Parameter incremental method—a Newton– Raphson procedure

To investigate the continuation in U�, we note that, for a general LCO traversing all three regions, the
number of switching points is not restricted to four. For example, the LCO in Fig. 5(a) contains six switching
points. The complete loop covering the entire region also contains a smaller loop, covering the two regions R1

and R2. A complete loop is classified as a period-m LCO if it covers the entire region m times. Although the
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Fig. 5. The LCOs contain (a) six and (b) eight switching points.
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LCO of Fig. 5(a) is of period-one, the presence of a smaller loop indicates that it has a harmonic component.
In the subsequent sections, p-n-h denotes a period-n LCO with harmonics. In Fig. 5(b), the LCO contains
eight switching points and is of period-two.

Assume that a LCO contains n switching points X ið1pipnÞ. Let r
�i
ðtÞð1pipnÞ be the segment of LCO

between the switching points X i and X iþ1 with X nþ1 ¼ X 1 and lie in the region Rpi
ðpi 2 f1; 2; 3gÞ. Let lhjðj ¼

1; 2; . . . ; 8Þ and v
�hj

be the eigenvalues and eigenvectors, respectively, of the 8� 8 matrices A if h ¼ 1; 3 and B if

h ¼ 2. Then, r
�i
ðtÞ can be expressed analytically as

r
�i
ðtÞ ¼ v

�pi0
þ
X8
j¼1

kije
lpi j t v
�pij

; 1pipn, (12)

where kij 2 R and v
�pij
2 R8. To simplify the calculation, the time t in r

�i
ðtÞ is defined in such a way that it

counts only the time travelled in region Rpi
. Since r

�i
ðtÞ is the trajectory from X i to X iþ1ðX nþ1 ¼ X 1Þ with

travelling time ti, we have

X i ¼ r
�i
ð0Þ ¼ r

�i�1
ðti�1Þ; 1pipn, (13)

with subscript ‘0’ replaced by ‘n’ (i.e. r
�0
ðt0Þ ¼ r

�n
ðtnÞ). This replacement of subscript ‘0’ by ‘n’ will also be used

in subsequent formulae derived from Eq. (13). Substituting Eq. (12) into Eq. (5), we obtain

v
�pi0
¼ �C�1pi

Fpi
; 1pipn, (14)

where

Cpi
¼

A if pi ¼ 1; 3;

B if pi ¼ 2:

(

Furthermore, substituting Eqs. (12) and (14) into Eq. (13), we obtain

X i ¼
X8
j¼1

kij v
�pij
� C�1pi

Fpi
¼
X8
j¼1

ki�1je
lpi�1 j ti�1 v

�pi�1j
� C�1pi�1

F pi�1
; 1pipn. (15)
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The period of a LCO is given by T ¼
Pn

i¼1ti. Let X i be expressed as

X i ¼

ai

s
�

�

i

0
@

1
A where ai ¼

af if X i 2 Z1;

af þ d if X i 2 Z2;

(
and s

�

�

i
2 R7. (16)

If the system parameters such as aij, U� in Eq. (3) are given, the matrices A, B are determined and, thus, the

eigenvalues lij , eigenvectors v
�ij

in Eq. (15) can be found. For a general LCO satisfying Eq. (15), assume that

the switching subspaces in which X is lie are all given, i.e. ais are given for 1pipn. The LCO can be
determined by solving the 8� 2� n ¼ 16n equations in Eq. (15) with the unknowns kij ð8n of them), s

�

�

i
ð7nÞ

and ti ðnÞ where 1pipn and 1pjp8. If one of the switching points (say X 1) is given, the complete loop
including all the other switching points and its period can be determined from Eq. (15). To consider the
continuation in U�, a small increment of U� to U� þ DU� in Eq. (15) corresponds to small changes of the
following quantities

kij ! kij þ Dkij ; s
�

�

i
! s
�

�

i
þ Ds

�

�

i
and ti ! ti þ Dti.

To obtain a neighbouring solution, Eq. (15) are expanded in Taylor’s series about an initial solution and
linearized incremental equations are derived by ignoring all the nonlinear terms of small increments as below

ai

s
�

�

i
þ Ds

�

�

i

0
@

1
A ¼ X8

j¼1

kij v
�pij
� C�1pi

Fpi
þ
X8
j¼1

Dkij v
�pij

¼
X8
j¼1

ki�1je
lpi�1 j ti�1 v

�pi�1j
� C�1pi�1

F pi�1
þ
X8
j¼1

Dki�1je
lpi�1 j ti�1 v

�pi�1j

þ Dti�1

X8
j¼1

ki�1je
lpi�1 j ti�1lpi�1j v

�pi�1j
; 1pipn. ð17Þ

Initially, a stable period-1 LCO with n ¼ 4 can be easily located from the perturbation step. As the
bifurcation parameter U� varies, the LCO may undergo various bifurcations such as symmetry breaking and
period doubling, and n may become very large.

To solve Eq. (12) in an efficient way, the following matrix dimension reduction technique is used for large n.
This technique is a part of the PI method for non-smooth systems.
3.3. Matrix dimension reduction

Let vi0l and vijl (1pipn and 1pj; lp8) be the lth component of C�1i F i and v
�ij

, respectively. Define vectors

Ki, DKi, Lilm, L
ðlÞ
ilm and matrices Mim, M

ðlÞ
im as

Ki ¼ ðki1 ki2 � � � ki8Þ
T; DKi ¼ ðDki1 Dki2 � � �Dki8Þ

T,

Lilm ¼ ðe
li1tm vi1l e

li2tm vi2l � � � e
li8tm vi8lÞ,

L
ðlÞ
ilm ¼ ðli1e

li1tm vi1lli2e
li2tm vi2l � � � li8e

li8tm vi8lÞ,

Mim ¼ ðe
li1tm v
�i1

eli2tm v
�i2
� � � eli8tm v

�i8
Þ

and

M
ðlÞ
im ¼ ðli1e

li1tm v
�i1

li2e
li2tm v
�i2
� � � li8e

li8tm v
�i8
Þ.
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With the above definitions, it follows from Eq. (17) that

ai ¼ vi�101 þ
X8
j¼1

ki�1je
lpi�1 j ti�1vpi�1j1 þ

X8
j¼1

Dki�1je
lpi�1 j ti�1vpi�1j1

þ Dti�1

X8
j¼1

ki�1je
lpi�1 j ti�1vpi�1j1

¼)Dti�1 ¼ ðai � vi�101 � Lpi�11i�1Ki�1 � Lpi�11i�1DKi�1Þ=L
ðlÞ
pi�11i�1Ki�1 ð18Þ

and

Mpi�1i�1DKi�1 �Mpi0DKi þM
ðlÞ
pi�1i�1Ki�1Dti�1 ¼ Ri, (19)

where Ri ¼
P8

j¼1kij v
�pij
� C�1pi

Fpi
�
P8

j¼1ki�1je
lpi�1 j ti�1 v

�pi�1j
þ C�1pi�1

Fpi�1
. Substituting Eq. (18) into Eq. (19), we

obtain

Si�1DKi�1 ¼Mpi0DKi þ Ti (20a)

¼)DKi�1 ¼ S�1i�1Mpi0S�1i Mpiþ10 � � �S
�1
n�1Mpn0DKn

þ
Xn

j¼i

S�1i�1Mpi0S
�1
i Mpiþ10 � � �S

�1
j�1Tj, ð20bÞ

where

Si�1 ¼Mpi�1i�1 �M
ðlÞ
pi�1i�1Ki�1Lpi�11i�1=L

ðlÞ
pi�11i�1Ki�1

and

Ti ¼ Ri þ
M
ðlÞ
pi�1i�1Ki�1

L
ðlÞ
pi�11i�1Ki�1

ðvi�101 þ Lpi�11i�1Ki�1 � aiÞ.

For i ¼ 1 in Eq. (20a), DKn ¼ S�1n ðMp10DK1 þ T1Þ. Substituting the above equation into Eq. (20b) and let

i ¼ 2, we obtain

DK1 ¼ ðI8 � S�11 Mp20S
�1
2 Mp30 � � �S

�1
n�1Mpn0S

�1
n Mp10Þ

�1

�
Xn

j¼1

S�11 Mp20S�12 Mp30 � � �S
�1
j�1Tj, ð21Þ

where I8 is the 8� 8 identity matrix and S0 ¼ Sn.
Once DK1 is found from Eq. (21), the other unknowns DKi, Dsi and Dti can be obtained from Eqs. (20b),

(18) and (17), respectively. Therefore, solving the system of 16n equations in Eq. (17) involves only the
computation of 8� 8 matrices. The values of kij , s

�

�

i
and ti are updated by adding the original values and the

corresponding incremental values. The iteration process continues until the residue terms are less than a
desired degree of accuracy. The entire incremental process proceeds by adding the DU� increment to the
converged value of U� using the previous solution as the initial approximation until a new converged solution
is obtained.

4. Stability of LCO

Let Zqi
ðqi 2 f1; 2gÞ be the switching subspace in which X i lies. In the present incremental method, a LCO is

considered as an equilibrium point of a Poincaré map on Zp1 . For a general LCO with n switching points
X i ð1pipnÞ, a Poincaré map P1 on Zp1 can be defined by

X 0 ¼ P1ðX Þ, (22)
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where X 0 2 Zq1 is obtained from the solution of motion (12) with initial point X and X 1 is an equilibrium point
of P1. We note that a1 in X 1 ¼ ða1 s

�

�

1
Þ
T remains unchanged when the bifurcation parameter U� varies. Let S

be the seven-dimensional subspace of Zp1 defined as

S ¼ s
�1
2 S jX ¼

a1
s
�1

0
@

1
A 2 Zq1

8<
:

9=
;.

To simplify the computation, we defined the reduced Poincaré map on S from Eq. (22) as

s
�

0

1
¼ Pðs

�1
Þ, (23)

where X ¼ ða1 s
�1
Þ
T, X 0 ¼ ða1 s

�

0

1
Þ
T and s

�1
in X 1 ¼ ða1 s

�

�

1
Þ is an equilibrium point of P. The stability of a LCO

is determined by the eigenvalues of the first derivative of the reduced Poincaré map P evaluated at s
�

�

1
.

Bifurcations occur when the linearized map is degenerate, i.e. at least one eigenvalue has unit modulus [22,23].
The first derivative DP is given by DP ¼ qP=qs

�1
which can be computed directly by using implicit

differentiation. For a general LCO with n switching points, it follows from the chain rule that

DP ¼
qP
qs
�n

qs
�n

qs
�n�1

� � �

qs
�2

qs
�1

. (24)

To compute qs
�iþ1

=qs
�i

for 1pipn and noting that qs
�nþ1

=qs
�n
¼ qP=qs

�n
, we partially differentiate both sides

of X i ¼ r
�i
ð0Þ from Eq. (13) with respect to sil where sil is the lth entry of s

�i
and obtain

qX i

qsil

¼ e
�lþ1
¼
X8
j¼1

qkpij

qsil

v
�pij
¼Mpi0

qKpi

qsil

¼)
qKpi

qsil

¼M�1
pi0

e
�lþ1

where 1plp7 and e
�lþ1

is the 8� 1 unit vector with one at the ðl þ 1Þth entry and zero elsewhere. Partially

differentiating both sides of X iþ1 ¼ r
�i
ðtiÞ from Eq. (13) with respect to sil , we further obtain

0 ¼
X8
j¼1

qkpij

qsil

vpij1e
lpi j ti þ kpijvpij1lpije

lpi j ti
qti

qsil

� �

¼ Lpi1i

qKpi

qsil

þ L
ðlÞ
pi1iKpi

qti

qsil

¼)
qti

qsil

¼

�Lpi1iM
�1
pi0

e
�lþ1

L
ðlÞ
pi1iKpi

and

qsiþ1m

qsil

¼
X8
j¼1

qkpij

qsil

vpijmþ1e
lpi j ti þ kpijvpijmþ1lpije

lpijti
qti

qsil

� �

¼ Lpimþ1i

qKpi

qsil

þ L
ðlÞ
pimþ1iKpi

qti

qsil

¼)
qsiþ1m

qsil

¼ Lpimþ1i �
L
ðlÞ
pimþ1iKpi

Lpi1i

L
ðlÞ
pi1iKpi

 !
M�1

pi0
e
�lþ1

ð25Þ
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where 1pmp7. The stability of a LCO can be determined by evaluating the eigenvalues of DP from Eqs. (24)
and (25). If all the eigenvalues lie inside the unit circle C, the equilibrium point s

�

�

1
is stable. As the bifurcation

parameter is varied, eigenvalues may pass through C, at which point a bifurcation occurs. If an eigenvalue
crosses C at þ1, a symmetry-breaking or saddle-node bifurcation may occur. It is a period-doubling (PD)
bifurcation if an eigenvalue crosses C at �1. Other than �1, the bifurcation is called Neimark– Sacker

bifurcation.
5. Results and discussions

To compare with the previous results in Refs. [7,11], the system parameters under consideration are chosen
as

m ¼ 100; ah ¼ �1=2; xa ¼ 1=4; zx ¼ za ¼ 0; ra ¼ 0:5 and ō ¼ 0:2.

The nonlinear restoring force Mðx1Þ is given by Eq. (4) with

M0 ¼ 0; Mf ¼ 0; d ¼ 0:5� and af ¼ 0:25�,

and the plunge is linear with Gðx3Þ ¼ x3. The linear flutter speed U�L ¼ 6:2851 is determined by solving the
aeroelastic system for M0 ¼ d ¼ af ¼ 0. For U�4U�L, some of the eigenvalues in regions R1; R2 and R3 have
positive real parts. Thus, the solution is divergent. As U� decreases below U�L, the real parts of all eigenvalues
of the system in R1 and R3 are negative, but some eigenvalues in R2 may have positive real parts. Hence, for
U�oU�L, the aeroelastic system admits various nonlinear behaviours.

To obtain an initial guess from the perturbation step, we observe that, for U� slightly less that U�L ¼ 6:2851,
a pair of complex eigenvalues of the system (matrix B) in R2 have positive real part. These two eigenvalues
become pure imaginary at U�1 ’ 0:1691U�L where l ¼ �oi ¼ �0:1651i and the corresponding eigenvectors

u
�1
þ iu
�2

up to a scalar are given by u
�1
¼ ð�0:1250 0:0001 0:1245 0:0048 � 0:1971 � 0:3206 0:0292 0:2776ÞT

and u
�2
¼ ð�0:0006 � 0:0206 � 0:0291 0:0206 0:7028 0:1746 � 0:7462 � 0:2499ÞT. It follows from Eq. (11)

that p1 ¼ 2:0000 and p2 ¼ 0:0096. We further observe that, in Eq. (5b), F 2 ¼ 0 and matrix B has a zero
eigenvalue, i.e. detðBÞ ¼ 0. From Eqs. (8) and (9a,b), u

�0
is simply the eigenvector of B with zero eigenvalue

such that u01 ¼ af þ d=2 ¼ 0:5. It is, therefore, given by u
�0
¼ ð0:5 0 � 0:2825 0 10:9890 1:6667 �

6:2096 � 0:9418ÞT. The travelling time between the two switching point is T=2 ¼ p=o ¼ 19:0284. With this
initial solution, Eq. (24) is employed to construct the continuation curves in U�.

For the incremental step, we choose the size of the increment DU� to be 0:01. We observe that an unstable
symmetric LCO is born at U�1. The continuation curve of the symmetric LCO is given in Fig. 6. Initially, one
eigenvalue of the first derivative DP is outside the unit circle. As U� decreases to U�2 ¼ 0:1310U�L, a saddle-
node bifurcation occurs where an eigenvalue leaves the unit circle at þ1. As U� increases again and maxðaÞ
increases, the LCO encounters a Neimark–Sacker (Secondary Hopf) bifurcation at U�3 ¼ 0:1353U�L (label 3)
where a pair of eigenvalues enter the unit circle at points other than �1. The LCO is stable until a subcritical
symmetry-breaking bifurcation occurs at U�4 ¼ 0:2194U�L (label 4) where an eigenvalue leaves the unit circle at
þ1. At this value, the stable symmetric LCO merges with two other unstable asymmetric LCOs and becomes
unstable. A LCO is asymmetric if it is not symmetric. As U� increases further, another subcritical symmetry-
breaking bifurcation occurs at U�5 ¼ 0:6880U�L (label 5) and the LCO becomes stable again. The amplitude
continues to grow without a bound as U� tends to U�L. The initial switching point X 1, period and stability of
the stable symmetric LCO at U� ¼ 0:7U�L are given in Table 1. A phase portrait of this LCO is shown in Fig. 7
and is compared to the result obtained by using the fourth-order Runge–Kutta method. They are in good
agreement.

Next, we consider the emanating curve arisen from one of the asymmetric LCOs born at U�4 as depicted in
Fig. 8. On the emanating curve, four PD bifurcations are found at U�6 ¼ 0:2132U�L (label 6), U�7 ¼ 0:21216U�L
(label 7), U�9 ¼ 0:2511U�L (label 9) and U�10 ¼ 0:5280U�L (label 10); one Neimark–Sacker bifurcation at U�8 ¼

0:1968U�L (label 8); two saddle-node bifurcations at U�11 ¼ 0:1950U�L and U�12 ¼ 0:7575U�L. We note that the
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Fig. 6. Continuation curve of symmetric LCO; �, Neimark–Sacker bifurcation; ’, symmetry-breaking bifurcation.

Table 1

The initial switching point, period and stability of symmetric LCO at U� ¼ 0:7U�L

Type of motion: p-1 (symmetric) Period: 72:0471
Initial switching point: (0:25 0:0462 � 5:5757 0:1435 4:4438 0:2507 � 124:6945 � 19:8591)
Floquet multipliers: 0.7494, 0.1231, 0:0443� 0:0183i, 0.0377, 0, 0
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Fig. 7. Symmetric LCO at U� ¼ 0:7U�L: —–, Runge–Kutta method; �, perturbation-incremental method.
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period-1 LCO is stable in the ranges (U�8, U�9), (U
�
10, U�12) and all of these LCOs contain harmonics. A phase

portrait of the stable asymmetric LCO at U� ¼ 0:7U�L, which coexists with that of Fig. 7, is shown in Fig. 9.
The initial switching point, period and stability of this LCO are given in Table 2.

The bifurcation results in Figs. 6 and 8 give insight into the numerical results obtained in Refs. [7,11]. The
bifurcation diagrams in Fig. 11 of Ref. [7] and Fig. 6 of Ref. [11] are obtained from trajectories with a fixed
initial point when U� varies. It was pointed out in Ref. [11] that, in Fig. 6, there is a small reduction in
amplitude for pitch when the bifurcation parameter is increased to cross U� ¼ 0:732U�L and the solution
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Table 2

The initial switching point, period and stability of one of the asymmetric LCO at U� ¼ 0:7U�L

Type of motion: p-1-h (asymmetric) Period: 81.9851

Initial switching point: (0.25 0.0356 �2.8777 0.1719 3.9468 0.5756 �103.5019 �11.5272)

Floquet multipliers: �0:1944� 0:1286i, 0.0495, 0.0240, 0.0353, 0, 0
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Fig. 8. (a) Continuation curve of one of the asymmetric LCO. (b) Enlarged diagram near U� ¼ 0:2U�L: �, Neimark–Sacker bifurcation; m,

period-doubling bifurcation; ’, symmetry-breaking bifurcation.
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Fig. 9. One of the asymmetric LCOs at U� ¼ 0:7U�L: —–, Runge–Kutta method; �, perturbation-incremental method.
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becomes a simple period-1 LCO. From Figs. 6 and 8 above, the reason for the reduction is that the trajectory
jumps from one of the coexisting asymmetric LCO to the symmetric LCO. Furthermore, the discontinuity of
the bifurcation curve in Fig. 6 of Ref. [11] for the range 0:53U�LpU�p0:732U�L is due to the jump of the
trajectories between the two coexisting asymmetric LCOs.
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The emanating branches from the PD bifurcations of Fig. 8 at U�6 (label 6) and U�9 (label 9) are shown in
Figs. 10(a) and (b), respectively. On the emanating branch ðB1Þ from U�6, two more PD bifurcations are found
at U�11 ¼ 0:2132U�L (label 11) and U�12 ¼ 0:21217U�L (label 12). Emanating branches of further PD bifurcations
are shown in Fig. 11 where branch Bn (n ¼ 1; 2; 3) contains period-2n LCOs. The emanating branches suggest
a sequence of PD bifurcations leading to chaos. However, this phenomenon is not observed in Fig. 6 of Ref.
[11] as the LCOs on these branches are all unstable. On the emanating branch (B1) from U�9 (see Fig. 10(b)),
three saddle-node bifurcations (U�13 ¼ 0:2484U�L, U�16 ¼ 0:5548U�L, U�17 ¼ 0:4879U�L) and two PD bifurcations
(U�14 ¼ 0:2489U�L (label 14), U�15 ¼ 0:5546U�L (label 15)) are found. The period-2 LCOs on the curve segments
(U�13, U�14), (U

�
17, U�10) and (U�15, U�16) are stable. Emanating branches of further PD bifurcations are shown in

Figs. 12(a)–(c) where branch Bn ðn ¼ 1; 2; 3Þ contains period-2n LCOs. In Fig. 12(a), branches B2 and B3 are
visually indistinguishable. In Figs. 12(b) and (c), two sequences of stable PD bifurcations leading to chaos are
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Fig. 11. Emanating branches of PD bifurcation arisen from U�6: m, period-doubling bifurcation.
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Fig. 12. Emanating branches of PD bifurcations arisen from U�9: m, period-doubling bifurcation.
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observed. Since the bifurcation values between consecutive PD bifurcations are very small, it is expected that
full chaos will be developed soon after the occurrence of PD bifurcations at around U� ¼ 0:25U�L and 0:55U�L.
The former case was reported in Ref. [11]. A phase portrait of the stable period-4-h LCO at U� ¼ 0:25U�L
(label 16) on branch B2 of Fig. 12(b) is shown in Fig. 13. The initial switching point, period and stability of
this LCO are given in Table 3.

In Fig. 7 of Ref. [11], period-2-h LCOs are found between 0:325U�LpU�p0:466U�L by the PT method.
However, these LCOs are not contained in any of the continuation curves we constructed previously. To
construct the continuation curve relating to these LCOs, we first obtain the LCO at, say U� ¼ 0:4U�L by using
the Runge–Kutta method. The phase portrait and information of this LCO are given in Fig. 14 and Table 4,
respectively. With this p-2-h LCO as the initial solution, we apply the incremental step and obtain the
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Fig. 13. Period-4-h LCO at U� ¼ 0:25U�L on branch B2 of Fig. 12(b): —–, Runge–Kutta method; �, perturbation-incremental method.

Table 3

The initial switching point, period and stability of the period-4-h LCO at U� ¼ 0:25U�L on branch B2 of Fig. 12(b)

Type of motion: p-4-h Period: 171.3142

Initial switching point: (0.25 0.0616 �0.9719 �0.0437 9.1392 0.8084 �10.6221 �2.6389)

Floquet multipliers: �0:2016� 0:6601i, 0.0004, 0.0004, 0.0002, 0, 0
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Fig. 14. Period-2-h LCO at U� ¼ 0:4U�L: —–, Runge–Kutta method; �, perturbation-incremental method.

Table 4

The initial switching point, period and stability of the period-2-h LCO at U� ¼ 0:4U�L

Type of motion: p-2-h Period: 120.3980

Initial switching point: (0.25 0.0451 �2.2714 0.0319 8.2265 0.5330 �36.8109 �7.6077)

Floquet multipliers: �0.3429, 0.0889, �0.0175, 0.0042, 0.0047, 0, 0
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continuation curve C1 as depicted in Fig. 15. It is interesting to note that this curve forms a closed loop. From
Fig. 7 of Ref. [11], it seems that, as U� increases, the p-2-h LCO passes through the chaotic region and
becomes period-1 at U� ¼ 0:53U�L where a large drop with a factor of two in the period occurs. However, from
Fig. 15, the p-2-h LCO in fact disappears at U� ¼ 0:4652U�L due to a saddle-node bifurcation. Therefore, the
results obtained from the PI method give us a clearer and more accurate picture about the global bifurcations
of the freeplay model as this method is able to capture the unstable solutions while the PT method is not
capable of doing so.

6. Conclusion

A perturbation-incremental (PI) method has been developed to investigate the dynamic response of a self-
excited two-degree of freedom aeroelastic system with structural nonlinearity represented by a freeplay
stiffness. The PI method overcomes the main disadvantage of the harmonic balance (HB) method in that the
first derivative of an approximate LCO obtained by the present method is piecewise continuous which agrees
qualitatively with the exact solution while that obtained by the HB method is differentiable, thus providing an
accurate prediction of the switching points where the changes in linear subdomains occur. The present method
is also able to compute unstable LCOs and gives a full picture of the global bifurcation.

In comparing with the PT method, the advantage of the PI method is that it is capable of capturing the
unstable LCOs and is able to perform continuation while the PT method is not. However, the PI method
cannot include the initial condition in the analysis while the PT method does show the effect of the initial
condition.

The continuation curves in Figs. 6, 8, 10, 12 and 15 obtained by the PI method provide insight into the
previous bifurcation results found in Refs. [7,11]. For instance, in Fig. 6 of Ref. [11], a sudden reduction of
pitch amplitude at U� ¼ 0:732U�L is due to a change of the trajectory from one of the coexisting asymmetric
LCOs to the symmetric LCO and the discontinuity of the bifurcation curve in the range
0:53U�LpU�p0:732U�L is a result of the switching of trajectories between the two coexisting asymmetric
LCOs.

In the incremental step, a matrix dimension reduction technique is presented to reduce a system of 16n

equations with the same number of unknowns to the computation of iterative matrices with dimension 8� 8.
Although this technique reduces greatly the computational time, it works as long as U� is used as the
bifurcation parameter since the eigenvalues and eigenvectors of matrices A and B in Eq. (6) can be determined
before the iterations. However, in the vicinity of a saddle-node bifurcation where U� can no longer be used as
the bifurcation parameter, U� and thus the eigenvalues, eigenvectors of matrices A, B become unknowns
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whose values have to be constantly updated in each iterative process. In that case, the dimension of the
iterative matrices will be much larger than 8� 8 although the dimension technique can still be applied.

Neimark–Sacker (Secondary Hopf) bifurcation is detected in Figs. 6 and 8. The continuation of such
bifurcation may also be made possible by the PI method. We recall that a LCO can be considered as an
equilibrium point of a Poincaré map in a switching subspace. Then, a quasi-periodic solution can be regarded
as an invariant curve in the switching subspace. Previous techniques developed in Refs. [12–15] for the
computation of limit cycles can be employed to compute invariant curves as they have similar features. This
will be pursued in future research.

From the illustrative examples presented in this paper, it is clearly demonstrated that analytic predictions
from the PI method are in excellent agreement with those resulting from the PT method and a numerical time-
integration scheme. Although the investigation is concentrated on an aeroelastic system with a structural
freeplay nonlinearity in the pitch degree of freedom, the analysis can readily be extended to include
nonlinearities in both degree of freedom and to hysteresis models.
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Appendix A. Definitions of coefficients

a21 ¼ jð�d5c0 þ c5d0Þ; a41 ¼ jðd5c1 � c5d1Þ,

a22 ¼ jð�d3c0 þ c3d0Þ; a42 ¼ jðd3c1 � c3d1Þ,

a23 ¼ jð�d4c0 þ c4d0Þ; a43 ¼ jðd4c1 � c4d1Þ,

a24 ¼ jð�d2c0 þ c2d0Þ; a44 ¼ jðd2c1 � c2d1Þ,

a25 ¼ jð�d6c0 þ c6d0Þ; a45 ¼ jðd6c1 � c6d1Þ,

a26 ¼ jð�d7c0 þ c7d0Þ; a46 ¼ jðd7c1 � c7d1Þ,

a27 ¼ jð�d8c0 þ c8d0Þ; a47 ¼ jðd8c1 � c8d1Þ,

a28 ¼ jð�d9c0 þ c9d0Þ; a48 ¼ jðd9c1 � c9d1Þ,

where j, ci ði ¼ 0; 1; 2; . . . ; 9Þ and di ði ¼ 0; 1; 2; . . . ; 9Þ are defined as

j ¼
1

c0d1 � c1d0
,

c0 ¼ 1þ
1

m
; c1 ¼ xa �

ah

m
,

c2 ¼
2

m
ð1� c1 � c2Þ; c3 ¼

1

m
ð1þ ð1� 2ahÞð1� c1 � c2ÞÞ,

c4 ¼
2

m
ð�1c1 þ �2c2Þ; c5 ¼

2

m
1� c1 � c2 þ

1

2
� ah

� �
ð�1c1 þ �2c2Þ

� �
,

c6 ¼
2

m
�1c1 1� �1

1

2
� ah

� �� �
; c7 ¼

2

m
�2c2 1� �2

1

2
� ah

� �� �
,

c8 ¼ �
2

m
�21c1; c9 ¼ �

2

m
�22c2,

d0 ¼
xa

r2a
�

ah

mr2a
; d1 ¼ 1þ

1þ 8a2
h

8mr2a
,
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d2 ¼ �
1þ 2ah

mr2a
ð1� c1 � c2Þ,

d3 ¼
1� 2ah

2mr2a
�
ð1þ 2ahÞð1� 2ahÞð1� c1 � c2Þ

2mr2a
,

d4 ¼ �
1þ 2ah

mr2a
ð�1c1 þ �2c2Þ,

d5 ¼ �
1þ 2ah

mr2a
ð1� c1 � c2Þ �

ð1þ 2ahÞð1� 2ahÞðc1�1 � c2�2Þ

2mr2a
,

d6 ¼ �
ð1þ 2ahÞc1�1

mr2a
1� �1

1

2
� ah

� �� �
,

d7 ¼ �
ð1þ 2ahÞc2�2

mr2a
1� �2

1

2
� ah

� �� �
,

d8 ¼
ð1þ 2ahÞc1�

2
1

mr2a
; d9 ¼

ð1þ 2ahÞc2�
2
2

mr2a
,

c1 ¼ 0:165; c2 ¼ 0:335; �1 ¼ 0:0455; �2 ¼ 0:3.
Appendix B. Definitions of matrices and vectors

A1 ¼

0 1 0 0

a21 � jc0
1

U�

� �2

a22 a23 þ jd0b
ō

U�

� �2

a24

0 0 0 1

a41 þ jc1
1

U�

� �2

a42 a43 � jd1b
ō

U�

� �2

a44

0
BBBBBBBB@

1
CCCCCCCCA
,

A2 ¼

0 0 0 0

a25 a26 a27 a28

0 0 0 0

a45 a46 a47 a48

0
BBB@

1
CCCA; A3 ¼

1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

0
BBB@

1
CCCA; A4 ¼

��1 0 0 0

0 ��2 0 0

0 0 ��1 0

0 0 0 ��2

0
BBB@

1
CCCA,

B1 ¼

0 1 0 0

a21 � jc0Mf

1

U�

� �2

a22 a23 þ jd0b
ō

U�

� �2

a24

0 0 0 1

a41 þ jc1Mf

1

U�

� �2

a42 a43 � jd1b
ō

U�

� �2

a44

0
BBBBBBBB@

1
CCCCCCCCA
;F ¼

0

�jc0
1

U�

� �2

0

jc1
1

U�

� �2

0

0

0

0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

.
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