
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 299 (2007) 621–632

www.elsevier.com/locate/jsvi
Bifurcation and chaos response of a cracked rotor
with random disturbance

Xiaolei Lenga,�, Guang Mengb, Tao Zhangc, Tong Fangd

aInstitute of Vibration Engineering Research, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, PR China
bThe State Key Lab of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240, PR China

cThe Third Institute, China Aerospace Science and Industry Corp., Beijing 100074, PR China
dDepartment of Mechanics, Northwest Ploytechnical University, Xi’an 710072, PR China

Received 12 November 2004; received in revised form 25 April 2006; accepted 10 July 2006

Available online 9 October 2006
Abstract

The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white

noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the

rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the

random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one,

and such affect is smaller as the undisturbed response is a periodic one.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of a cracked rotor is of great importance to rotor crack detection. Up till now, many
characteristics of a cracked rotor have been revealed, for example, unstable speed range near rotating speed
o ¼ 2oc/N, where oc is the first pin–pin critical and N ¼ 1, 2, 3, 4 [1]; large influence of crack position on
system’s dynamic response [2]; and variation of response amplitude and phase angle with crack [3]. But all of
these conclusions were based on the linear crack model, and weight dominance was assumed in almost all the
analyses of horizontal cracked rotor and the influence of whirl speed on the closing and opening of crack was
omitted. Meng and Gasch [4] analyzed the nonlinear influence of whirl speed. The angle between the crack
center line and the line connecting the bearing and shaft center was used for determining the closing and
opening of the crack, so the crack model is nonlinear and includes the cases with and without weight
dominance, synchronous and non-synchronous responses. This nonlinear crack model is used in this paper,
and the system’s equations of motion are nonlinear ones with time-varying coefficients.

Random disturbance is often encountered in some rotor machines, such as the electric generators service in
seismic zone, and the power-generating machine of an oceangoing ship. Thus, there is a need for analyzing the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

De external damping ratio
k0 stiffness of uncracked shaft
DK stiffness change ratio
m mass of rotor
U dimensionless unbalance parameter
X, Y dimensionless deflection
b the angle between crack and unbalance
x, Z body fixed rotating coordinates, x is the

crack direction

T dimensionless time ( ¼ ot)
o rotating speed
oc pin–pin critical speed of uncracked rotor
ocr pin–pin critical speed of cracked rotor
or whirl speed (non-synchronous rotating

speed relative to synchronous one)
Oc critical speed ration (ocr/oc)
O rotating speed ration (o/oc)
j0 initial phase of unbalance
g(t) a standard white noise process
s intensity of random disturbance
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response problem of a rotor system subject to random disturbances. Zhao and Lin [9] used direct integration
scheme in the analysis of the rotor bearing systems subjected to random earthquake excitation. But in their
research, the rotor model is assumed to be a linear one, and the crack’s influence was not taken into account. In
this paper, the rotor system mentioned above with a white noise process as its random disturbance is investigated
numerically. And our particular focus is on the affect of the random disturbance on bifurcation and chaos
character of the system, which will likely be utilized in the future fault diagnosing of rotating machinery.
2. Mathematical model

For the simple Jeffecott rotor with a transverse crack is subject to a random disturbance, taking whirl speed
or into account, supposing the cross stiffness change ratio caused by rotor crack to be zero (Fig. 1), and using
the nonlinear crack model derived by Meng and Gasch [4], the non-dimensional equations of motion can be
written as follows:
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where F ¼ tþ bþ j0, C ¼ F� arctanðY=X Þ, f ðCÞ ¼ 1
2
þ ð2=pÞ cos C� ð2=3pÞ cos 3Cþ ð2=5pÞ cos 5C.

Suppose that sg(t) in Eq. (1) is the random disturbance of the rotor system, with g(t) as a standard white
noise process, and constant s40 as the intensity of the random disturbance.

Eq. (1) is a nonlinear one with time varying coefficients, disturbed with a white noise process. In this paper,
we take O and DK as varying parameters, and use a four-step Runge-Kutta method to integrate Eq. (1). To
illustrate the numerical result, those tools, such as orbit diagram, Poincare map and bifurcation diagram are
used.

Monte Carlo method can be used in numerical analysis of dynamics response of nonlinear structure subject
to random excitations. In its approach, a random process can be simulated as a series of cosine function with
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Fig. 1. Schematic diagram of a nonlinear cracked rotor.
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weighted amplitudes and random phase angles. This approach was presented by Shinozuka in 1970s firstly
[7,8]. With a few simple modifications, some similar approaches can be used in the numerical analysis of (a)
wind-induced ocean wave elevation, (b) spatial random variation of material properties, (c) random surface
roughness of highways and airport runways. In this paper, we suppose that g(t) is a standard white noise
process, which can be simulated as

gðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
S � o0

N

r XN

k¼1

cos k
o0

N
tþ yk

h i
. (2)

Here, N is a large integral number, o0 is the truncation frequency in the simulation of g(t), yk

(k ¼ 1, 2,y,N) are mutually independent random variables distributed between 0 and 2p, and s ¼ 1.0
presents spectral density of a standard white noise process, g(t). If yk take a series of deterministic values,
namely ~yk, where ~yk 2 ½0; 2p�, the corresponding ~gðtÞ obtained from Eq. (2) will be a sample process of the
white noise process g(t). The process simulated in this method will be an ergodic one as N-N, and the
simulated spectral density converges as 1=

ffiffiffiffiffi
N
p

in the mean square sense to the target spectral density [7,8]. In
the following simulation, N and o0 are taken as 500 and 25, respectively.
3. Results and discussion

As the rotor crack will decrease the rotor stiffness, the pin–pin critical speed of cracked rotor is smaller than
that of the uncracked rotor. Therefore, the critical speed ratio Oco1 for cracked rotor, and Oc ¼ 1 for
uncracked system. Most of the response of the rotor system without random disturbance is omitted here to
economize the paper, while some related results are presented in Appendix A.

Fig. 2 shows the influence of DK on the response of the rotor system subject to a white noise process, when
b ¼ 0, u ¼ 0.1 and O is near to 2/3Oc (O ¼ 0.6). Here bifurcation diagrams corresponding to a gradual
increase of stiffness change ratio DK of the system response are shown in Fig. 2(a) (for the intensity of the
random disturbance s ¼ 0.001) and Fig. 2(b) (for s ¼ 0.01), respectively; Fig. 2(c) and (d) are orbit diagrams
of the system response corresponding to DK ¼ 0.35, respectively, where (c) for s ¼ 0.001 and (d) for s ¼ 0.01;
Fig. 2(e) and (f) are power spectrum diagrams corresponding to 2(c) and (d), respectively; Fig. 2(g) and (h) are
Poincare diagrams of the system response corresponding to DK ¼ 0.5, where (g) for s ¼ 0.001 and (h) for
s ¼ 0.01; and Fig. 2(i) and (j) are power spectrum diagrams corresponding to 2(g) and 2(h).

From the bifurcation diagram, Fig. 2(a), we can see that the bifurcation curves just turn a little thicker; and
the bifurcation value of parameter DK is almost invariant, compared to the curves while the rotor system is not
disturbed. But as we can see in Fig. 2(b), the bifurcation curves are thicker than those in Fig. 2(a), moreover,
the bifurcation process cannot be distinguished clearly when 0.534oDKo0.55. That is to say, the influence of
sg(t) on the response of the rotor system is very weak when its intensity, s, is a little one; and such influence
grows intensive as s increases. From Fig. 2(c) and (d), we can find that the orbit diagrams corresponding to
DK ¼ 0.35 turn to be a family of unclosed curves. And the profile of those unclosed curves is similar to the
corresponding periodical solution curves of the undisturbance system. In this study, such solution is named as
the random disturbed periodical solution. Furthermore, the difference between Fig. 2(c) and (d) shows that the
disturbed periodical solution of the rotor system fluctuates according to the increase of s. From the Poincare
diagram of the system, Fig. 2(g) and (h) corresponding to DK ¼ 0.5, we can see that some similar phenomena
occur. In this case, the solution of the disturbed rotor system is named as random disturbed quasi-periodical
solution. In other words, here the Poincare diagram comes to be a series of discrete points distributing round a
closed curve because of the effect of random disturbance, which represents quasi-periodic solutions of the
undisturbed system. And along with the increase of s, the distribution of those discrete points turns more
dispersed. From the power spectrum diagram of the system, Fig. 2(e), (f), (i) and (j), we can see that each rank
of the power spectrum of the system response is reduced in different range. It is also the effect of the random
terms in Eq. (1). Additionally, different samples of the random disturbance g(t), simulated from Eq. (2), are
substituted into Eq. (1). And the bifurcation diagrams, orbit diagrams, power spectrum diagrams and the
Poicare diagrams of the disturbed system calculated with those different samples are approximately invariable.
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It is indicated that the samples of the white noise process simulated from Eq. (2) can satisfy the ergodic
condition numerically.

Fig. 3 shows the influence of O on the response of the rotor system subject to a white noise process, when
b ¼ 0, u ¼ 0.1 and DK ¼ 0.62. Here bifurcation diagrams corresponding to a gradual increase of rotating speed
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Fig. 2. The influence of DK on system response (O ¼ 0.56, U ¼ 0.1, b ¼ 0.0): (a) bifurcation diagram (s ¼ 0.001), (b) bifurcation diagram

(s ¼ 0.01), (c) orbit (s ¼ 0.001, K ¼ 0.35), (d) orbit (s ¼ 0.01, K ¼ 0.35), (e) power spectrum (s ¼ 0.001, K ¼ 0.35), (f) power spectrum

(s ¼ 0.01, K ¼ 0.35), (g) Poincare diagram (s ¼ 0.001, K ¼ 0.5), (h) Poincare diagram (s ¼ 0.01, K ¼ 0.5), (i) power spectrum (s ¼ 0.001,

K ¼ 0.5), and (j) power spectrum (s ¼ 0.01, K ¼ 0.5).
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Fig. 2. (Continued)
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ratio O of the system response are shown in Fig. 3(a) (for the intensity of the random disturbance s ¼ 0.001) and
Fig. 2(b) (for s ¼ 0.01), respectively; Fig. 3(c) and (d) are magnification of Fig. 3(a) and (b); Fig. 3(e) and (f) are
undisturbed Poincare diagrams for O ¼ 0.44 and 0.535, respectively; Fig. 3(g) and (h) are Poincare diagrams of
the system response corresponding to O ¼ 0.44, where (g) for s ¼ 0.001 and (h) for s ¼ 0.01; Fig. 3(i) and (j) are
power spectrum diagrams corresponding to 2(g) and (h), respectively; Fig. 3(k) and (l) are Poincare diagrams of
the system response corresponding to O ¼ 0.535, where (k) for s ¼ 0.001 and (l) for s ¼ 0.01; Fig. 3(m) and
(n) are power spectrum diagrams corresponding to 3(k) and (l); Fig. 3(o) and (p) are Poincare diagrams of
the system response corresponding to O ¼ 0.531, where (o) for s ¼ 0.001 and (p) for s ¼ 0.01; and Fig. 3(q) and
(r) are power spectrum diagram corresponding to 3(o) and (p), respectively.

From the bifurcation diagrams, Fig. 3(a) and (b), we can see that random disturbance does not influence the
bifurcation and chaos characters of the rotor system when Oo0.52. When 0.52oOo0.525, the period doubling
process from period-1, then to period-3, and finally to chaos, which occurs only in the undisturbed rotor system.
From Fig. 3(c) and (d), we can see that the bifurcation cures of periodic two case turn to be thicker one when
0.525oOo0.533, and the higher the random disturbance is, the thicker the bifurcation cures are. Then
the solutions of the random disturbed system come into chaotic cases directly as O40.533. In other words, the
period doubling route mentioned above cannot be observed. In fact, as O turns from 0.525 to 0.533, the
responses of the system can be the coexistence of random disturbed periodical responses and chaotic responses
with different initial conditions. This phenomenon can be observed in Fig. 3(o)–(r). While O ¼ 0.531, system
response is a disturbed period-3 one for s ¼ 0.001, and a chaos one for s ¼ 0.01, but in Fig. 3(c) and (d), we can
see that the responses of the system is period two case no matter s ¼ 0.01 or s ¼ 0.001. In addition, from the
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power spectrum diagrams, Fig. 3(i), (j), (m) and (n), the frequency component of the disturbed system responses
changes obviously, specially when the response of the undisturbed system is a chaos one.

Fig. 4 shows the influence of DK on the response of the rotor system subject to a white noise process, when
b ¼ p, u ¼ 0.2 and O is near to 2/3Oc (O ¼ 0.6). Here, the bifurcation diagrams corresponding to a gradual
increase of stiffness change ratio DK of the system response are shown in Fig. 4(a) (for the intensity of the
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Fig. 3. The influence of O on system response (U ¼ 0.1, b ¼ 0, Dk ¼ 0.62). (a) bifurcation diagram (s ¼ 0.001), (b) bifurcation diagram
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random disturbance s ¼ 0.001) and Fig. 4(b) (for s ¼ 0.01), respectively; Fig. 4(c) is orbit diagram for
DK ¼ 0.565, s ¼ 0.0 (corresponding to the undisturbed system response); Fig. 4(d) is Poincare diagram for
DK ¼ 0.595, s ¼ 0.0; Fig. 4(e) and (f) are orbit diagrams of the system response corresponding to DK ¼ 0.565,
where (c) for s ¼ 0.001 and (d) for s ¼ 0.01, respectively; Fig. 4(g) and (h) are power spectrum diagrams
corresponding to 4(e) and (f), respectively; Fig. 4(i) and (j) are Poincare diagrams of the system response
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corresponding to DK ¼ 0.595, with (i) for s ¼ 0.001 and (j) for s ¼ 0.01; and Fig. 4(k) and (l) are power
spectrum diagrams corresponding to 4(i) and (j).

Compared to the diagrams while the rotor system is undisturbed, from Fig. 4(a), we can see that the
bifurcation curves just turn a little thicker, and the bifurcation value of parameter DK is almost invariant. But
as we can see in Fig. 4(b), the bifurcation curves are thicker than those in Fig. 4(a), and the bifurcation process
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can not be distinguished clearly, when 0.56oDKo0.575. That is to say, the influence of sg(t) on the response
of the rotor system is very weak when its intensity, s, is a little one; and such influence turns obviously as s
increases. From Fig. 4(e) and (f), we can see that the orbit diagrams, corresponding to DK ¼ 0.565, turn to be
a family of unclosed curves, which are similar to Fig. 4(c) in its profile. They are also the so-called random
disturbed periodical solutions. From the Poincare diagram of the system, Fig. 4(i) and (j) corresponding to
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Fig. 4. (Continued)
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DK ¼ 0.595, the so-called random disturbed chaotic solution can be found also. From the power spectrum
diagrams of the disturbed system, Fig. 4(e), (f), (i) and (j), we can see that each rank of the power spectrum of
the system response is reduced in different range too.

4. Summary and conclusion

In this paper, the Monte-Carlo method is applied to investigate the bifurcation and chaos characteristics of
a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence
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of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system.
Our numerical simulation shows that random disturbance has a significant affect on the system response when
the undisturbed response is a quasi-periodic one or a chaos one, and such affect is small when the undisturbed
response is a periodical one. Along with the increasing of the random disturbance intensity, the affect
mentioned above turns obvious. Additionally, disturbed responses calculated with different samples, which
are simulated from Eq. (2), have similar bifurcation diagrams, orbit diagrams, Poincare diagrams and power
spectrum diagrams. We expect that the proposed method may become utilizable in the future fault diagnosing
of rotating machinery.
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Appendix A. Some diagrams of the undisturbed case

Some diagrams of the undisturbed case were added in Fig. A1, most of them coming from Zheng and
Meng [5,6].
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