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Abstract

A simplified dynamic stiffness type linear model is used to analytically find the step responses of a nonlinear hydraulic

mount in terms of the transmitted force and top chamber pressure. The closed form solution could be efficiently

implemented with effective mount parameters, and peak value and the decay curve predictions could provide some insight

into the nonlinear behavior. The analytical solutions to an ideal step input correlate well with both numerical simulations

(of the same linear model) and measurements when a step-like displacement excitation is applied to fixed and free

decoupler mounts.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic engine mounts are designed and tuned to provide amplitude-sensitive and spectrally varying
properties [1–6]; refer to Refs. [4,5] for a detailed description of the typical internal parts, their functions and
basic parameters. Such mounts are usually modeled by lumping the fluid system into several control volumes
as shown in Fig. 1(a). System parameters include the fluid compliances C1 and C2 of the top (#1) and bottom
(#2) chambers, stiffness kr and viscous damping br of the elastomeric rubber element (#r), fluid resistance Ri

and inertance Ii of the inertia track (#i), inertance Id and resistance Rd of the decoupler (#d). The dynamic
displacement excitation x(t) is applied under a mean load Fm, and the force FT(t) transmitted to the rigid base
is often viewed as a measure of mount performance [1].

Typical mounts exhibit the following nonlinearities: (i) nonlinear compliances C1(p1) and C2(Fm) due to
elastomeric walls [2–5,7], (ii) vacuum formation in the top chamber during the expansion process [4,5,7], (iii)
nonlinear flow resistances Ri(qi) and Rd(qd) [4,5], and (iv) the switching mechanism of the decoupler if
employed [3,5,7]. Here qi(t) and qd(t) are the flow rates through the inertia track and decoupler, respectively,
and p1(t) and p2(t) are dynamic pressures in the top and bottom chambers, respectively. Kim and Singh [2,3]
and Tiwari et al. [4,5] have described the resulting nonlinear relationships based on laboratory experiments.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Lumped models of hydraulic mount with inertia track and decoupler: (a) fluid model; and (b) analogous mechanical system.
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Nonlinear continuity equations for the top and bottom chambers of Fig. 1(a) are as follows:

Ar _xðtÞ � qiðtÞ � qdðtÞ ¼ C1ðp1Þ _p1ðtÞ, (1)

qiðtÞ þ qdðtÞ ¼ C2ðF mÞ _p2ðtÞ, (2)

where Ar is the effective piston area.
Nonlinear momentum equations for the decoupler and inertia track are derived as

p1ðtÞ � p2ðtÞ ¼ Id _qdðtÞ þ RdðqdÞqdðtÞ, (3)

p1ðtÞ � p2ðtÞ ¼ I i _qiðtÞ þ RiðqiÞqiðtÞ. (4)

The dynamic force FT(t) transmitted to the rigid base is related to the top chamber pressure and motion of
the elastomeric element of Fig. 1(a) as

FT ðtÞ ¼ krxðtÞ þ br _xðtÞ þ Arp1ðtÞ, (5)

2. Problem formulation

The nonlinear Eqs. (1)–(5) could be linearized under certain conditions; these have been discussed in earlier
papers [1,5]. Further, the authors of this communication have recently proposed a procedure that estimates the
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effective system parameters based on the premise that only limited measurements of the steady state dynamic
stiffness (at the frequency of excitation) are available [6]. By constructing analogous mechanical models and
implementing the estimation algorithm to fixed and free decoupler mounts, linearized key parameters (such as
the inertia-augmented fluid damping and decoupler gap length) could be approximated. The effects of several
system nonlinearities (such as vacuum-induced asymmetric chamber compliance and damping introduced by
the decoupler switching action) could also be quantified.

Let us begin with a simplified linear model of the hydraulic engine mount. Singh et al. [1] had suggested the
following cross point dynamic stiffness in the Laplace (s) domain K22(s) ¼ FT/X(s) by making several
simplifying assumptions. Here FT and X are the transmitted force and displacement excitation, respectively, as
shown in Fig. 1(b). One may express K22 for a fixed decoupler mount as follows where g is the static stiffness,
on1 and on2 (as well as z1 and z2) correspond to the natural frequencies (and damping ratios) of the numerator
and denominator polynomials, respectively [1]. Further, Eq. (6) assumes that br ¼ 0 and C2X100C1.

K22ðsÞ ¼ g

s2
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Chief intent of this communication is to calculate an approximate analytical solution to the step input
by utilizing the simplified linear model even though the hydraulic mounts exhibit significant nonlinearities
[2–5,7]. In particular, note that the decoupler switching mechanism in a free decoupler device is associated
with the clearance type nonlinearity that cannot be well predicted by the linear model. Therefore, only a
fixed decoupler model (with Rd-N) is considered in the analytical model. Nevertheless, the effective
mount parameters of a free decoupler mount could still be utilized provided the inertia track is not
completed ‘‘decoupled’’ from the system [6]. In such a case, an effective Rie value could be used by combining
Ri and Rd.
3. Analytical solutions

The transfer function of top chamber pressure P1(s) to the displacement excitation X(s) is derived by using
Eq. (5) and expressed in a simplified form like Eq. (6). Here,$n1 and x1 are the natural frequency and damping
ratio of the numerator, as defined below:
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Here, the static gain l implies that the static pressure is governed by the lower chamber compliance C2 since
C2X100C1. Define the ratios of natural frequencies and damping coefficients as on2=on1 ¼ u, z2=z1 ¼ v,
on2=$n1 ¼ û and z2=x1 ¼ v̂. Comparison of Eqs. (6) and (7) shows that u � v ¼ û � v̂ ¼ 1, or on2z2 ¼
on1z1 ¼ $n1x1.
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Assume zero initial conditions and apply an ideal unit step (U) displacement excitation x(t) ¼ U(t). The
transmitted force in the s domain from Eq. (6) is derived as

FTSðsÞ ¼ g
1

s
þ

1

o2
n1

�
1

o2
n2

� �
sYðsÞ þ 2

z1
on1
�

z2
on2

� �
YðsÞ

� �
, (8a)

YðsÞ ¼
o2

n2

ðsþ z2on2Þ
2
þ o2

n2ð1� z22Þ
. (8b)

The step response in the time domain is derived as

F TSðtÞ ¼ g 1þ 2
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on1
�

z2
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where s ¼ z2on2 and od ¼ on2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q
. Here, y(t) corresponds to the impulse response of a mechanical

oscillator with natural frequency on2 and damping ratio z2. Eq. (9a) shows that FTS(t) consists of three
components: (i) FTS1(t) ¼ gU(t) is the step response of a zeroth order system when the mount acts statically as
a spring of stiffness g; (ii) FTS2ðtÞ ¼ 2g z1=on1 � z2=on2

� �
yðtÞ is the impulse response of a second order system

but its influence on FTS(t) is negligible; and (iii), FTS3ðtÞ ¼ g 1=o2
n1 � 1=o2

n2

� �
y0ðtÞ dictates the transient

response. Thus we approximate Eq. (4a) as FTS(t)EFTS1(t)+FTS3(t). Further, rewrite Eq. (9a) as

F TSðtÞ ¼ g 1þ
z1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
64
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Observe that P1/X(s) shares the same denominator polynomial as K22(s). Since û � v̂ ¼ 1, the top chamber
pressure response given x(t) ¼ U(t) is derived as follows from Eqs. (7) and (10):

p1SðtÞ ¼ l 1þ
x1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q ðû� v̂Þ e�st sinodtþ ðû2
� 1Þ e�st cosodt

2
64

3
75. (11)

From Eqs. (10) and (11), the peak F TS;max and p1S;max occur at t ¼ 0. These values are found by assuming
that C25C1 (gEkr): FTS;max ¼ A2

r=C1 þ kr ¼ k1 þ kr and p1S;max ¼ Ar=C1, where k1 is shown in Fig. 1(b).
Some design guidelines for shock control may now be formulated. For instance, a reduction in kr may not be
as efficient as decreasing Ar though both Ar and kr remain virtually unchanged when compared with C1. In
reality, the top chamber exhibits a multi-staged nonlinearity depending on the operating conditions [3,4,7].
Further, an increase in C1 due to the vacuum formation during the expansion process (as observed
experimentally [4]) leads to flattened regions in FTS,max and p1S,max. Thus measured peak values should be less
than the theoretical result, as shown in Fig. 2.

The time instants tp corresponding to the peak FTS or p1S values are derived from dFTSðtÞ=dt ¼ 0 and
dp1SðtÞ=dt ¼ 0, which give identical results: tpðnÞ ¼ np=od ; ðn ¼ 1; 2; 3 . . .Þ. Consequently, tp is governed by

the damped natural frequency od ¼ on2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q
of the characteristic polynomial. Further, Eqs. (10) and (11)

show that the transients decay at a exponential rate e�st. Consequently, the transient decay curves FTD(t) and
p1D(t) are derived as follows:
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Fig. 2. Step responses of a fixed decoupler mount: (a) step-like displacement excitation xðtÞ ¼ X � ÛðtÞ from �3.7 to 0mm; (b) transmitted

force FT(t); (c) top chamber pressure p1(t). Key: measurement; numerical simulation of the linear model given X � ÛðtÞ;

analytical solution assuming X �U(t); predicted decay curve; predicted tp values for peaks to occur based on the analytical

solution.
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p1DðtÞ ¼ l 1þ
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Since s ¼ z2on2 ¼ Ri/(2Ii), the decay rate is essentially controlled by the inertia track or the effective
damping Rie [6]. The decay curves in Fig. 2 predict the transient boundaries despite some discrepancies in the
first overshoot due to the vacuum nonlinearity. Next, the settling time tset is defined as the time required for the
transient to decay to a reasonable small value near the steady state solution FTS(N) when t-N. Assuming an
error t as F TSðtsetÞ � FTSð1Þ

�� �� ¼ tFTSð1Þ:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Since sinðod tset þ jF Þ
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For the fixed decoupler mount (type D of Ref. [6]),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 þ z21

	
1� z22
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� 2
� �

u2 þ 1� 2z21
� �	

1� z22
� �q

, is
found to be around 1.4. Thus, Eq. (13b) could be further simplified as tsetE�(1/s)lnt. Typical settling times
for this mount are calculated as follows: tset ¼ 4.6/s given t ¼ 1% and the actual error t is 1.08%. Likewise,
ts ¼ 4/s for t ¼ 2% and the actual error t is 2.4%; ts ¼ 2.9/s for t ¼ 5% while the actual error t is 5.5%.

Since the parameters of a linearized model would depend on the operating conditions, we may incorporate the
empirical amplitude-sensitive parameters into the analytical predictions. For example, refer to the quasi-linear
models [6] where the coefficients of Eq. (6) are estimated given the measured dynamic stiffness data. Using the
mechanical analogy of Fig. 1(b) [6], Eq. (7a) is converted into the following form by assuming k1bk2:

P1

X
ðsÞ ¼

k1

Ar

mies2 þ bies

mies2 þ biesþ 1
. (14)

All effective parameters of Eq. (14) could be estimated using the quasi-linear model [6] except Ar, which
could be calculated given the cross-section of the hydraulic mount. The response to x(t) ¼ U(t) is derived as

P1SðsÞ ¼
1
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o2
n2 miesþ bieð Þ
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2
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, (15a)
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0
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Unlike Eq. (11), p1S(t) excludes the contribution from a zeroth order system. This implies that the predicted
p1S(t) using the quasi-linear model converges to a steady state value of zero and thus it cannot capture the
mean pressure build-up effect due to multi-staged bottom chamber compliance C2(Fm) [7]. Finally, the decay

curve of dynamic top chamber pressure is derived as p1DðtÞ ¼ k1=Ar

� �
ðe�st=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z22Þ

q
Þ.

4. Results and conclusion

Two step-like displacement excitations, xðtÞ ¼ X � ÛðtÞ, are experimentally applied by releasing the
compressive preload from �3.7mm to 0 (for the fixed decoupler mount) or to �1.32mm (for the free
decoupler mount), as shown in Fig. 2(a). Here, X is the displacement amplitude. Analytical responses
assuming the ideal step input, X �U(t), as predicted by the K22 model with effective parameters from the quasi-
linear model [6] are compared with both measured and numerical results given the X � ÛðtÞ excitation, as
shown in Figs. 2 and 3. Due to the finite rise time in ÛðtÞ, slight discrepancies are observed at the initial rise
time in Fig. 2. A flat region is found near the first overshoot due to the unmodeled vacuum nonlinearity during
the expansion process [2,5,7]. Observe that the analytical decay curve and peak times match well with the
numerical simulations of the same linear model.

Compared with the fixed decoupler mount of Fig. 2, the transients of Fig. 3 decay much faster due to the
additional resistance or damping introduced by the decoupler. Two distinct regions exist beyond the first
overshoot (in Fig. 3) for the free decoupler mount. One may surmise that the crossing point between the
oscillatory and flat regions is when the decoupler starts to open and decouples the inertia track from the
system. To better understand this phenomenon, the sequence of events is divided into five regions. Region 1:
measurements coincide with linear model prediction; thus the decoupler is assumed to be closed and the
system is working in the linear stiffness stage. Region 2: this corresponds to the flat regions in both p1S(t) and
FTS(t) where measurements are significantly lower than the predicted values; the decoupler remains closed and
vacuum occurs in the upper chamber, thereby introducing an additional compliance to C1. Region 3: after a
quick transition the decoupler is now open and it starts to move down towards the bottom stop; during this
short period, the inertia track is essentially decoupled from the system and the fluid flows mainly through the
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Fig. 3. Transient responses of a free decoupler mount given the xðtÞ ¼ X � ÛðtÞ excitation like Fig. 2(a) but from �3.7mm to �1.32mm:

(a) transmitted force FT(t); (b) top chamber pressure p1(t). Key: measurement; numerical simulation of the linear model given

xðtÞ ¼ X � ÛðtÞ; analytical solution assuming X �U(t); predicted decay curve; predicted tp values for peaks to occur based on

the analytical solution.
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decoupler gap to equalize the chamber pressures. Since C2 is very high, p1(t) remains around zero and this
results in a little ‘‘ripple’’ in the p1(t) profile. Region 4: the decoupler gap is closed and the system works in a
linear manner in the decay process. Region 5: decoupler gap remains open since the transient oscillations are
significantly decayed. Consequently, the ‘‘decoupled’’ state is dominant and transients die away quickly; this
verifies that the decoupler switching mechanism can efficiently control the small amplitude excitations. The
above five stages have been confirmed by employing a detailed nonlinear model that will be reported soon in
an article by the same authors [7]. Overall, the simplified linear model of this article yields a reasonable
prediction while providing some insight into a highly nonlinear device.
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