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Gaëtan Kerschena,�, D. Michael McFarlandb, Jeffrey J. Kowtkob,
Young S. Leeb, Lawrence A. Bergmanb, Alexander F. Vakakisb,c,d

aAerospace and Mechanical Engineering Department, University of Liège, Chemin des Chevreuils 1 (B52/3), B-4000 Liège, Belgium
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Abstract

The purpose of this paper is to report an experimental study of transient resonance capture that may occur in a system of

two coupled oscillators with essential (i.e., nonlinearizable) nonlinearity. It is shown that during transient resonance

capture the two oscillators are in a state of resonance, the frequency of which varies with time, which leads to targeted

nonlinear energy transfer. Further evidence of resonance capture is a non-time-like behavior of the phase difference

between the oscillators; this quantity is monitored using the Hilbert transform or the Huang–Hilbert transform in the case

of multifrequency response signals.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Resonances that are most commonly considered in the dynamical systems literature correspond to specific
frequencies of oscillation; that is, resonance of a mode shape at its natural frequency [1] or of nonlinear modes
in internal resonance [2]. However, previous studies (see, e.g., Refs. [3–5]) have indicated that other kinds of
resonances, characterized by varying frequencies of oscillation, termed resonance captures, may also be
encountered.

During the last 10 years, resonance capture phenomena have received increasing attention in the literature
(see, e.g., Refs. [6–23]). An example of sustained resonance capture (SRC) is given in Ref. [6], in which a
system composed of an unbalanced rotor attached to an elastic support and driven by a constant torque is
considered. The main characteristic of SRC is that the frequency of the sustained resonance shifts depending
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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upon the system parameters, for example, the torque applied to the rotor or the amount of damping present in
the system in the case of Ref. [6]. This study also underlined that, if the applied torque is too large, SRC is no
longer experienced in the system; more precisely, the existence of SRC is conditional upon the system
parameters.

In Refs. [7,8], transient resonance capture (TRC) was observed during the free response of a single-degree-
of-freedom oscillator coupled to an essentially nonlinear attachment, termed a nonlinear energy sink (NES).
During TRC, the oscillators are locked into a resonance with identical but time-varying frequency, and its
main feature is that the system trajectories approach and evolve along the resonance manifold for a short
interval of time before escape [9]. In Refs. [7,8], the frequency decreased with time due to the hardening
characteristic of the nonlinearity, and TRC became manifest only above a threshold of the input energy. In
addition to 1:1 TRC, higher-order TRCs (e.g., 1:2 or 1:3 TRCs) were observed in a similar system [10,11]; in
these studies the two oscillators were locked into transient resonance with different frequencies. Each of the
individual frequencies varied with time but their ratio remained constant. A cascade of TRCs, transient
resonances with a number of nonlinear modes, was reported in Ref. [12] for a multi-degree-of-freedom linear
system weakly coupled to an NES.

In the references cited above, resonance captures originate from the presence of components that may adapt
their frequency and may lead to interesting dynamical phenomena. Some other studies focused more on the
theoretical aspects of resonance capture. For instance, in Ref. [13], the authors explained that resonance
capture can be interpreted conceptually in terms of a slowly varying separatrix in phase space, which allows
the dynamical flow to pass across it. Likewise, the flow can escape from resonance capture by again crossing
the separatrix. They also proposed an energy method and a perturbation method for estimating the initial
conditions that lead to resonance capture.

Resonance capture now enjoys various applications, including spacecraft dynamics [14], analysis of the
dynamics of charged particles in non-homogeneous electromagnetic fields [17], celestial mechanics [18], energy
exchanges between coupled oscillators (also called nonlinear energy pumping [7,8,10–12,19,20,22,23]) and
elimination of limit cycles [21].

The present study is the continuation of the experimental developments reported in Refs. [22,23]. In Ref.
[22], complex and vigorous energy transfers from the linear oscillator to the NES, leading to large fractions of
energy dissipated in the NES, were reported. In Ref. [23], the two basic mechanisms governing these energy
transfers were highlighted, namely the excitation of a transient bridging orbit—resulting in a nonlinear beating
phenomenon—and resonance capture into a 1:1 resonance manifold—resulting in irreversible energy flow
from the primary system to the NES—with the former mechanism triggering the latter. In this study, the
emphasis is put upon the 1:1 TRC. Specifically, it is shown that during TRC the two oscillators are in a state of
resonance capture with decreasing frequency, which leads to targeted nonlinear energy transfers. Further
evidence of resonance capture is a non-time-like behavior of the phase difference between the oscillators; this
quantity is monitored using the Hilbert transform or the Huang–Hilbert transform in the case of
multifrequency response signals.
2. Experimental setup

2.1. Description of the experimental fixture

The system considered herein is composed of a linear oscillator, termed the primary system, weakly coupled
to an essentially nonlinear (nonlinearizable) oscillator, termed the NES, and is described by the equations

M €yþ c1 _yþ c12ð _y� _vÞ þ k1yþ k12ðy� vÞ ¼ 0,

m €vþ c2 _vþ c12ð_v� _yÞ þ Cv3 þ k12ðv� yÞ ¼ 0. ð1Þ

Variables y and v refer to the displacement of the primary system and of the NES, respectively. Weak coupling
is assured by requiring that k125k1. The nonlinear coefficient C is treated as an O(1) quantity. Provided the
input energy is high enough, these equations represent a strongly nonlinear system.
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The experimental fixture built to examine the energy transfers in the two-degree-of-freedom
system described by Eqs. (1) is depicted in Fig. 1. A schematic of the system is provided in Fig. 2,
detailing major components. The fixture comprised two cars made of aluminum angle stock which
were supported on a straight air track [see Fig. 3(c)]. The primary system mass M was grounded by means
of the linear spring k1 [see Figs. 3(a) and (b)], and the NES mass m was connected to the primary system
by means of a weak coupling stiffness k12. An essential cubic nonlinearity C was realized by a thin wire
with no pretension. Viscoelastic tape was added to the coupling spring, realizing the damping
constant c12. Teflon coating was attached to the underside of the cars to reduce any friction that
might occur while the cars were in motion. As a result, the damping constants c1 and c2 were much smaller
than c12. A long-stroke electrodynamic shaker provided a controlled and repeatable short force pulse
to the primary system (i.e., the left car in the upper picture in Fig. 1). A representative broadband input force
is shown in Fig. 4.

The response of both oscillators was measured using accelerometers. Estimates of the correspond-
ing velocity and displacement were obtained by integrating the measured acceleration. The resulting
signals were then high-pass filtered to remove the spurious components introduced by the integration
procedure.
k12

k1

M

m

m

C

k12

Fig. 1. Upper picture: experimental fixture; lower picture: close-up of the NES.



ARTICLE IN PRESS

Fig. 2. Schematic of the experimental fixture.

(c)(a) (b)

Fig. 3. (a) Leaf spring; (b) leaf spring assembly attached to car; (c) end view of air track with resting car.
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2.2. System identification

The goal of system identification is to exploit input and output measurements performed on the structure
using vibration sensing devices in order to estimate all the parameters in the equation of motion (1). Prior to
system identification, the primary system and the NES were weighed, and their masses were found to be
M ¼ 0:7348 kg and m ¼ 0:4734 kg, respectively.

System identification was carried out in three separate steps:
�
 The primary system was disconnected from the NES, and modal analysis was performed on the
disconnected primary system. The natural frequency and the viscous damping ratio were estimated to be
5.70Hz and 0.17%, respectively. Because the mass of the primary system was known, the stiffness and
damping parameters k1 and c1 were easily deduced from this modal analysis.
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The wire was disconnected, and a modal analysis of the coupled linear system was performed. This resulted
in estimates of the weak coupling stiffness k12 and the damping constants c12 and c2.

�
 The NES was disconnected from the primary system with the aim of estimating the nonlinear coefficient C.

To this end, the restoring force surface method [24] was employed. In essence, Newton’s second law was
applied to the second car

f NLðv; _vÞ ¼ p�m€v (2)

where f NLðv; _vÞ is the restoring force and p the external force (for simplicity, the temporal dependence is
omitted). Eq. (2) shows that the time history of the restoring force can be calculated directly from the
measurement of the acceleration and the external force and from the knowledge of the mass. The model

f NLðv; _vÞ ¼ c2 _vþ Cv3 þ Clinv (3)

was then fitted to the estimate of the restoring force. For greater flexibility, the functional form of the
nonlinearity also included a linear spring Clin. Finally, least-squares parameter estimation was used to
obtain the values of the coefficients C and Clin.
The values of the parameters identified using this three-step procedure are listed in Table 1. This table
illustrates that weak coupling was indeed realized, and that the nonlinearity was essential as Clin is negligible
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Fig. 4. Measured impulsive force.

ble 1

tem parameters identified using modal analysis and the restoring force surface method

ameter Value

ss of the primary system, M 0.7348kg

S mass, m 0.4734kg

ffness of the primary system, k1 942N/m

upling stiffness, k12 151N/m

mper of the primary system, c1 0.09Ns/m

S damper, c2 0.11Ns/m

upling damper (tape), c12 0.4Ns/m

bic stiffness, C 1:83� 107 N=m3

ear stiffness, Clin 11.3N/m
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Fig. 5. Accuracy of system identification (3 steps). (a) Step 1: modal analysis of the primary system only (solid line: measured acceleration;

dotted line: acceleration predicted by the identified model); (b) step 2: modal analysis of the coupled system without the nonlinearity (solid

line: measured acceleration; dotted line: acceleration predicted by the identified model); (c) step 3: nonlinearity identification using the

restoring force surface method: measured and predicted restoring forces.
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when compared to C. The predictions given by the identified model are compared to the measurements
in Fig. 5, which demonstrates the accuracy of the identification.

3. Interpretation of the experimental results

Three excitation levels are considered herein, corresponding to peak amplitudes of 7, 13 and 18N,
respectively. Figure 6 displays the displacements of the primary system and the NES; for the sake of clarity,
closes-up of the comparison of the displacements are also given in this figure. Overall, the NES displacement is
higher than that of the primary system, which indicates that the NES participates in the system dynamics to a
large extent. The system response at the 7N level is qualitatively different from those at the other two levels.
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Fig. 6. Measured displacements for: (a) 7N peak force; (b) 13N peak force; (c) 18N peak force (thick line: primary system; thin line:

NES). Left column: entire record; right column: close-up.
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At the 7N level, the displacement of the primary system carries at least two significant frequency components,
whereas the displacements at the 13 and 18N levels are mainly monochromatic.

As clearly evident in the close-up, the two oscillators at the 13 and 18N levels vibrate in an in-phase fashion
with the same apparent frequency. The dynamical flow therefore seems to be captured in the neighborhood of
a 1:1 resonance manifold. The transient nature of the resonance capture is not obvious from these plots but
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will be clearly seen in the remainder of this study. An interesting feature of TRC is that the envelope
of both displacement signals decreases monotonically during this regime, but the envelope of the
NES seems to decrease more slowly than that of the primary system. This is a sign that energy transfer
from the primary system to the NES takes place during TRC. Such a clean and prolonged 1:1 reso-
nance was not observed in previous studies [22,23]. At this point, we also mention that no manual tuning of
the nonlinear attachment was performed; the resonance occurs because the NES has no preferential resonant
frequency.

Further evidence of the resonance capture is given in Fig. 7, which depicts the instantaneous fre-
quencies of the measured displacements computed using a wavelet transform. Darkly shaded areas
correspond to regions where the amplitude of the wavelet transform is high, which reveals the presence
of a significant frequency component, whereas lightly shaded regions correspond to low amplitudes. Figs. 7(b)
and (c) clearly indicate that the two oscillators vibrate with the same frequency; they are in a state
of 1:1 resonance whose captured frequency shifts downward (due to the hardening characteristic of the
nonlinearity) as the total energy of the system is reduced by viscous dissipation. This decrease in fre-
quency is particularly important because at the beginning and at the end of TRC the frequency is
around the natural frequency of the linear oscillator (i.e., 5.7Hz and 3.3Hz, respectively). Finally, note that
the presence of two significant frequency components in the displacement of the primary system at the 7N
level is evident in Fig. 7(a).

Another means of studying resonance capture is to monitor the phase difference F12ðtÞ between the two
oscillators. This was carried out in the literature using the method of averaging [6], harmonic balance-based
averaging [16] or a complexification technique [7,11]. In the neighborhood of a resonance manifold, a non-
time-like behavior of the phase variable occurs, which prevents direct averaging of the equations of motion
over this phase difference (being treated as a ‘fast’ or ‘time-like’ independent variable); the failure of the
averaging theorem is due to the vanishing of a denominator in the averaged equations or, equivalently, to the
slow variation of the phase difference between the two oscillators. In the present study, the phase difference
between the oscillators is computed directly from the experimental responses using the Hilbert transform H½��.
The analytic signal X ðtÞ corresponding to a real-valued signal xðtÞ can be represented using the Hilbert
transform as a combination of slowly varying functions, called the envelope AðtÞ and the instantaneous phase
FðtÞ [25]

X ðtÞ ¼ xðtÞ þ jH½xðtÞ� ¼ AðtÞ exp½jFðtÞ� (4)

with

xðtÞ ¼ AðtÞ cosFðtÞ; AðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þH½xðtÞ�2

q
, (5)

j ¼
ffiffiffiffiffiffiffi
�1
p

; FðtÞ ¼ arctan ½H½xðtÞ�=xðtÞ� (6)

The instantaneous frequency is the time derivative of the instantaneous phase. The investigation of the
vibrations of nonlinear systems using this procedure was proposed by Feldman [26].

The temporal evolution of the phase difference F12ðtÞ ¼ FðtÞ �CðtÞ, where yðtÞ ¼ AðtÞ cosFðtÞ and
vðtÞ ¼ BðtÞ cosCðtÞ, and its trajectory in the phase plane are depicted in Fig. 8. In Figs. 8(b) and (c), a non-
time-like behavior of the phase difference is observed which is followed at around t ¼ 10 s by a time-like
behavior of F12ðtÞ. These are a clear indication of resonance capture and escape from resonance capture,
respectively, and emphasize the transient nature of the resonance capture. The small oscillations of the phase
difference around 0 confirm that the oscillators are in-phase during TRC.

Focusing now on Fig. 8(a), we note a completely different behavior. The previous procedure cannot be
applied in this case because the displacement of the primary system possesses multiple frequency components,
which violates the assumption that yðtÞ ¼ AðtÞ cosFðtÞ. An extension of this procedure in the case of multiple
frequency components was developed by Huang and co-authors [27]. In essence, the proposed methodology
consists of decomposing a signal xðtÞ in terms of intrinsic mode functions (IMFs); thus, xðtÞ ¼

P
iIMFiðtÞ
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Fig. 7. Instantaneous frequencies of the measured displacements computed using the wavelet transform for: (a) 7N peak force; (b) 13N

peak force; (c) 18N peak force (I, II: two dominant harmonic components). Left column: primary system; right column: NES.
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(each IMF must have the same number of extrema and zero-crossings and only one extremum between
successive zero-crossings). Doing so, the previous procedure can be applied to each IMF individually. A
complete description of the method is beyond the scope of this paper; the interested reader may consult
reference [27] for further details.
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Fig. 9 shows the first two IMFs computed from the displacement of the oscillators; higher-order IMFs
were also computed but had a negligible participation in the system response. For the primary system
[see Fig. 9(a)], the two IMFs have approximately the same contribution to the system response, which
indicates that yðtÞ ffi IMF1ðtÞ þ IMF2ðtÞ ¼ A1ðtÞ cosF1ðtÞ þ A2ðtÞ cosF2ðtÞ. The first and second IMFs
correspond to components I and II in Fig. 7(a), respectively. On the other hand, the second IMF of the
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NES displacement can be neglected when compared to the first IMF [see Fig. 9(b)]; as a result,
vðtÞ ffi IMF1ðtÞ ¼ B1ðtÞ cosC1ðtÞ.

A close look at Fig. 9 reveals that the second IMF of the displacement of the primary system, A2ðtÞ cosF2ðtÞ,
and the first IMF of the NES displacement, B1ðtÞ cosC1ðtÞ, have the same frequency content; their phase
difference, F2ðtÞ �C1ðtÞ, is displayed in Fig. 10(a). This graph shows that this particular phase difference has a
non-time-like behavior at least until at time of 4–5 s. The low-frequency components of the displacements of
the two oscillators are therefore in resonance. However, there is no such observation for the phase difference
between the first IMF of the displacement of the primary system and the second IMF of the NES
displacement, which explains why overall TRC cannot be observed at the 7N level.

The left column of Fig. 11 presents the instantaneous percentage of total energy carried by the NES

ENES;%ðtÞ ¼ 100
ENESðtÞ

EPrimðtÞ þ ENESðtÞ
ð7Þ

¼ 100
m
_v2ðtÞ

2
þ C

v4ðtÞ

4
þ k12

½yðtÞ � vðtÞ�2

2

M
_y2ðtÞ

2
þ k1

y2ðtÞ

2
þm

_v2ðtÞ

2
þ C

v4ðtÞ

4
þ k12

½yðtÞ � vðtÞ�2

2

ð8Þ

for the three excitation levels, and illustrates that vigorous energy exchanges take place between the two
oscillators. Again, the dynamics are completely different between the lowest level, 7N, and the other two
levels:
�
 At the lowest level, for which previous results indicated that TRC is not realized, a single regime can be
observed during which energy quickly flows back and forth between the two oscillators. After 0.35 s, as
much as 98.2% of the total energy is transferred from the impulsively loaded primary system to the NES,
but this number drops to 18% immediately thereafter. Clearly, there is a nonlinear beat phenomenon,
which is studied in detail in Refs. [11,28]. In Ref. [11], it is shown that this phenomenon may lead to
vigorous but reversible energy transfer and that it may act as a ‘bridging mechanism’ (or ‘catalyst’) for
triggering nonlinear energy pumping while the NES is at rest. Ref. [28] demonstrates that the excitation of
periodic or quasiperiodic impulsive orbits are responsible for those nonlinear beats. It is important to note
that no a priori tuning of the NES is necessary, which is markedly different from other systems exhibiting
nonlinear beating phenomena (see, e.g., Ref. [2] or spring-pendulum systems).

�
 At the other two levels, for which a 1:1 TRC is realized, three regimes, labeled I, II and III, exist. During

Regime I, a nonlinear beat phenomenon can also be observed during the first few cycles (though less
vigorous than at the 7N level). Although this regime could not be clearly observed in Figs. 6–8, except for
the presence of small harmonic components in Figs. 7(b) and (c), it plays a very important role as it brings
the motion into the domain of attraction of the 1:1 resonance manifold by transferring some energy to the
NES. The system is then capable of sustaining a 1:1 TRC during a large part of the motion, namely, during
Regime II. This was thoroughly discussed in Refs. [8,11] using numerical examples. From Fig. 11, it is
evident that another manifestation of TRC in coupled oscillators with essential nonlinearity is that targeted
nonlinear energy transfers take place. At the beginning of Regime III, the NES carries almost all the
instantaneous total energy; then escape from resonance capture occurs, and energy is released from the
NES back to the primary system. It is important to note that when this occurs the total energy level is small
compared to the initial value.
The right column of Fig. 11 presents the energy dissipated in the NES normalized by the total input energy,

EdissðtÞ ¼
c12
R t

0½_vðtÞ � _yðtÞ�2 dtþ c2
R t

0 ½_vðtÞ�
2 dtR tmax

0
pðtÞ _yðtÞdt

(9)

and indicates that, eventually, the NES is responsible for the dissipation of a great portion of the total energy
imparted to the system.
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Fig. 11. Distribution of energy as a function of time for: (a) 7N peak force; (b) 13N peak force; (c) 18N peak force. Left column:

percentage of instantaneous total energy in the NES (Regime I: nonlinear beat phenomenon; regime II: resonance capture; regime III:

escape from resonance capture); right column: energy dissipated in the NES.
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In Ref. [8], it was shown that the structure and bifurcations of the periodic orbits of the undamped and
unforced system enable one to understand the energy transfers in the weakly damped and impulsively loaded
system. All the computed periodic orbits were gathered in a frequency-energy plot. By studying the motion on
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Fig. 12. Wavelet transform of the displacements superposed on the frequency-energy plot for: (a) 7N peak force; (b) 13N peak force; (c)

18N peak force. Left column: primary system; right column: NES.
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one of the two branches building the backbone of the frequency-energy plot, it became clear that a 1:1 TRC
leads to targeted nonlinear energy transfers. To illustrate all this, the wavelet transforms of Fig. 7 can also be
represented in a frequency-energy plane by substituting the instantaneous energy in the system for time. In
Fig. 12, the backbone curve of the frequency-energy plot, represented by a solid line and computed using the
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undamped version of Eqs. (1) with the experimentally identified parameter values, is superposed on the
wavelet transforms of the measured displacements. This plot is a schematic representation because it
superposes damped (the wavelet transform) and undamped (the frequency-energy plot) responses and is used
for descriptive purposes only. However, it represents a useful tool for the interpretation of the dynamics. It
indicates that:
�
 For all three excitation levels, the predominant frequency components follow a backbone branch for most
of the signal. This validates our conjecture that the weakly damped, transient dynamics can be interpreted
mainly in terms of the periodic orbits of the underlying Hamiltonian system.

�
 The dynamics of the system is strongly nonlinear, as the predominant frequency components undergo

significant variations with energy.

�
 During a 1:1 TRC, the displacements of both oscillators contain mainly one frequency component which

closely follows the lower part of the backbone branch [see Figs. 12(b) and (c)]. At the 7N level, for which a
vigorous nonlinear beat phenomenon was observed, there are two frequency components, one of which
closely follows the horizontal portion of the upper backbone curve while the other follows the lower
backbone branch.

Finally, as in Refs. [22,23], satisfactory agreement was obtained between analytical and computational
predictions and experimental measurements throughout this study, this in spite of the transient and strongly
nonlinear nature of the NES dynamics. For illustration, a comparison between the measured displacements
and the displacements predicted through numerical integration of Eqs. (1) with the experimentally identified
parameter values is given in Fig. 13.

4. Concluding remarks

Two different kinds of resonance captures, SRC (sustained) and TRC (transient), were reported in the
literature. In this paper, an experimental investigation of a 1:1 TRC in a system of two coupled oscillators with
essential nonlinearity was performed. The lack of any preferential frequency of the NES makes it able to
engage in TRC with the linear oscillator. The main findings from this study are:
�
 The resonance capture was termed transient (TRC) because it can be sustained only during some part of the
motion; eventually, escape from resonance capture occurs.

�
 The existence of TRC is conditional upon the amplitude of the impulsive load.
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�
 During TRC, the two oscillators vibrate with the same frequency; however, the captured frequency shifts
downward with time due to the hardening characteristic of the nonlinearity.

�
 During TRC, the phase difference between the two oscillators has a non-time-like behavior.

�
 During TRC, one-way and irreversible energy transfers from the linear oscillator to the nonlinear

attachment take place.

The use of the Hilbert transform or the Huang–Hilbert transform in the case of multifrequency response
signals is proposed for the investigation of nonlinear resonances in practical applications. The procedure
developed here will form the basis of further studies with increased dimensionality [29].

Finally, let us point out that the damping was kept relatively low in order to highlight the different
dynamical phenomena. TRC in systems possessing increased damping will be examined in subsequent studies.
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