
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 299 (2007) 839–853

www.elsevier.com/locate/jsvi
Finite element analysis of vibrating linear systems
with fractional derivative viscoelastic models

Silvio Sorrentinoa, Alessandro Fasanab,�

aDipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia, Università di Bologna, Viale del
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Abstract

Fractional derivative rheological models are known to be very effective in describing the viscoelastic behaviour of

materials, especially of polymers, and when applied to dynamic problems the resulting equations of motion, after a

fractional state-space expansion, can still be studied in terms of modal analysis. But the growth in matrix dimensions

carried by this expansion is in general so fast to make the calculations exceedingly cumbersome.

This paper presents a method for reducing the computational effort due to finite element (FE) analysis of vibrating linear

systems with a fractional derivative viscoelastic model, namely the Fractional Kelvin–Voigt.

The proposed method may be applied also to problems involving other fractional derivative linear models, and it takes

under control the computational effort by reducing the main eigenproblem of large dimension to the solution of two

standard related eigenproblems of lower size.

Numerical examples are provided in order to validate both the accuracy and the efficiency of the proposed methodology.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Linear viscoelasticity is usually studied by considering rheological models, consisting of integer-order
differential constitutive equations, which have deficiencies when applied to large time or frequency intervals,
and an improvement of adaptivity with respect to measured data can be obtained by introducing non-integer-
order differential operators [1–3]. The application of fractional calculus to viscoelasticity results to be
physically consistent and the fractional-order differential stress–strain relations provide good curve-fitting
properties, require only few parameters and lead to causal behaviour [4–6].

As a consequence, the possibility of implementing fractional constitutive equations in FE formulations has
been studied by several authors [7–9], being a topic of great interest in physics and engineering. Some authors
suggested a solution through direct numerical integration of the equations of motion, using the discrete-time
Grünwald definition of fractional derivative in order to reduce the computational effort [10]. Other authors
proposed iterative solutions in terms of non-standard eigenproblems [11].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In this paper the problem is addressed in terms of modal analysis [12], assuming generalized damping
distributions, leading to complex mode shapes [13]. In the formulation the Fractional Kelvin–Voigt model is
considered, according to the Riemann–Liouville and Caputo definitions of fractional derivatives [14,15]. The
proposed methodology may be applied also to problems involving different fractional derivative linear
models, although not detailed here.

Some fundamentals of modal analysis for fractionally damped systems are presented, including a statement
of the expansion theorem, and closed form expressions for the response functions in both the time and the
frequency domain [16].

Since this form of expressing the responses requires a fractional state-space expansion, which in general
carries too cumbersome calculations for FE applications, a methodology for reducing the computational
effort is then presented. Essentially, it consists in replacing the main eigenproblem of large dimension with a
couple of related standard eigenproblems of lower size.

A numerical example shows an application of the proposed technique to the study of a viscoelastic
cantilever Euler–Bernoulli beam. Numerical FE results are compared to exact analytical solutions.

Finally, an appendix provides the essential information about the definitions of fractional differential
operators, their Fourier and Laplace transform properties and the higher transcendent functions adopted
within the paper [15].

2. Modal analysis

In this section some fundamentals of modal analysis for fractionally damped systems are presented,
including a statement of the expansion theorem, and closed form expressions for the response functions in
both the time and the frequency domain.

2.1. Statement of the expansion theorem

The equation describing the dynamic behaviour of a generic continuous linear system with the Fractional
Kelvin–Voigt viscoelastic model can be written in the following general form [13]:

M
q2

qt2
wðx; tÞ

� �
þ Cf

qa

qta
wðx; tÞ

� �
þ K wðx; tÞ½ � ¼ f ðx; tÞ; x 2 D, (1)

where M, Cf, K are linear homogeneous differential operators and are referred to as mass operator,
generalized fractional damping operator [17,18] and stiffness operator, respectively, f is the external force
density, t is time, w and x are the displacement and the spatial coordinate in a domain of extension D, and
aA(0,1) is the non-integer derivative order, in general varying with respect to x. It is important noting that the
domain D is not necessarily one dimensional, the spatial coordinate x as well as the displacement w and the
external force density f can be vectors, and the differential operators M, Cf, K can take a matrix form. For
example, x is a vector in the case of a vibrating plate, and w is a vector in the case of a Timoshenko beam
(displacement and rotation). Nevertheless in Eq. (1) the vectorial notation is not adopted, since in the
following developments this does not represent a loss of generality and it simplifies the notation when defining
the fractional state and the external force density vectors in Eq. (4).

To solve Eq. (1), appropriate boundary and initial conditions must be satisfied by w.
Recalling that self-adjointness of differential operators corresponds to symmetry of matrices [13], in the

following the operators M, Cf and K will be supposed to be self-adjoint. This assumption is unnecessary and
could easily be removed, as explained in Ref. [13], nevertheless it will be adopted since such properties hold in
most of the existing models, carrying less cumbersome analytical developments.

With the notation:

ðw1;w2Þ ¼

Z
D

w1w2 dD, (2)

denoting the inner product between two scalar functions w1 and w2 over a domain of extension D (if w1 and w2

are vector functions, then the integrand in Eq. (2) represents their scalar product), a linear differential operator
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L is said to be self-adjoint if

ðw1;L ½w2�Þ ¼ ðw2;L ½w1�Þ, (3)

which is a property of symmetry with respect to the inner product [19].
Note that the following developments are valid for discrete systems as well: in that case the operators M, Cf

and K are square matrices and the functions w and f are vectors.
In order to rewrite Eq. (1) by analogy with a state-space representation, rational values for the fractional

derivative order a are considered, that is a ¼ h/q, which in itself is not a restriction for applications. Since a can
vary on the spatial domain, it is assumed to be piecewise constant on D, m ¼ 1/q being the minimum common
fractional derivative order.

The fractional state vector and the external force density vector have both dimension 2q and can be defined
according to [12]:

w ¼ w wðmÞ wð2mÞ . . . wð2�mÞ
� �T

,

f ¼ f 0 0 . . . 0
� �T

, ð4Þ

where the superscripts denote the time derivative orders. So the fractional state vector contains the
displacement w and all its time derivatives of order multiple of m up to 2�m. Consequently, Eq. (1) can be
rewritten in a fractional state-space form as follows:

Af ½w
ðmÞ� þ Bf ½w� ¼ f, (5)

where the homogeneous linear differential operators Af and Bf can be expressed in the matrix-form:

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{h

Af ¼

0 ::: 0 Cf 0 ::: 0 M

::: 0 Cf 0 ::: 0 M 0

0 Cf 0 ::: 0 M 0 :::

Cf 0 ::: 0 M 0 ::: 0

0 ::: 0 M 0 ::: 0 0

::: 0 M 0 ::: 0 0 0

0 M 0 ::: 0 0 0 0

M 0 ::: 0 0 0 0 0

2
666666666666666664

3
777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2q

,

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{h

Bf ¼

K 0 ::: 0 0 0 ::: 0

0 ::: 0 �Cf 0 ::: 0 �M

::: 0 �Cf 0 ::: 0 �M 0

0 �Cf 0 ::: 0 �M 0 :::

0 0 ::: 0 �M 0 ::: 0

0 ::: 0 �M 0 ::: 0 0

::: 0 �M 0 ::: 0 0 0

0 �M 0 ::: 0 0 0 0

2
666666666666666664

3
777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2q

. ð6Þ



ARTICLE IN PRESS
S. Sorrentino, A. Fasana / Journal of Sound and Vibration 299 (2007) 839–853842
The position of the antidiagonals containing the operator Cf depends on the fractional derivative order (or more
precisely, on its numerator h). Note that if M, Cf and K are self-adjoint, Af and Bf result to be self-adjoint too.

As usual in modal analysis, the differential problem is reduced to a differential eigenvalue problem by
separating the variables. With the solution in form of a linear combination of terms w(x, t) ¼ f(x)q(t), Eq. (5)
yields

smAf ½z� þ Bf ½z� ¼ 0, (7)

leading to the differential eigenproblem:

r ¼ sm ) rAf ½z� þ Bf ½z� ¼ 0, (8)

where the eigenvectors z take the form:

z ¼ fðxÞ rfðxÞ r2fðxÞ . . . r2q�1fðxÞ
h iT

. (9)

They are known unless a scaling factor, generally complex, depending on the initial conditions. The solution
of this eigenproblem forms an infinite set of pairs of discrete values, each pair being related to a pair of
eigenvectors (i.e. to a pair of eigenfunctions).

The eigenvector orthogonality properties can be derived rewriting Eq. (8) for the nth and mth eigenvectors,
respectively, pre-multiplying the first by zm

T and the second by zn
T, then integrating them both over the spatial

domain D, i.e.:

rnAf ½zm� þ Bf ½zn� ¼ 0

rnAf ½zn� þ Bf ½zm� ¼ 0

(
)

rnðzm;Af ½zn�Þ þ ðzm;Bf ½zn�Þ ¼ 0;

rnðzn;Af ½zm�Þ þ ðzn;Bf ½zm�Þ ¼ 0;

(
(10)

which, taking into account the self-adjointness of Af and Bf, yield

ðrn � rmÞðzm;Af ½zn�Þ ¼ 0;

ðr�1n � r�1m Þðzm;Bf ½zn�Þ ¼ 0;

(
(11)

thus

if n ¼ m then
ðzn;A½zn�Þ ¼ an;

ðzn;B½zn�Þ ¼ bn;

(
ðznn ;A½zn�Þ ¼ 0;

ðznn ;B½zn�Þ ¼ 0;

(
(12)

if nam then
ðzm;A½zn�Þ ¼ 0;

ðzm;B½zn�Þ ¼ 0;

(
(13)

where the modal parameters an and bn can be expressed as functions of the eigenvalues r and of the inner
products of the operators M, Cf, K and the eigenfunctions f:

an ¼ 2qðfn;M½fn�Þr
2q�1
n þ hðfn;C½fn�Þr

h�1
n ;

bn ¼ ðfn;K ½fn�Þ � ð2q� 1Þðfn;M½fn�Þr
2q
n � ðh� 1Þðfn;C½fn�Þr

h
n:

(14)

Note that bn can be found directly knowing an and rn, recalling that bn/an ¼ �rn.
Due to the orthogonality properties of the eigenvectors zn, any other vector in the same space can be expressed

as their linear combination, which constitutes an extension to fractional systems of the expansion theorem.

2.2. Time domain analysis

According to the expansion theorem, the general solution of Eq. (1) in the time domain can be written as a
linear combination of modes:

wðx; tÞ ¼
X1
n¼1

gnfnðxÞqnðtÞ, (15)

where gn is a scaling factor, generally complex, depending on the initial conditions.
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Introducing the expression (15) into Eq. (5), the decoupling follows by applying the orthogonality relations
(12), (13) and the factors gnqn(t) can then be evaluated according to the Laplace transform technique. The unit
impulse response can then be expressed in the following form:

hðx;xf ; tÞ ¼
X1
n¼1

fnðxf ÞfnðxÞ

an

enðtÞ, (16)

xf being the acting point of the impulse. The functions en(t) can be defined according to

enðtÞ ¼
Xq�1
j¼0

r2q�j�1
n Etð1� jm; rq

nÞ, (17)

where Et is a fractional integral of the exponential function, which can be computed by means of a series, that
is

Etðn; aÞ ¼ I nð Þ eat½ � ¼ tn
X1
i¼0

ðatÞi

Gðnþ i þ 1Þ
, (18)

and G( � ) is the Gamma function. For further details, the reader is referred to the appendix.
On the basis of the unit impulse response (16), the steady-state response to an arbitrary load g(x)f(t) could

be computed by means of a convolution integral:

wregðx; tÞ ¼
X1
n¼1

ðfn; gÞfnðxÞ

an

Z t

0

f ðxÞenðt� xÞdx, (19)

where (fn, g) is the modal force defined through an inner product involving the external density force g(x),
either distributed or concentrated.
2.3. Frequency response functions

A harmonic excitation force of amplitude f0 acting with angular frequency o at a coordinate xf is
considered. Since the system is linear-time-invariant, the steady-state response w will still be a harmonic
oscillation at the same angular frequency o. So, taking into account the expansion theorem and dropping the
time dependent terms, the state-space equation of motion (5) can be rewritten as

X1
n¼1

Cn ðioÞ
mA½zn� þ B½zn�

� �
¼ f0, (20)

where Cn is a scaling factor and f0 ¼ f 0dðx� xf Þ 0
� �T

, d being the Dirac distribution.
Pre-multiplying by zm

T, integrating over the spatial domain D and recalling the orthogonality properties
(12) and (13), Eq. (20) gives

Cn ¼
ðzn; f0Þ

an ðioÞ
m
� rn½ �

¼
fnðxf Þf 0

an ðioÞ
m
� rn½ �

, (21)

where the expression of the modal force fn ¼ (zn, f0) in terms of fn and f0 is due to the Dirac distribution
properties. By means of the definition of modal force through an inner product, the analysis can be extended
to study distributed harmonic loads.

Taking into account again the expansion theorem and Eqs. (20) and (21), it is possible to express the system
receptance as follows:

xHxf
ðoÞ ¼

X1
n¼1

fnðxf ÞfnðxÞ

an ðioÞ
m
� rn½ �

� �
. (22)

The expressions of other frequency response functions follow immediately from Eq. (22).
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3. Computational approach

The growth of matrix dimensions carried by the previously described fractional state-space expansions is in
general so fast to make the calculations too cumbersome for FE applications. So it is necessary to find
alternative solutions.

First of all, it is convenient to distinguish between systems with ‘proportional’ damping distributions and
systems with generalized or ‘non-proportional’ damping distributions.

Clearly, these definitions still hold when fractional derivative rheological models are considered: in such
cases the model is said to be proportional if the undamped system eigenfunctions j (obtained taking into
account the operators M and K only) result to be real, i.e. orthogonal with respect to the fractional damping
operator Cf. In this case the computational effort can be cut down simply by using the eigenfunctions j to
reduce the problem to N equivalent uncoupled single degree of freedom (dof) systems, one for each mode to be
taken into account in the modal expansion.

It is worth pointing out that for discrete fractionally damped systems with many dofs, this procedure carries
even more advantages than in the case of viscous damping, avoiding to solve a large eigenproblem of
dimension 2qn.

In presence of generalized fractional damping distributions, the problem can be solved by considering that
also in this case it is possible to expand the solution on the basis of the undamped system eigenfunctions j
(vectors, for discrete systems) and then to reduce an eigenproblem of dimension 2qn to two distinct smaller
eigenproblems of dimensions n and 2qN, respectively, being N the number of modes taken into account to
approximate the solution. This means that the computational effort can be cut down by taking N5n.

Clearly this technique can be applied to distributed parameter models provided that the related undamped
system eigenfunctions are known.

According to this condensation method, as clearly explained in [20], the solution can be approximated by a
finite expansion in terms of the (known) undamped system eigenfunctions j , not to be confused with the
eigenfunctions f of Eq. (9)

wðx; tÞ ffi
XN

j¼1

jjðxÞrjðtÞ ¼ uTr. (23)

Substituting this expanded form of the solution in Eq. (1) and taking into account the orthogonality
relations of the eigenfunctions j with respect to M and K, it is possible to rewrite the state-space equation (5)
as follows:

Af v
ðmÞ þ Bf v ¼ g, (24)

where the 2qN� 2qN matrices Af and Bf can be defined by analogy with the differential operators (6):

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{h

Af ¼

0 . . . 0 Cf 0 . . . 0 M

. . . 0 Cf 0 . . . 0 M 0

0 Cf 0 . . . 0 M 0 . . .

Cf 0 . . . 0 M 0 . . . 0

0 . . . 0 M 0 . . . 0 0

. . . 0 M 0 . . . 0 0 0

0 M 0 . . . 0 0 0 0

M 0 . . . 0 0 0 0 0

2
666666666666666664

3
777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2q

, ð25Þ
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Bf ¼

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{h

K 0 . . . 0

0 . . . 0 �Cf

. . . 0 �Cf 0

0 �Cf 0 . . .

0 0 . . . 0

0 . . . 0 �M

. . . 0 �M 0

0 �M 0 . . .

2
66666666666664

0 0 . . . 0

0 . . . 0 �M

. . . 0 �M 0

0 �M 0 . . .

�M 0 . . . 0

0 . . . 0 0

. . . 0 0 0

0 0 0 0

3
77777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2q

,

and the fractional state-space and density force vectors can be written in the form:

v ¼

r

rð1Þ

. . .

rð2q�1Þ

2
6664

3
7775; g ¼

ðj; f ðx; tÞÞ

0

. . .

0

2
6664

3
7775. (26)

The N�N matrices M, Cf and K are built up by means of the following inner products involving the
differential operators M, Cf, K and the eigenfunctions j :

M ¼ ðji;M½jj �Þ

h i
; Cf ¼ ðji;Cf ½jj �Þ

h i
¼ CT

f ; K ¼ ðji;K ½jj�Þ

h i
, (27)

with i; j ¼ 1; . . . ;N. It is worth noting that both M and K are diagonal.
The solution of the related algebraic eigenvalue problem, consisting of a set of 2qN eigenvalues rn

(r) and 2qN

eigenvectors un, allows to decouple the equations of motion (24) by introducing the usual coordinate
transformation v ¼ Ug (U denoting the eigenvector matrix and g the modal coordinate vector), which in the
Laplace domain yields:

Zn ¼
f n

a
ðrÞ
n sm � r

ðrÞ
n

h i , (28)

where aðrÞn is the nth element of the diagonalization of Af and fn is the nth component of the modal force vector
UTg.

If a single external force of amplitude f0 acting at a coordinate xf is considered, according to Eq. (26) fn can
be expressed by means of the eigenfunctions j of the undamped system as follows:

f n ¼
XN

i¼1

uinjiðxf Þf 0. (29)

Introducing Eq. (29) in the expression of the modal coordinates, and taking into account backwards the
links among g, v and r, the expansion (23) yields the unit impulse response in the form:

xhxf
ðtÞ ffi

X2qN

n¼1

XN

i¼1

ûinjiðxf Þ

" # XN

j¼1

ûjnjjðxÞ

" #
enðtÞ, (30)
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and the receptance:

xHxf
oð Þ ffi

X2qN

n¼1

PN
i¼1

ûinjiðxf Þ

" # PN
j¼1

ûjnjjðxÞ

" #

ðioÞm � r
ðrÞ
n

, (31)

the superscript ^ denoting normalization with respect to the square root of aðrÞn .
In case of FE applications, the expressions (30) and (31) can be rewritten in terms of the eigenvectors of the

undamped discrete system (namely pj, not to be confused with the eigenfunctions j). To cut down the
computational effort, the order of the system can be reduced by taking into account a subset of N eigenvectors
pj with NpM, M being the number of dofs of the FE model. It should be stressed that the selected sequence of
eigenvectors does not necessarily include the first N or even a set of N eigenvectors close to pj, albeit this has
been the choice for the numerical examples herein presented. The response at a dof h due to a unit impulse
applied in the dof m takes the form:

hhmðtÞ ffi
X2qN

n¼1

XN

i¼1

ûinpmi

" # XN

j¼1

ûjnphj

" #
enðtÞ, (32)

whilst the receptance is

hHmðoÞ ffi
X2qN

n¼1

PN
i¼1

ûinpmi

� � PN
j¼1

ûjnphj

" #

ðioÞm � r
ðrÞ
n

. (33)

The responses can therefore be expressed as functions of a subset of real eigenvectors pj of the undamped
system, and of the complex eigenvalues and eigenvectors sðrÞn , un of the (low order) damped system.

Finally, it should be noticed that the eigenproblem (8) in the case of discrete systems (and so also in the case
of the operator Eq. (25)) is generally ill-conditioned as the matrix Af structure suggests. This difficulty can be
overcome by considering the inverse of Af :

A�1f ¼

0 0 0 0 0 . . . 0 M�1

0 0 0 0 . . . 0 M�1 0

0 0 0 . . . 0 M�1 0 . . .

0 0 . . . 0 M�1 0 . . . 0

0 . . . 0 M�1 0 . . . 0 �M�1Cf M
�1

. . . 0 M�1 0 . . . 0 �M�1Cf M
�1 0

0 M�1 0 . . . 0 �M�1Cf M
�1 0 0

M�1 0 . . . 0 �M�1Cf M
�1 0 0 0

2
666666666666664

3
777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2q�h

, (34)

that is, by solving the related eigenproblem ðrIþ A�1f Bf Þv ¼ 0.
4. Numerical examples

In this section some numerical examples are presented regarding Euler–Bernoulli beams and the description
of an analytical method to solve the differential eigenproblem for non-homogeneous Euler–Bernoulli beams in
bending vibrations is included.
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4.1. Solution of the eigenproblem

For an Euler–Bernoulli beam in bending vibration, the mass, damping and stiffness operators consist of

M ¼ mðxÞ; C ¼ cf ðxÞ or C ¼
q2

qx2
cfinðxÞ

q2

qx2

� �
; K ¼

q2

qx2
kðxÞ

q2

qx2

� �
, (35)

where m(x) is the mass per unit length of beam, cf(x) is the external fractional damping distribution, cfin(x) is
the internal fractional damping distribution (according to the Fractional Kelvin–Voigt model, used in
conjunction with the assumption that cross-sectional areas remain plane during deformation) and
k(x) ¼ EI(x) is the bending stiffness, or flexural rigidity, in which E is the Young’s modulus of the material
and I is the area moment of inertia [13].

The distributions m(x), cf(x) (or cfin(x)) and k(x) are considered piecewise constant on D. So, dividing the
beam into P segments of length Dxp ¼ xp�xp�1 (where x0 ¼ 0, xP ¼ l, length of the beam), the differential
eigenvalue problem can be reduced to a set of P fourth-order ordinary differential equations with constant
coefficients:

fIV
p ðxÞ ¼ a4

pfpðxÞ, (36)

with appropriate boundary conditions, where

ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

mps2 þ cfpsa

cfin;psa þ kp

4

s
. (37)

Eq. (36) can be conveniently converted into a set of four first-order equations.
According to the state vector definition:

yðxÞ ¼ fIII
ðxÞ fII

ðxÞ fI
ðxÞ fðxÞ

h iT
, (38)

the solution for each segment can then be expressed as

ypðxÞ ¼ UpeLpxcp, (39)

where, Up is the pth segment eigenvector matrix, Kp is the pth segment eigenvalue matrix (with eigenvalues
l1p ¼ ap, l2 ¼ �ap, l3 ¼ iap, l4 ¼ �iap) and cp is the pth segment constant vector.

Moreover, it is possible to show [21] that the solution at any point xp can be written as

ypðxpÞ ¼ P
1

p
y1ð0Þ with P

1

p
¼
Y1
i¼p

Uie
Liðxi�xi�1ÞU�1i Bi�1

� �
, (40)

where the ith segment eigenvector matrix and its inverse can be written as functions of ai, and the Bi�1 are
4� 4 matrices obtained by imposing the continuity of displacement, rotation, moment and shear in x ¼ xi�1.
Clearly, these constraints represent the inner boundary conditions between the adjacent beam segments. For
analytical expressions of the above-mentioned matrices U and B, the reader is referred to Ref. [21].

It is now possible to relate the solution y(l) at one end of the beam to the solution y(0) at the other end,
which enables to express the boundary conditions at the ends of the beam in the following form:

Be0y1ð0Þ ¼ 0;

Bel P
1

P
y1ð0Þ ¼ 0;

8<
: (41)

where Be are 2� 4 matrices depending on the kind of constraints and y1ð0Þ ¼ U1c1. In the case of a clamped-
free beam they take the form:

Be ¼
0 0 1 0

0 0 0 1

� �
clamped

; Be ¼
1 0 0 0

0 1 0 0

" #
free

. (42)
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Eq. (41) form a linear homogeneous system of four algebraic equations in four unknowns (i.e. the constants
c1). Thus the solution of the eigenproblem follows directly by setting to zero the determinant of the coefficient
matrix, recalling that its elements depend on the (unknown) eigenvalues s.

4.2. Frequency response functions through direct integration

Besides the modal approach, the analytical tools just developed allow to express the FRFs through direct
integration of the equation of motion, avoiding the solution of the eigenproblem.

The Euler–Bernoulli beam model with piecewise constant distributions is now considered under the effect of
a harmonic force of amplitude f0 acting with angular frequency o at a coordinate xf. Since the steady-state
response results to be still a harmonic oscillation at the same angular frequency o, dropping the time
dependent terms, the equation of motion for each segment of the beam reduces to

W IVðxÞ þ a4
opW ðxÞ ¼ k�1opf 0dðx� xf Þ, (43)

where, the coefficients aop and kop, which are constant within each segment, can be defined according to
Eq. (37) by substituting s with io (k being the denominator of the radicand in Eq. (37)).

Eq. (43) is an ordinary differential equation with constant coefficients, since the angular frequency is
considered as a given parameter. As previously stated, in order to find the global solution, the four coefficients
c1 have to be determined by imposing four boundary conditions.

In the case of a homogeneous beam with two different external damping levels forced in xf (with x1pxf pl),
by assuming, without loss of generality, that the external force acts at a separation point between two
segments (say: xf ¼ xp), and defining the external force vector in the state-space as follows:

f ¼ k�1of f 0 0 0 0
h iT

, (44)

(kof being ko evaluated in xf), the system yielding the unknown coefficients c1 is [18]

Bel U2oe
L2o l�x1ð ÞU�12oU1oe

L1ox1
� �

c1 ¼ �Bel U2oe
L2o l�xfð ÞU�12o

h i
f;

Be0U1oc1 ¼ 0:

8<
: (45)

It is important pointing out that:
�
 the matrices Be are the same as in Eq. (41); and

�
 the matrices retain their own definitions as in Eq. (41), but the subscript o means that anp has been

substituted by aop (i.e. in every definition the eigenvalues sn has been changed in io).

So the receptance at a coordinate x (with 0pxpx1) can be written in function of the four coefficients c1:

xHxf
ðoÞ ¼

1

f 0

c11e
a1ox þ c12e

�a1ox½ þ c13e
ia1ox þ c14e

�ia1ox
�
. (46)

4.3. FE model and numerical results

A standard beam element is the basis to the entire FE model. Each node i exhibits two dofs, i.e. the transverse
displacement wi and the rotation Wi, and the shape functions of the element are third degree polynomials, so
that mass and stiffness matrices can simply be computed or even found in any textbook [22,23].

As regards the damping matrix, it can be written with the same structure of the mass (external damping) or
the stiffness (internal damping) matrix, or even with a combination of the two. The damping distribution
along the beam can be different from the mass and stiffness distributions.

In the numerical examples herein presented the FE model is composed of 30 elements with constant
distribution of mass and stiffness (m ¼ 0.243 kg/m, k ¼ 4.725Nm2). The number of elements is largely
sufficient to give an optimum accuracy on the first five modes and allows placing the input and output
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observation points exactly in the same places as in the analytical model. In the following examples the input
force has always been applied at the free end of the beam whilst the output displacement is detected at 1/4 of
the beam length.

To match the analytical model, the damping distribution is constant on two segments of the beam as shown
in Fig. 1.

Fig. 2 shows the comparison of the FRFs computed according to Eq. (46) (exact solution) and to Eq. (33)
(approximated FE solution) when the damping is internal, which in the FE formulation means that the
damping and the stiffness matrices have the same structure in both segments of the beam
(cfin1 ¼ 31.62� 10�5N sm2, cfin2 ¼ 10.00� 10�5N sm2, where 1 is referred to the segment of the beam
near the clamped end, 2 to the segment near the free end). Some minor differences can be noticed near
the anti-resonance at about 1700Hz and very similar results can be obtained also by implementing
Eq. (22), applied to a discrete system. It is worth noting that the exact fractional solution (Eq. (22)) is
approximately 50 times slower to run than its approximated equivalent (Eq. (33)) albeit not achieving really
different results.

Fig. 3 shows the effects of the fractional derivative order. The line marked with h1 ¼ h2 ¼ q represents the
behaviour of the system with derivative order equal to one and both internal and external damping
(cfin1 ¼ 31.62� 10�5N sm2, cfin2 ¼ 10.00� 10�5N sm2, cf1 ¼ 200N s/m2, cf2 ¼ 100N s/m2). The other lines
are obtained by varying h1 and h2 in order to demonstrate the effect of reducing the derivative order. No
particular distortion of these latter FRF’s can be observed and in fact they can accurately be fitted by any
traditional frequency domain method involving a modal parameter extraction. Clearly the parameters thus
obtained loose any link to the fractional order, being based on an assumed viscous or hysteretical model.
These observations make clear that the problem of identifying even the presence, not to speak of the type, of a
fractional derivative system has to be faced by more sophisticated techniques and will possibly be addressed in
the future.

Fig. 4 shows the contribution of the first three modes to the impulse response. The system has derivative
order 0.5 and proportional internal damping (cfin1 ¼ cfin2 ¼ 3� 31.62� 10�5Ns0.5m2). A close look to the time
history of mode 3 reveals that its oscillation, just like the oscillation of the other modes, is superimposed to a
decaying behaviour approaching zero towards infinity.

Fig. 5 shows the influence of the derivative order on the part of the impulse response due to the second mode
only. With a passing from 1/16 to 1/2 the effect of the damping becomes obviously more evident.
c (x)

0

x1= l1 = 0.1 m x2 = l = 0.3 m

x

x

c2

c1
Non-proportional external damping distribution

x0 = 0

Cantilever E-B homogeneous beam

Fig. 1. Cantilever homogeneous beam with non-proportional external damping.
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Fig. 2. Receptance modulus for proportional internal damping (approximate vs. exact solution).

Fig. 3. Receptance modulus for different fractional derivative orders (FE approximate solution).
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5. Conclusions

In Section 2 a technique has been presented for the modal analysis of linear vibrating systems with
fractional derivative damping distributions. According to an expansion of the equations of motion analogous
to a state-space representation, the orthogonality properties of the eigenfunctions have been defined and
discussed, leading to the statement of the expansion theorem for fractionally damped systems, valid for both
discrete and continuous systems.

The proposed method is of general validity, due to the assumption of generalized fractional damping
distributions, the adoption of an operator notation and the possibility to take into account fractional
viscoelastic models other than the Fractional Kelvin–Voigt one.

In Section 3, a methodology for reducing the computational effort due to finite element analysis has been
presented. It consists in replacing the main eigenproblem of large dimension with two related standard
eigenproblems of lower size. The choice of the most suitable procedure for the solution depends on the
damping distribution properties:
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Fig. 4. Impulse response function for a ¼ 0.5 (contribution of first 3 modes).

Fig. 5. Impulse response function for a ¼ 1/16–1/8–1/4–1/2 (contribution of the second mode only).
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Case 1: ‘Proportional’ fractional damping. The solution can be expanded on the basis of the undamped
system eigenfunctions, reducing the problem to the solution of N single dof systems, N being the number of
modes taken into account in the expansion. The computational effort for the time domain responses, however,
is in any case a little higher with respect to the case of viscous damping, due to the presence of G functions in
the series defining the response.

Case 2: Generalized fractional damping. If the dimensions of the eigenproblem following the fractional
state-space expansion are not too high, the standard procedure can be adopted. Otherwise, the technique
presented and described in Section 3 can reduce significantly the computational effort without carrying
relevant losses of accuracy.

Both the accuracy and efficiency of the proposed methodology have been verified in Section 4 by means of
numerical examples regarding Euler–Bernoulli beams.
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Appendix

According to the Riemann–Liouville theory [15], an integral of non-integer order b40 of x(t) can be defined
by means of the following integral transform:

I
ðbÞ
t0 ½xðtÞ� ¼

1

GðbÞ

Z t

t0

xðtÞðt� tÞb�1 dt, (A1)

valid for t4t0, where G is the gamma function and t0 is conventionally settled to 0 if x(t) represents the
response due to a causal system.

Since the integral in Eq. (A1) generally does not converge for bo0, a fractional derivative of order aA(0, 1)
of x(t) can be obtained taking the first derivative of the integral of order 1�a, that is

da

dta
xðtÞ ¼

1

Gð1� aÞ
d

dt

Z t

0

ðt� tÞ�axðtÞdt, (A2)

which is known as the Riemann–Liouville definition of fractional derivative of order aA(0, 1), for t40. Taking
the nth derivative of the integral in Eq. (A2), with n positive integer, yields the fractional derivative of order
n+a.

Following the same approach, another possibility exists of defining a fractional derivative of order aA(0, 1).
It consists in taking the integral of order 1�a of the first derivative of x(t), that is

da

dta
xðtÞ ¼

1

Gð1� aÞ

Z t

0

ðt� tÞ�a
d

dt
xðtÞ

� �
dt, (A3)

which represents the dual of the definition (A2), and which is known as the Caputo definition of fractional
derivative of order a 2 ð0; 1Þ, for t40. The two definitions (A2) and (A3) are not equivalent since the index law
does not apply for fractional derivatives [15].

A fractional derivative being an integer order derivative of an integral function, or vice-versa, it results to be
linear and time-invariant [5].

The Fourier and Laplace transforms of non-integer order integrals and derivatives can be obtained by
means of rules similar to those that hold for integer order operators [15]:

F
da

dta
xðtÞ

� �
¼ ðioÞaF xðtÞ½ � ¼ ðioÞaX ðoÞ (A4)

as regards the Fourier transform and:

L
da

dta
xðtÞ

� �
¼ saL xðtÞ½ � ¼ saX ðsÞ (A5)

as regards the bilateral Laplace transform, both valid for every real value of a and for both the
Riemann–Liouville and Caputo definitions.

The study of fractional differential systems carries the replacement of the traditional trigonometric and
exponential functions with higher transcendent functions. In this paper the function Et has been adopted,
which is the integral of order n of the exponential function [15]:

Etðn; aÞ ¼
1

GðnÞ

Z t

0

xn�1eaðt�xÞ dx Re½n�40 or Etðn; aÞ ¼ tn
X1
k¼0

ðatÞk

Gðnþ k þ 1Þ
. (A6)

In place of Et, other higher transcendent function may be adopted, in particular the Mittag–Leffler
function [15].

The Laplace transform of the function Et can be determined by applying the convolution theorem to its
integral representation in Eq. (A6), yielding:

L Etðn; aÞ½ � ¼
1

GðnÞ
L tn�1
� �

L eat
� �
¼

1

snðs� aÞ
with Re½n�4� 1, (A7)

where the existence condition Re[n ]40 can be extended to Re[n ]4�1 [15].
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It is now possible finding the inverse Laplace transform of the basic component of the transfer function of
the problems under study, i.e.:

X ðsÞ ¼
1

sm � a
, (A8)

where, m ¼ 1/q, with q positive integer. By means of the partial factor decomposition of the right-hand side
term in Eq. (A8):

1

sm � a
¼
Xq

k¼1

ak�1

skm�1ðs� aqÞ
, (A9)

the inverse transform of X(s) follows immediately from Eq. (A7):

L�1
1

sm � a

� �
¼
Xq

k¼1

ak�1Etðkm� 1; aqÞ. (A10)

The case of coincident eigenvectors carries the problem of the calculation of the inverse Laplace transform
of powers of the right-hand side term in Eq. (A8). But it can be handled according to the same technique, using
different partial factor decompositions. The final result will again be a combination of Et functions [15].
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