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Abstract

Based on the Fliigge thin shell theory, this paper presents exact solutions for the vibration of circular cylindrical shells
with step-wise thickness variations in the axial direction. The shell is sub-divided into multiple segments at the locations of
thickness variations. The state-space technique is adopted to derive the homogenous differential equations for a shell
segment and domain decomposition method is employed to impose the equilibrium and compatibility requirements along
the interfaces of the shell segments. To ensure the correctness of the present results, comparisons are made with one paper
available in the open literature based on the Donnell-Mushtari theory. Shells with various combinations of end boundary
conditions can be analyzed by the proposed method. Furthermore, the influences of the shell thickness ratios, locations of
step-wise thickness variations and step thickness ratios on the natural frequencies and mode shapes are examined. The
exact vibration results can serve as important benchmark values for researchers to validate their numerical methods for
such circular cylindrical shells.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Circular cylindrical shells are widely used in many fields of engineering, especially in civil, mechanical,
aerospace and marine engineering. Vibration of circular cylindrical shells is of interest of a number of different
fields and has been extensively studied by many researchers. However, only a handful of references available in
the published literature address the effect of the thickness variations on the vibration behavior of shells.
Investigation has been made into different forms for analyzing the vibration of the cylindrical shells with
variable thickness:

(1) axial thickness variation [1-6];

(2) circumferential thickness variation [7-8];

(3) thickness variation in the direction of generator [9-10]; and
(4) step-wise thickness variation [11-14].
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Most of the studies on the vibration of circular cylindrical shells of non-uniform thickness are for shells with
axial direction thickness variations. To the authors’ knowledge, there are no exact solutions available in the
open literature for vibration of stepped circular cylindrical shells. The main purpose of the present paper is to
develop an analytical method for vibration of stepped circular cylindrical shells and to present exact vibration
frequencies for such shells under different combinations of boundary conditions. The Fliigge shell theory is
employed in this study. The state-space technique is adopted to derive the homogenous differential equation
system. Comparison studies are carried out to verify the correctness of the proposed method with published
results [11,15]. The effect of different step thickness ratios, step locations and the length to radius ratios on
frequency parameters and mode shapes of the circular cylindrical shells is highlighted in this study. The results
are presented in tabular and graphical forms for easy reference by researchers and engineers.

2. Formulations

Consider an isotropic, circular cylindrical shell with length L. The shell is of three steps with lengths L;, L,
and Ls, step thicknesses 4, >, and A3, midsurface radius R, Young’s modulus E, Poisson’s ratio v and mass
density p as shown in Fig. 1. The displacement fields of the open shell with reference to the coordinate system
are denoted by u, v and w in the x, 6 and radial directions, respectively.

An analytical method based on the state-space technique has been developed by Xiang et al. [17] to study
the vibration of circular cylindrical shells with intermediate ring supports. The Goldenveizer—Novozhilov shell
theory was employed in their study [17]. The same approach is employed in this study to determine the
vibration frequencies of Fliigge shells with step-wise thickness variations. For integrity and convenience, the
analytical method is briefly presented in this section.

2.1. Governing differential equations

The shell can be divided into ¢ ring segments. The symbol ¢ denotes the number of total ring segments
separated from the whole cylindrical shell at the locations of thickness variations. For the ith ring segment, the
governing differential equations based on the Fliigge shell theory can be expressed as [16]
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Fig. 1. Geometry and coordinate for a circular cylindrical shell with two-step thickness variations.
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in which u;(x, 0, t), v;(x, 0, t) and w;(x, 0, t) are the displacements of the ith ring segment in the x, 0 and radial
directions, ¢ is the time and k; = hf /(12R?).

2.2. Solutions for the ith ring segment

The displacement fields for the ith ring segment may be expressed as

ui(x, 0, 1) = Ui(x)cos m cos wt, 4)
vi(x,0,1) = V(x)sin m0 cos wt, &)
wi(x, 0,t) = Wi(x)cos mb cos wt, (6)

where the subscript i (= 1,2, 3,...,q) denotes the ith ring segment of the shell, 2m (m =0,1,2, ..., 00) is the
number of half-waves in the circumferential direction of the vibration mode, w is the angular frequency of
vibration, and Uy(x), Vix) and W(x) are unknown functions to be determined. Note that m = 0 corresponds
to the axisymmetric vibration mode for the shell. We restrict our study in this paper to m>0.

Using the state-space technique, a homogenous differential equation system for the ith ring segment can be
derived from Egs. (1) to (3) and (4) to (6) after appropriate algebraic operations:

W~ Hay, = 0 ™
in which
wo= (U0 U Ve VoW W W W ' (®)

the prime (") denotes the derivative with respect to x, and H; is an 8 x 8 matrix with the following non-zero
elements:

(Hi)y =(Hi)sy = (Hi)sg = (Hi)gy = (Hi)gg = 1, ©)
21— o)1 + ki 1 —v?)o?
(H)y = my 2!2§ )_p( EU )w ) (10)
(Hpsy = =50 (i
(Hzg = — ot D (12)
(H i)y = kiR, (13)
. (14 v)ym
Hdo = rid =01 + 35" (14
N 2m? 2,0(1 - 02)w2
(Has = R(1 —v)(1 +3k;) EQ —v)(1+3k;)’ (15)
2
(H)ys = - (16)

R*(1 —v)(1 + 3k))’
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The procedure for solving Eq. (7) has been detailed by Xiang et al. [18] and Liew et al. [19]. The solution for
Eq. (7) can be expressed as

W, = ele;, (22)
where eM is a general matrix solution of Eq. (7), ¢;is an 8 x 1 constant column matrix that is to be determined
using the boundary conditions and/or interface conditions between the shell ring segments.

2.3. Boundary and interface conditions

It is well known that there are 4 simply supported and 4 clamped boundary conditions associated with a
circular cylindrical shell [16]. Although we can obtain exact solutions for circular cylindrical shells with
various combinations of end support conditions, in this paper three typical boundary conditions are
considered:

(1) Simply supported or shear diaphragms (.5):

wi=(My); = (Ny); =v; =0. (23)
(2) Free (F):
M ), 1 0(M xp);
V= W+ P2 (0) 4 2 P00 (ag, =0 049
(3) Clamped (C):
ui:v,-:w,-:%zo, (25)

where 7 takes the value 1 or ¢, and the force and moment resultants based on the Fliigge shell theory are given
by [16]

Eh W
Ny=—+ Sx-I—USg-‘rﬁKX s

= (26)
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Ng:%[&g—l—vs,x—%(m—%sg)} 27
Nyg = Z(IE—jl—u) <6x9 + %1), (28)
My zlz(f—hjnz)<rcx+vxe+%ex), (29)
M,y = 24(E1h—13-u)r’ (30)
Mur = g (5= %o a1
0, = x4 2000 (32)
and the strain, curvature and twist of middle surface terms are related to displacement fields by [16]
- (33)
eg = % <22 + w), (34)
Exp Ilzg_g + gv , (35)
e = gx‘ﬁ (36)
Ko = % <% - %), 37
£ _% (aa:ge B S_i) %)

To ensure the continuity along the interface between the ith and the (i+ 1)th ring segments, the following
essential and natural continuity conditions must be satisfied:

Wi = Witl, (39)

Uj = Ups1, (40)

Table 1
Comparison of frequency parameters A for a simply supported cylindrical shell (v = 0.3, L/R = 20)

m h/R = 0.05 h/R = 0.002

Markus [15] Present Markus [15] Present
1 0.0161063 0.0161065 0.0161011 0.0161011
2 0.0392332 0.0393038 0.00545243 0.00545325
3 0.109477 0.109853 0.00503724 0.00504188
4 0.209008 0.210345 0.00853409 0.00853408
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In view of Eq. (22), a homogeneous system of equations can be derived by implementing the boundary
conditions of the shell [see Egs. (23)-(25)] and the interface conditions between two ring segments
[Egs. (33)-(46)] when assembling the segments to form the whole shell. We have

Ke = 0, (47)

Table 3

Frequency parameters A for SS shells with one-step thickness variation (f;/R = 0.01, hy/hy = 0.5, L1 /L = 1/2)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.549340 0.6224352 0.461341 0.342826 0.264939 0.2204481 0.203730 0.208690
2 0.852379 0.8663417 0.7771635 0.682271 0.594148 0.5196507 0.462070 0.422981
3 0.931840 0.9299856 0.8873969 0.835280 0.779992 0.7270372 0.6807859 0.644406
4 0.958827 0.9826149 0.9593823 0.930105 0.897440 0.8641631 0.8329965 0.806449
5 0.998036 1.0657842 1.0552058 1.042250 1.028176 1.0143573 1.0022124 0.993095
6 1.072854 1.1543279 1.1667493 1.161383 1.155950 1.1514385 1.1489364 1.149584
7 1.174256 1.1720124 1.3678038 1.368910 1.371115 1.3748945 1.3807329 1.389112
8 1.367307 1.367410 1.5636963 1.570130 1.578938 1.590495 1.6052027 1.623470

5 1 0.176590 0.0729781 0.0411366 0.0415354 0.0537910 0.0643111 0.0779291 0.0964449
2 0.459537 0.241848 0.137338 0.0914285 0.0823614 0.100462 0.116863 0.126808
3 0.581714 0.404736 0.253553 0.170766 0.131015 0.122451 0.143158 0.174006
4 0.670022 0.549270 0.377266 0.266358 0.200257 0.168358 0.166487 0.188167
5 0.782352 0.650020 0.479877 0.356095 0.274027 0.225921 0.206112 0.212107
6 0.806931 0.726442 0.570134 0.442843 0.349437 0.287006 0.252786 0.245482
7 0.845214 0.778058 0.639504 0.516584 0.420041 0.351087 0.308017 0.288069
8 0.880104 0.816454 0.696293 0.581186 0.484095 0.409330 0.357921 0.330692

10 1 0.056537 0.020741 0.0205316 0.0291277 0.0381839 0.051992 0.069883 0.091162
2 0.187773 0.077268 0.0425071 0.0443353 0.057613 0.064715 0.077344 0.095833
3 0.322085 0.151429 0.0822348 0.0600841 0.0701742 0.089500 0.0955837 0.107743
4 0.459404 0.240994 0.1365716 0.0909894 0.0819812 0.101259 0.122619 0.128460
5 0.560665 0.324886 0.1936166 0.1284957 0.1030313 0.108994 0.1383343 0.156020
6 0.599689 0.409942 0.2571894 0.1728271 0.1315572 0.123198 0.1430132 0.180775
7 0.658756 0.481711 0.3163429 0.2177874 0.1643209 0.143850 0.152024 0.183084
8 0.663906 0.549150 0.3768955 0.2658855 0.199826 0.168163 0.1658968 0.188585
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where K is an 8¢ x 8¢ matrix and c¢ is an 8¢ x 1 vector. The angular frequency w is evaluated by setting the
determinant of K in Eq. (47) to zero i.e., solving the eigenvalue problem.

3. Results and discussions

The proposed analytical method is applied to evaluate exact vibration frequencies for circular cylindrical
shells having various combinations of edge support conditions and a given number of thickness variations.
For convenience, a two-letter symbol is used to describe the shell boundary conditions, i.e. the symbol SF
denotes a shell having simply supported and free edge conditions at x = 0 and L, respectively. The vibration
frequency o is expressed in terms of a non-dimensionalized frequency parameter 2 = wR>\/p(1 — v?)/E. The
Poisson ratio v takes the value 0.3 in this study.

3.1. Verification of solution method

The authors have difficulty to find vibration results for stepped Fliigge circular cylindrical shells to compare
with in the open literature. The vibration solutions obtained by Zhou and Yang [11] based on the
Donnell-Mushtari shell theory, therefore, are used in this paper to confirm the correctness of the solution
method. The differential equations and the corresponding H matrix based on the Donnell-Mushtari shell
theory are given in Appendix.

Table 1 shows the comparison of frequency parameters of SS shells obtained from 3D solutions [15] and the
present method without thickness variations. We observe that the present exact solutions based on Fliigge
shell theory are in close agreement with the exact 3D solutions [15]. The value of 2m in Table 1 represents the
number of half-waves of a vibration mode in the circumferential direction.

Table 4
Frequency parameters A for CC shells with one-step thickness variation (k; /R = 0.01, iy /hy = 0.5, L /L = 1/2)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.851004 0.657065 0.5107107 0.4090616 0.339550 0.294249 0.269134 0.261650
2 0.940764 0.874865 0.7862245 0.6943636 0.612273 0.545455 0.495197 0.461317
3 0.973299 0.947067 0.9069743 0.8576169 0.805356 0.755997 0.713800 0.681439
4 1.025416 1.011561 0.9897311 0.9620549 0.931274 0.900278 0.871804 0.848260
5 1.128235 1.120170 1.1094318 1.0970959 1.084333 1.072302 1.062182 1.055110
6 1.247009 1.244317 1.2403934 1.2359467 1.231801 1.228868 1.228131 1.230608
7 1.472132 1.472034 1.4724456 1.4735819 1.475843 1.479691 1.485605 1.494053
8 1.689655 1.692319 1.6967675 1.7031928 1.711953 1.723450 1.738083 1.756222

5 1 0.236938 0.124514 0.0735505 0.0572470 0.0624887 0.0724892  0.0837975 0.100156
2 0.465215 0.270691 0.169777 0.117799 0.0979801 0.106698 0.124965 0.134955
3 0.654823 0.415764 0.275089 0.194529 0.151438 0.136604 0.148301 0.179224
4 0.782057 0.552225 0.388211 0.283104 0.218466 0.184255 0.177383 0.193191
5 0.806531 0.651388 0.485537 0.367180 0.288468 0.240858 0.219084 0.220808
6 0.850639 0.727157 0.572762 0.449354 0.359618 0.299219 0.264925 0.255656
7 0.881919 0.779273 0.641570 0.521210 0.427795 0.361233 0.319091 0.298481
8 0.901664 0.817512 0.697740 0.584146 0.489428 0.417029 0.367247 0.340463

10 1 0.0976584  0.0413561 0.0277287 0.0337158 0.0413595 0.0535962  0.0706732 0.0915757
2 0.212690 0.102737 0.0581062 0.0494976 0.0624907 0.0692264  0.0801636 0.0974743
3 0.333290 0.173652 0.100302 0.0712600 0.0730836 0.0943531 0.100375 0.111046
4 0.462386 0.256602 0.153703 0.104351 0.0894228 0.102621 0.127564 0.133030
5 0.567189 0.334890 0.208148 0.141944 0.112842 0.113425 0.138934 0.160840
6 0.657675 0.415509 0.268314 0.185117 0.141950 0.129935 0.145399 0.181488
7 0.665121 0.484306 0.324627 0.228486 0.174554 0.151733 0.156428 0.184906
8 0.734091 0.550687 0.382595 0.274615 0.209234 0.176238 0.171445 0.191281
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Table 2 presents the frequency parameters A obtained by Zhou and Yang [11] and the present
analytical method for a circular cylindrical shell with two thickness variations and FF, SS and CC
boundary conditions. The dimensionless geometric and material parameters used in the calculations are
given in Ref. [11] as £ =100, v =0.3, R =L = 100 the thicknesses and lengths of the three segments
h=1,h=3h=1 L =40, L, =20, Ly = 40, respectively. It is seen that the exact vibration solutions
from the proposed analytical method based on the Donnell-Mushtari shell theory are in close agreement
with the solutions of the distributed transfer function method [11] except for (m = 2, n = 2 for FF shells)
and (m =5, n = 12 for CC shells) where a large discrepancy is observed. These differences could be due
to typos in Zhou and Yang [11]. These comparisons confirm the correctness of the present analytical
method.

3.2. Vibration and mode shapes of shells with one-step thickness variation

Tables 3—6 present the effect of end boundary conditions on frequency parameters A of the first 8§ modes for
circular cylindrical shells with one thickness variation. Four different combinations of shell end support
conditions are considered, i.e. SS, CC, CF and FF, respectively. The shell length to radius ratio L/R is set to be
1, 5 and 10, the thickness to radius ratio /;/R is fixed at 0.01, the step thickness ratio /,/h; is taken to be 0.5,
and the location of the thickness variation is at the center of the shell. The value of 2m indicates
circumferential half-wavenumbers and n denotes the mode sequence number for a given m value. The effect of
end boundary conditions on the frequency parameters of the shell is observed. As expected, clamped—clamped
end supports will lead to higher frequency parameters, which in turn have higher fundamental frequency
parameter due to the larger stiffness resulting from restraining the axial displacement u at the end. An increase

Table 5
Frequency parameters A for CS shells with one-step thickness variation (4 /R = 0.01, ha/hy = 0.5, L /L =1/2)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.839577 0.656477 0.504868 0.396243 0.321475 0.272933 0.246298 0.238393
2 0.933956 0.869713 0.781849 0.688810 0.603571 0.532784 0.478959 0.442776
3 0.965861 0.940464 0.900492 0.850694 0.797497 0.746771 0.702844 0.668472
4 1.007454 0.993190 0.970633 0.942215 0.910706 0.878926 0.849588 0.825164
5 1.100136 1.093081 1.082152 1.069022 1.055113 1.041658 1.029859 1.020881
6 1.208588 1.205792 1.201609 1.196915 1.192614 1.189639 1.188980 1.191652
7 1.410255 1.410090 1.410107 1.410673 1.412241 1.415315 1.420420 1.428088
8 1.635987 1.638643 1.642884 1.649094 1.657629 1.668857 1.683138 1.700801

5 1 0.221195 0.105694 0.0593263 0.0476538 0.0541674 0.0643185 0.0779305 0.0964449
2 0.461123 0.254706 0.152747 0.104139 0.0898911 0.102007 0.116863 0.126809
3 0.639087 0.410565 0.265953 0.184197 0.142141 0.129721 0.145832 0.174035
4 0.700747 0.550612 0.382209 0.274239 0.209084 0.176363 0.171911 0.190689
5 0.782707 0.651206 0.483761 0.363153 0.282856 0.234678 0.213203 0.216739
6 0.844817 0.726854 0.571377 0.445843 0.354255 0.293035 0.259240 0.251152
7 0.879229 0.779090 0.641121 0.519881 0.425244 0.357559 0.314564 0.293608
8 0.901525 0.817009 0.697108 0.582722 0.486764 0.413259 0.363031 0.336591

10 1 0.0824356 0.0319945 0.0228416 0.0291299 0.0381847 0.0519924 0.0698830 0.0911617
2 0.198968 0.0893695 0.0498920 0.0464173 0.0576169 0.0647151 0.0773440 0.0958328
3 0.327164 0.163758 0.0918323 0.0656422 0.0716962 0.0895010 0.0955837 0.107743
4 0.460866 0.248201 0.144752 0.0974624 0.0854855 0.102022 0.122619 0.128460
5 0.566788 0.330983 0.201955 0.135916 0.108174 0.111279 0.138670 0.156020
6 0.619633 0.412268 0.262247 0.178630 0.136648 0.126468 0.144196 0.180831
7 0.663673 0.483677 0.321334 0.223989 0.170037 0.147990 0.153993 0.183518
8 0.708281 0.549796 0.379380 0.269888 0.204327 0.172336 0.168819 0.189701
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Table 6
Frequency parameters A for CF shells with one-step thickness variation (b /R = 0.01, hy/hy = 0.5, L; /L =1/2)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.637349 0.409444 0.275022 0.194503 0.147252 0.123524 0.118057 0.125949
2 0.899615 0.766426 0.619980 0.499541 0.410750 0.349571 0.312104 0.295727
3 0.948341 0.911952 0.852946 0.779737 0.703082 0.632319 0.573498 0.529699
4 0.973919 0.954440 0.922660 0.881356 0.835896 0.791600 0.752693 0.722193
5 1.026355 1.015653 0.999403 0.979354 0.956896 0.933598 0.911320 0.892034
6 1.125975 1.120843 1.113008 1.103944 1.094922 1.086978 1.081108 1.078300
7 1.247310 1.245776 1.243603 1.241456 1.240034 1.240078 1.242379 1.247766
8 1.472043 1.473055 1.474768 1.477654 1.482132 1.488628 1.497559 1.509317

5 1 0.0978355 0.0377954 0.0223843 0.0257202 0.0364883 0.0511895 0.0693894 0.0907467
2 0.281382 0.141542 0.0800276 0.0594417 0.0635691 0.0742545 0.0859105 0.102387
3 0.542039 0.308232 0.185817 0.125096 0.101532 0.108724 0.129176 0.140232
4 0.639836 0.447572 0.295884 0.206714 0.158686 0.141297 0.150311 0.182401
5 0.747988 0.596853 0.422113 0.304876 0.232025 0.192665 0.182515 0.196523
6 0.831442 0.674779 0.509023 0.385863 0.302028 0.250553 0.226419 0.225935
7 0.853341 0.754079 0.603384 0.475842 0.380026 0.314148 0.275317 0.262638
8 0.894071 0.790750 0.657965 0.538072 0.442711 0.373604 0.329488 0.307703

10 1 0.0294630 0.0108632 0.0129036 0.0217671 0.0342804 0.0499774 0.0686512 0.0902381
2 0.109438 0.0440413 0.0281391 0.0338680 0.0417656 0.0540995 0.0712107 0.0921111
3 0.237627 0.108905 0.0598498 0.0501035 0.0636196 0.0706284 0.0813663 0.0985602
4 0.354481 0.184177 0.104243 0.0729533 0.0735858 0.0960644 0.102538 0.112900
5 0.496950 0.275639 0.161474 0.107736 0.0909596 0.102990 0.130245 0.135874
6 0.588074 0.352205 0.217207 0.146490 0.115296 0.114532 0.139113 0.164457
7 0.633824 0.439996 0.282036 0.192324 0.145814 0.132066 0.146157 0.181716
8 0.681861 0.501541 0.336617 0.235818 0.178946 0.154575 0.158208 0.185876

in the length to radius ratio L/R from 1 to 10 will lead to a decrease in the frequency parameters. The results
reveal that the influence of end boundary conditions on the frequency parameters decreases as the ratio of L/R
increases. It is also observed that as the mode sequence number # increases, the frequency parameters become
less dependent upon the type of boundary conditions, i.e. for fixed n and m values, the difference among the
frequency parameters for shells of various boundary conditions becomes smaller. The frequency parameters 4
may increase or decrease as the number of circumferential half-waves 2m increases. Therefore, it is not certain
that the lowest frequency parameter for each case in Tables 2—5 corresponds to the true fundamental mode of
the case. The value of m at which the lowest frequency parameter occurs depends on the length to radius radio
L/R and the step thickness ratio /,/h;.

The mode shapes corresponding to the first three frequency parameters (for m = 1) of CC and CF circular
cylindrical shells with one step thickness variation are presented in Fig. 2. The step thickness ratio is set to be
hy/hy = 0.5 and 2, thickness ratio is taken as /;/R = 0.01 and length to radius ratio is L/R =5 and 10.
Although the step thickness variation exists in the cylindrical shells, the modal shapes for the displacement
fields u, v and w for all cases are smooth at the location of step thickness variation (L; /L = 0.5). It is obvious
that for the lower modes, the amplitude of the displacement in the x direction (u) is quit small compared to
ones in the radial (w) and circumferential (v) directions. For higher modes, however the amplitude of the
displacement u becomes more pronounced. From this point of view, any assumption that the longitudinal
displacement can be neglected may lead to inaccuracy predictions for higher modes. As described in
Eqgs. (23)—(25), the displacements in x, radial and circumferential directions for free edges are unconstrained
while all constrained for clamped edges. It is also observed that the amplitude of mode shapes increases
slightly as the step thickness ratio /,/h; increases from 0.5 to 2 for lower modes. However, this increment
becomes more significant with higher modes.
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3.3. Vibration of shells with one thickness variation at various shell lengths

Figs. 3 and 4 show the variation of the fundamental frequency parameters A against the shell length to
radius ratio L/R for SS and CF shells, respectively. The step thickness to radius ratio 4;/R = 0.01, and
thickness ratio /i, /h; = 0.5, 1 and 2 are considered for all shells in Figs. 2—4. For the SS shells, the step
thickness variation is located at L; /L = 1/4 and 1/2 and for the CF shell the location of the step thickness
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0.5and 0.25. (a) L1 /L, =1/2, (b) L, /L, = 1/4.
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variation L,/L is set to be 1/3, 1/2 and 2/3, respectively. The shell length to radius ratio L/R varies from 1 to 10
with increment of 0.2. It is apparent that the fundamental frequency parameters decrease as the shell length to
radius ratio L/R increases. It is found that the fundamental frequency parameters A decrease significantly as
L/R increases from 1 to 5 and then become hardly influenced by the length to radius ratio L/R of the circular
cylindrical shell, i.e. the effect of end boundary conditions diminishes for long shells.

3.4. Vibration of shells with one thickness variation at various locations

The effect of the locations of the step thickness variation L;/L on the fundamental frequency parameters of
CF and FF shells is illustrated in Figs. 5 and 6, respectively. The step thickness to radius ratio /;/R = 0.01,
thickness ratio s,/h; = 0.5 and 2, and the length to radius ratio L/R =1, 5 and 10 are considered. The
location of the step thickness variation L,/L varies from 0.01 to 0.99 with increment of 0.02. It is seen that the
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10. (a) L/R=1, (b) L/R=5, (¢c) L/R = 10.

0.018 —TT 0.018 T T T 0.018 T 1 T 1
q A hylh =2
ME 0.016 - 0.016 A py/h=2 0.016 A hy/h =2
= B B hy/h =05 T ™
> 0.014 | — 0.014 B hy/h =05 — 0.014 B hy/h =05 -
= ™~ | 2
< 0.012 ~ 0.012 0.012
=
3 RN DN AN
y 0.01 0.01 < 0.01
~ | ~L ~
5 0.008 — 0.008 e 0.008 — L
5] e ‘ ‘/ ‘ —
g e — o
£ 0.006 0.006 0.006
A - — —
> - o e
g 0.004 0.004 p—u—— 0.004 t—pr—ar—u—
5]
=1
g 0.002 0.002 0.002
=
0 0 0
0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.4050.60.70.80.9 1
(a) Thickness Variation Location L,/L (b) Thickness Variation Location L,/L () Thickness Variation Location L,/L

Fig. 6. Frequency parameters A = wR>+/p(1 — v?)/E versus the thickness variation ratio L;/L for FF circular cylindrical shells having
one-step thickness variation, thickness ratio /;/R = 0.01, step thickness ratio /1, /h; = 0.5, 2 and length to radius ratio is set to be 1, 5 and
10. (a) L/R=1,(b) L/R=5, (¢c) L/R = 10.



L. Zhang, Y. Xiang | Journal of Sound and Vibration 299 (2007) 948-964

961

step thickness ratio /,/h; is of great influence on the fundamental frequency parameters of the shells. The
fundamental frequency parameters for shells with a larger step thickness ratio /,/h; are always greater than the
ones with a smaller step thickness ratio until the value of L;/L reaches 1. The position of step thickness
variation also has a significant influence on the fundamental frequency and this influence varied with the
boundary conditions.

3.5. Vibration of shells with one thickness variation at various step thickness ratios

The influence of step thickness ratio /4,/h; on the fundamental frequency parameters of SS and CF circular
cylindrical shells with one thickness variation is depicted in Figs. 7 and 8. The step thickness to radius ratio
hi/R =0.01, and the length to radius ratio L/R =1, 5 and 10, respectively. For the SS shells, the step
thickness variation is located at L;/L = 1/4 and 1/2 and for the CF shell the location of the step thickness
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variation L/L is set to be 1/3, 1/2 and 2/3, respectively. The step thickness ratio /,/h; changes from 0.5 to 2
with increment of 0.03. For the SS shells, the fundamental frequency parameters increase monotonically as the
step thickness ratio /,/h; increases. For the CF shells, however, the variation of the fundamental frequency
parameters against the step thickness ratio /,/h; is quite different from the pattern for the SS shells. The
increase of the step thickness ratio /,/h; could lead to an increase or a decrease in the fundamental frequency
parameters of the CF shells, depending on the shell length to radius ratio L/R and the location of the step
thickness variation L;/L, as shown in Fig. 8.

Table 7
Frequency parameters A for SS shells with two-step thickness variation (f;/R =0.01, hy/hy =3, h3/h =1, ha/hy =4, L,/L=1/3,
Ly/L=1/3, Ly/L=1/3)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.517542 0.505186 0.369360 0.296891 0.281642 0.316648 0.386669 0.476253
2 0.722939 0.862676 0.810485 0.741740 0.684636 0.649386 0.637715 0.645609
3 0.945073 0.997603 0.961980 0.920945 0.881260 0.849290 0.830802 0.831986
4 1.021771 1.046677 1.053025 1.040086 1.033496 1.039381 1.062890 1.107311
5 1.082221 1.101748 1.456421 1.469956 1.487741 1.510148 1.537662 1.570885
6 1.441044 1.446871 1.594147 1.685246 1.698880 1.717845 1.743747 1.778270
7 1.661682 1.672300 1.681144 2.112340 2.162205 2.223930 2.297332 2.381787
8 1.669206 2.047329 2.074175 2.136910 2.684127 2.902007 2.939344 2.982544

5 1 0.144796 0.066942 0.068069 0.110912 0.132059 0.144737 0.272677 0.408392
2 0.406223 0.235771 0.140607 0.120957 0.136977 0.145298 0.273025 0.519789
3 0.626946 0.413989 0.266796 0.196154 0.209818 0.265000 0.390353 0.525174
4 0.663870 0.507014 0.354791 0.269685 0.248519 0.265953 0.395801 0.571296
5 0.765474 0.673344 0.503700 0.387576 0.326093 0.322347 0.443414 0.603354
6 0.854751 0.729706 0.577280 0.458844 0.383680 0.364176 0.480228 0.651991
7 0.881249 0.768055 0.630956 0.521902 0.454301 0.431576 0.535569 0.706801
8 0.898369 0.834950 0.724973 0.621826 0.534135 0.489303 0.592543 0.738892

Table 8

Frequency parameters A for SS shells with three-step thickness variation (h/R =0.01, hy/hy =2, h3/hy =3, ha/hy =4, L/L=1/4,
Ly/L=1/4 Ly/L=1/4, Ly/L =1/4)

L/R m
n 1 2 3 4 5 6 7 8

1 1 0.501100 0.574534 0.442315 0.363088 0.342990 0.368892 0.420955 0.485119
2 0.856108 0.904135 0.832518 0.766221 0.722140 0.710725 0.735860 0.794417
3 0.959588 1.078523 1.060339 1.045075 1.038738 1.046618 1.072503 1.118770
4 1.093752 1.140371 1.319586 1.324191 1.338109 1.366104 1.412889 1.482482
5 1.322024 1.320223 1.699012 1.835803 1.875982 1.928321 1.993600 2.072356
6 1.776723 1.787504 1.806747 2.281066 2.471077 2.528322 2.596923 2.677201
7 2.007188 2.364310 2.389465 2.424894 2.870882 3.166407 3.242298 3.333200
8 2.349746 2.411982 2.850357 3.055443 3.104595 3.463829 4.057334 4.319659

5 1 0.165713 0.074674 0.070909 0.100470 0.129680 0.156930 0.183309 0.216538
2 0.452733 0.239237 0.151120 0.155030 0.193444 0.230755 0.280540 0.324675
3 0.597712 0.414403 0.271633 0.222936 0.246002 0.295766 0.337882 0.392473
4 0.668250 0.552346 0.388570 0.302990 0.300159 0.347869 0.408062 0.454526
5 0.783467 0.654963 0.494705 0.396661 0.366752 0.403601 0.455143 0.532594
6 0.838543 0.735681 0.590256 0.488247 0.442550 0.453354 0.510848 0.580966
7 0.848028 0.797502 0.672848 0.573610 0.513453 0.506372 0.569290 0.626949
8 0.887245 0.832491 0.723467 0.631647 0.580632 0.578282 0.612149 0.691638
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3.6. Vibration of shells with multiple step thickness variations

Tables 7 and 8 present exact frequency parameters A for SS circular cylindrical shells with two- and three-
step thickness variations. The shell length to radius ratio L/R is set to be 1, 5 and the thickness to radius ratios
are hy /R = 0.01, hy/hy = 3, h3/hy =1 for shells of two-step thickness variations and /; /R = 0.01, hy /b = 2,
hsy/hy =3, ha/h = 4 for shells of three-step thickness variations, respectively. The segment length ratios are
L/L=1/3, Ly/L=1/3 and L3/L = 1/3 for the two-step shells and L,/L =1/4, L,/L =1/4, L;/L = 1/4
and Ly/L = 1/4 for the three-step shells, respectively. The frequency parameters show very similar trends to
those for shells with one-step thickness variation. The frequency parameters decrease as the length to radius
ratio L/R varies from 1 to 5.

4. Conclusions

This paper presents an investigation on the vibration of circular cylindrical shells with step-wise thickness
variations. The Fliigge thin shell theory is employed and the state-space technique is used to develop an
analytical approach for the shell vibration problem. First-known exact frequency parameters for Fliigge
circular cylindrical shells with various combinations of boundary conditions and step thickness variations are
presented in tables and graphs. It is desirable that the exact vibration frequencies presented in this paper can
be used as important benchmark values for researchers to check the validity and accuracy of their numerical
methods for such shell vibration problems.
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Appendix A

The governing differential equations for the ith ring segment of a thin circular cylindrical shell based on the
Donnell-Mushtari shell theory can be expressed as [1]

%+(l—v)%+(l+0) v ani_ (1 —v?) %y

_ Al
x> " 2R o2 T 2R oxd0 'Rox P E o (A1)
(+0) @u (=0 18 1w (=" (A2)
2R ox00 ' 2 oxX Ro? R0 P E a2 '
vou; 1 0v; 1 o*w; o*w; 1 o*w; (1 = v?)d%w;
S T k| R 42 I L A3
R Ox + R2 00 + R? Wit ox* + Ox2 00? + R? 00* P E on (A-3)

The H matrix used in the proposed analytical method based on the Donnell-Mushtari shell theory can be
derived as follows:

(Hi), = (Hi)sy = (Hi)sg = (Hi)g7 = (Hi)g = 1, (A.4)
21—v) p(l -0’
(11, =020 P ) (A3)
1
(Hi)y = —%, (A.6)
(H)s = 3. (A7)
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|
(Hieo = 2 (A8
. 2m? 2,0(1 - 02)w2
(Hi)43 - R2(1 _ !)) - E(l — U) ’ (A9)
2m
(Hidis = i Z o1 + 3k (A10)
(Hi)g, = —ﬁ, (A.11)
(i = =2 (A.12)
201 2
(Hyg =~y per(1=07) (A.13)
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