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Abstract

This paper considers an optimal damping vibration control problem for linear time-delay singularly perturbed systems

affected by external sinusoidal disturbances. By using the slow–fast decomposition theory of singularly perturbed systems,

the system is first decomposed into a fast subsystem without time-delay and a slow subsystem with time-delay affected by

external sinusoidal disturbances. Then, the successive approximation approach (SAA) and the feedforward compensation

techniques are proposed to solve the slow-time scale time-delay optimal control problem and damp the external sinusoidal

disturbances, respectively. The conditions of existence and uniqueness of the finite- and infinite-horizon feedforward and

feedback composite control (FFCC) laws are presented, and the design approaches are given. The FFCC laws consist of

nondelay feedback terms, disturbances compensation terms and a time-delay compensation term which is the limit of the

solution sequence of the adjoint vector equations. Simulation examples indicate that the SAA is valid, and the FFCC laws

are easy to implement, and more effective with respect to damping the external sinusoidal disturbances than that of the

classical feedback composite control (FCC) laws.

r 2006 Published by Elsevier Ltd.
1. Introduction

It is well known that almost all practical systems are affected by external disturbances. One example is that
the offshore structures [1,2] are exposed to various loads: wind, wave and current in hostile environment.
Others include sinusoidal forcing in flight control through wind shear [3] and periodic disturbances in optical
and magnetic disk drives [4]. Various reliable approaches to the disturbance rejection and cancellation have
been well documented in many literatures. For example, the controller based on internal model in Ref. [5] and
the adaptive compensator in Ref. [6] are designed to regulate the output to zero while an internal model
structure with adaptive frequency in Ref. [7] is proposed to cancel the periodic disturbances. By using the
disturbance decoupling algorithm, a disturbance decoupling feedback controller is given in Ref. [8]. Tang et al.
ee front matter r 2006 Published by Elsevier Ltd.
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[9–11] and Lindquist and Yakubovich [12] proposed feedforward and feedback optimal damping controllers
based on quadratic average performance index for linear continuous and discrete systems with sinusoidal
disturbances.

On the other hand, time-delay is quite common in practical control systems. The optimal control problems
of time-delay systems always attract attention of scientific researches. In resent years, some research results
have been obtained in both theory and application fields. For example, Kolmanovsky and Maizenberg [13]
investigated a finite-horizon optimal control problem for randomly varying time-delay systems. Cai et al. [14]
provided an optimal control method for linear time-delay systems in vibration control. We all know that the
optimal control problems for time-delay systems about quadratic cost functional (QCF) generally lead to a
two-point boundary value (TPBV) problem involving both delay and advance terms whose exact solution is
almost impossible. So looking for an approximate solution to the TPBV problem is one of the important aims
of researchers. Recently, many better results in the approximate approach of optimal control for nonlinear
and/or time-delay systems have been obtained. Among them, Tang proposed the successive approximation
approach (SAA) to obtain the suboptimal control laws for nonlinear systems [15,16] as well as time-delay
systems [17].

In recent decades, the theory of optimal control for singularly perturbed systems has been of considerable
concern, and well-developed, very efficient optimal control methods for singularly perturbed systems are
obtained. For example, Fridman [18,19] studied the nonlinear singularly perturbed optimal control via
invariant manifolds and a descriptor system approach, respectively. In [20], Kim et al. presented a composite
control law for singularly perturbed bilinear systems via successive Galerkin approximation. Based on the
bilinear transformation, Bidani et al. [21] presented an algorithm for solving the optimal control of discrete-
time singularly perturbed systems. Unfortunately, we have not seen the research results concerning optimal
disturbance damping control for singularly perturbed systems with time-delay.

In this note, the finite- and infinite-horizon quadratic composite control of linear time-delay singularly
perturbed systems affected by external sinusoidal disturbances are investigated. On the basis of the singular
perturbation theory, the full-order linear time-delay singularly perturbed system is decomposed into reduced
slow and fast subsystems, and optimal control laws are designed for each subsystem. By using the SAA [15–17]
and the feedforward compensation techniques, we obtain the condition of the existence and uniqueness of the
optimal control law of the slow linear time-delay subsystem. Then the feedforward and feedback composite
control (FFCC) laws of the original system are designed.

The note is organized as follows. In next section, the problem to be considered will be given. Section 3 will
propose in detail the SAA and the design processes of the finite- and infinite-horizon FFCC laws. The validity
of the FFCC laws will be illustrated by a numerical example in Sections 4. Section 5 concludes this note.

Notation: Throughout this note, the superscript T stands for matrix transposition, Rn denotes the n-
dimensional Euclidean space, Rn�m is the set of all n�m real matrices, and RT ¼ (t0, tf].
2. Problem formulation

Consider the linear time-delay singularly perturbed system with external disturbances described by

_xðtÞ ¼ A11xðtÞ þ A12zðtÞ þ A13xðt� tÞ þ B1uðtÞ þDvðtÞ,

�_zðtÞ ¼ A21xðtÞ þ A22zðtÞ þ A23xðt� tÞ þ B2uðtÞ; t40,

xðtÞ ¼ jðtÞ; �tptp0; zð0Þ ¼ z0, ð1Þ

where x(t)ARn and z(t)ARm are the state vectors, u(t)ARr the control input, t the positive time-delay, e40 the
small positive parameter, and j(t) the continuously differentiable initial function, Aij, Bi (i ¼ 1, 2; j ¼ 1, 2, 3)
and D the constant matrices of appropriate dimensions. We assume that the matrix A22 is nonsingular. vARp

the exogenous known sinusoidal disturbance with the form

vðtÞ ¼ a1 sinðo1tþ j1Þ a2 sinðo2tþ j2Þ � � � ap sinðoptþ jpÞ
h iT

. (2)
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The finite-horizon QCF is given by

J ¼
1

2

xðtf Þ

zðtf Þ

" #T

F
xðtf Þ

zðtf Þ

" #
þ

1

2

Z tf

0

xðtÞ

zðtÞ

" #T

Q
xðtÞ

zðtÞ

" #
þ uT ðtÞRuðtÞ

0
@

1
Adt. (3)

For the case of infinite-horizon, we can choose the quadratic average cost functional as

J ¼ lim
tf!1

1

tf

Z tf

0

xðtÞ

zðtÞ

" #T

Q
xðtÞ

zðtÞ

" #
þ uðtÞT RuðtÞ

8<
:

9=
;dt, (4)

where RARr� r is the positive definite matrix, F, QAR(n+m)(n+m) the positive semi-definite matrices with the
block diagonal structure as

F ¼
F 1

F T
2

F 2

F 3

" #
; Q ¼

Q1

QT
2

Q2

Q3

" #
.

Without loss of generality, we assume that Q2 ¼ 0 and F2 ¼ 0 in the following discussion. Our objective is to
find the optimal control u* such that the finite-horizon QCF in Eq. (3) or the infinite-horizon quadratic
average cost functional in Eq. (4) is minimized.

3. SAA and damping FFCC laws design

In this section, we will present the SAA and discuss the design approaches of the finite- and infinite-horizon
FFCC laws, respectively. In order to obtain the main results, the following technical lemmas will be very
useful in the sequel.

Lemma 1. [15]: Consider autonomous nonlinear systems described by

_yðtÞ ¼ GðtÞyðtÞ þ f ðyðtÞ; tÞ; t 2 RT yðt0Þ ¼ y0, (5)

where yARn is the state vector, y0 is the initial state vector, f:C(Rn
�RT)-UARn, f(0,t)�0, G:C(RT)-Rn� n.

Assume that f satisfies the Lipschitz conditions on Rn
�RT. Define the vector function sequence {y(k)(t)}

as:

yð0ÞðtÞ ¼ Fðt; t0Þy0; tXt0,

yðkÞðtÞ ¼ Fðt; t0Þy0 þ

Z t

t0

Fðt; rÞf ðyðk�1Þ; rÞ
� �

dr; t 2 RT

yðkÞðt0Þ ¼ y0; k ¼ 1; 2; . . . , ð6Þ

where F(t, t0) is state-transition matrix corresponding to G(t). Then the sequence {y(k)(t)} uniformly converges to

the solution of Eq. (5).

Lemma 2. [22]: Assume that HARm�m, EARn� n, LARn�m, then the Sylvester matrix equation

EX þ XH þ L ¼ 0, (7)

has unique solution X if and only if l+m 6¼ 0 for any lAs(E) and mAs(H) with s( � ) denoting the spectra of

matrix.

3.1. Finite-time damping FFCC law

In view of the slow–fast decomposition theory of singular perturbation, the fast optimal subproblem of
order m is given by

�_zf ðtÞ ¼ A22zf ðtÞ þ B2uf ðtÞ; t40,

zf ð0Þ ¼ z0 � zsð0Þ, ð8Þ
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and the QCF as

Jf ¼
1

2
zT

f ðtf ÞF3zf ðtf Þ þ
1

2

Z tf

0

zT
f ðtÞQ3zf ðtÞ þ uT

f ðtÞRuf ðtÞ
h i

dt. (9)

We all know that, the fast optimal control law is given by

u�f ðtÞ ¼ �R�1BT
2 Pf ðtÞzf ðtÞ, (10)

where Pf(t) satisfies the differential Riccati equation

� _Pf ðtÞ ¼ AT
22Pf ðtÞ þ Pf ðtÞA22 � Pf ðtÞS2Pf ðtÞ þQ3,

Pf ðtf Þ ¼ F3, ð11Þ

with S2 ¼ B2R�1BT
2 .

The slow optimal subproblem of order n is given by

_xðtÞ ¼ A0xðtÞ þ A3xðt� tÞ þ B0usðtÞ þDvðtÞ; 0otptf

xðtÞ ¼ jðtÞ; �tptp0, ð12Þ

with

zsðtÞ ¼ �A�122 ½A21xðtÞ þ A23xðt� tÞ þ B2usðtÞ�, (13)

and the QCF

Js ¼
1

2
xT ðtf ÞF0xðtf Þ þ

1

2

Z tf

0

xT ðtÞQ0xðtÞ þ 2uT
s ðtÞDsxðtÞ þ uT

s ðtÞRsusðtÞ
� �

dt, (14)

where

A0 ¼ A11 � A12A�122 A21; A3 ¼ A13 � A12A�122 A23,

B0 ¼ B1 � A12A�122 B2; F 0 ¼ F1 þ AT
21A�T

22 F3A�122 A21,

Q0 ¼ Q1 þ AT
21A�T

22 Q3A
�1
22 A21,

Ds ¼ BT
2 A�T

22 Q3A
�1
22 A21; Rs ¼ Rþ BT

2 A�T
22 Q3A

�1
22 B2. ð15Þ

The slow optimal control law has the form

un

s ðtÞ ¼ �R�1s ½DsxðtÞ þ BT
0 lðtÞ�, (16)

where l(t)ARn satisfies the TPBV problem:

_xðtÞ ¼ AsxðtÞ þ A3xðt� tÞ � S0lðtÞ þDvðtÞ,

� _lðtÞ ¼ QsxðtÞ þ AT
s lðtÞ þ sgnðtÞAT

3 lðtþ tÞ,

lðtf Þ ¼ F 0xðtf Þ,

xðtÞ ¼ jðtÞ; �tptp0, ð17Þ

with

As ¼ A0 � B0R
�1
s Ds; S0 ¼ B0R�1s BT

0 ,

Qs ¼ Q0 �DT
s R�1s Ds,

sgnðtÞ ¼
1; 0otptf � t;

0; tf � totptf :

(
ð18Þ

In order to solve the TPBV problem in Eq. (17), let

lðtÞ ¼ PsðtÞxðtÞ þ PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gðtÞ, (19)
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where g:C[0,tf]-Rn is an adjoint vector to be solved, and

voðtÞ ¼ �O v1 t�
p

2o1

� �
v2 t�

p
2o2

� �
� � � vp t�

p
2op

� �" #T
, (20)

with O ¼ diag{o1,o2,y,op}. Ps(t) is the unique positive semi-definite solution matrix of the following
Riccati matrix differential equation:

� _PsðtÞ ¼ AT
s PsðtÞ þ PsðtÞAs � PsðtÞS0PsðtÞ þQs,

Psðtf Þ ¼ F 0. ð21Þ

From Eq. (20), we obtain

_vðtÞ ¼ voðtÞ; _voðtÞ ¼ �O2vðtÞ. (22)

Thus, the slow optimal un
s ðtÞ in Eq. (16) can be rewritten as

un

s ðtÞ ¼ �R�1s Ds þ BT
0 PsðtÞ

� �
xðtÞ þ BT

0 PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gðtÞ½ �
� �

. (23)

Substitution of Eq. (19) into Eq. (17), together with Eqs. (21) and (22), we obtain the matrix differential
equations with subject to Pv(t) and Po(t):

� _PvðtÞ ¼ ½A
T
s � PsðtÞS0�PvðtÞ þ PsðtÞD� PoðtÞO2,

Pvðtf Þ ¼ 0, ð24Þ

� _PoðtÞ ¼ ½A
T
s � PsðtÞS0�PoðtÞ þ PvðtÞ,

Poðtf Þ ¼ 0, ð25Þ

and a new TPBV problem described by the adjoint vector differential equation

_gðtÞ ¼ ½S0PsðtÞ � As�
T gðtÞ � PsðtÞA3xðt� tÞ

� sgnðtÞAT
3 ½Psðtþ tÞxðtþ tÞ þ Pvðtþ tÞvðtþ tÞ

þ Poðtþ tÞvoðtþ tÞ þ gðtþ tÞ�,

gðtf Þ ¼ 0, ð26Þ

and the state differential equation

_xðtÞ ¼ ½As � S0PsðtÞ�xðtÞ þ A3xðt� tÞ

þ ½D� S0PvðtÞ�vðtÞ � S0PoðtÞvoðtÞ � S0gðtÞ; 0otptf ,

xðtÞ ¼ jðtÞ; �tptp0. ð27Þ

Obviously, in order to obtain the optimal control law in Eq. (23) of slow subsystem in Eq. (12), we need
solve the matrices Ps(t), Pv(t), Po(t), and the adjoint vector g(t). By using the approximation approaches to
matrix ordinary differential equations, we can get the numerical solution Ps(t) of Eq. (21). Further, we get the
approximation solutions Pv(t) and Po(t) from Eqs. (24) and (25), respectively. Unfortunately, note that both
time-delay and time-advance terms are involved in the TPBV problem described by Eqs. (26) and (27), the
exact solution of this TPBV problem is almost impossible. In the following, we propose the SAA to solve it.

Construct the following adjoint vector differential equation sequence as follows:

_gðkÞðtÞ ¼ ½S0PsðtÞ � As�
T gðkÞðtÞ � PsðtÞA3xðk�1Þðt� tÞ

� sgnðtÞAT
3 ½Psðtþ tÞxðk�1Þðtþ tÞ þ Pvðtþ tÞvðtþ tÞ

þ Poðtþ tÞvoðtþ tÞ þ gðk�1Þðtþ tÞ�,

gðkÞðtf Þ ¼ 0; k ¼ 1; 2; . . . ,

gð0ÞðtÞ ¼ 0; 0ptptf , ð28Þ
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where x(k) satisfy the state vector differential equation as follows:

_xðkÞðtÞ ¼ ½As � S0PsðtÞ�x
ðkÞðtÞ þ A3x

ðkÞðt� tÞ

þ ½D� S0PvðtÞ�vðtÞ � S0PoðtÞvoðtÞ � S0g
ðkÞðtÞ; 0otptf ,

xðkÞðtÞ ¼ jðtÞ; �tptp0; k ¼ 0; 1; 2; . . . . ð29Þ

Correspondingly, the slow optimal control sequence constructed as

uðkÞs ðtÞ ¼ �R�1s Ds þ BT
0 PsðtÞ

� �
xðkÞðtÞ þ BT

0 PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gðkÞðtÞ
� �� �

. (30)

For the kth optimal problem, optimal state trajectory and optimal control law of the slow subsystem in
Eq. (12) are x(k)(t) and uðkÞs ðtÞ, respectively. We present the following theorem.

Theorem 1. Consider the slow time scale optimal control problem described by Eqs. (12) and (14). Assume that

{x(k)(t)} and fuðkÞs ðtÞg are the solution sequences of Eqs. (29) and (30), respectively. Then fuðkÞs ðtÞg uniformly

converge to the optimal control law un
s ðtÞ formulated as

un

s ðtÞ ¼ �R�1s Ds þ BT
0 PsðtÞ

� �
xðtÞ þ BT

0 PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gð1ÞðtÞ
� �� �

, (31)

where gð1ÞðtÞ9 lim
k!1

gðkÞðtÞ, and g(k)(t) is given by Eq. (28).

Proof. By the Lemma 1, together with the fact that the sinusoidal disturbances vector v(t) is independent of
iteration variable k in the sequences {x(k)(t)} and fuðkÞs ðtÞg, we have

gðtÞ ¼ lim
k!1

gðkÞðtÞ; xðtÞ ¼ lim
k!1

xðkÞðtÞ. (32)

Note from Eq. (30) that the control sequence fuðkÞs ðtÞg is only related to {x(k)(t)} and {g(k)(t)}, thus, the
sequence fuðkÞs ðtÞg uniformly converges to the slow optimal control law un

s ðtÞ, namely

un

s ðtÞ ¼ lim
k!1

uðkÞs ðtÞ. (33)

In view of Eqs. (30) and (32), we can obtain optimal control law in Eq. (31) directly. The proof is complete.

On the other hand, from Eq. (10) we obtain the fast optimal control law un
f ðtÞ of the fast subsystem. Further,

we get the damping FFCC law uc(t) of the original time-delay singularly perturbed system in Eq. (1) as follows:

ucðtÞ ¼ KxðtÞxðtÞ þ KzðtÞzðtÞ þ KtðtÞxðt� tÞ

þ KcðtÞ PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gð1ÞðtÞ
� �

, ð34Þ

where

KzðtÞ ¼ �R�1BT
2 Pf ðtÞ,

KtðtÞ ¼ KzðtÞA
�1
22 A23,

KxðtÞ ¼ KzðtÞA
�1
22 A21 � I þ KzðtÞA

�1
22 B2

� �
R�1s Ds þ BT

0 PsðtÞ
� �

,

KcðtÞ ¼ � I þ KzðtÞA
�1
22 B2

� �
R�1s BT

0 . ð35Þ

Based on the above detailed analyses, we have

Theorem 2. For the finite-horizon quadratic optimal sinusoidal disturbances damping control problem of the

standard linear time-delay singularly perturbed systems described by Eqs. (1) and (3), there exists uniquely FFCC

law formulated by Eqs. (34) and (35), where Ps(t) and Pf(t) are the unique positive semi-definite solution matrices

of Eqs. (21) and (11), respectively. Pv(t) and Po(t) satisfy the matrix differential Eqs. (24) and (25), and g(k)(t) is

determined by Eq. (28).
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3.2. Infinite-horizon damping FFCC law

Similarly, for the case of the infinite-horizon, we have the following results.

Theorem 3. Consider the infinite-horizon feedforward and feedback optimal sinusoidal disturbances damping

control problem of the linear time-delay singularly perturbed system in Eq. (1) with subject to the QCF in Eq. (4).
Assume that the triples ðA22; B2; Q

1=2
3 Þ and ðA0; B0; Q1=2

s Þ are controllable-observable completely, then there

exists uniquely FFCC law uc(t) formulated as

ucðtÞ ¼ KxxðtÞ þ KzzðtÞ þ Ktxðt� tÞ þ Kc½PvvðtÞ þ PovoðtÞ þ gð1ÞðtÞ�, (36)

with

Kz ¼ � R�1BT
2 Pf ; Kt ¼ KzA�122 A23,

Kc ¼ � ½I þ KzA�122 B2�R
�1
s BT

0 ,

Kx ¼ KzA�122 A21 � ½I þ KzA
�1
22 B2�R

�1
s ½Ds þ BT

0 Ps�, ð37Þ

where Ps and Pf are the unique positive definite solution matrices of the slow algebraic Riccati equation

AT
s Ps þ PsAs � PsS0Ps þQs ¼ 0, (38)

and the fast algebraic Riccati matrix equation

AT
22Pf þ Pf A22 � Pf S2Pf þQ3 ¼ 0, (39)

respectively. Po is the unique solution of the Sylvester matrix equation

ðPsS0 � AT
s Þ

2Po þ PoO2 þ PsDO ¼ 0, (40)

and Pv determined by

Pv ¼ ðPsS0 � AT
s ÞPo. (41)

g(k)(t) satisfies the adjoint vector differential equation

_gðkÞðtÞ ¼ ðS0Ps � AsÞ
T gðkÞðtÞ � PsA3x

ðk�1Þðt� tÞ

� sgnðtÞAT
3 ½Psx

ðk�1Þðtþ tÞ þ Pvvðtþ tÞ þ Povoðtþ tÞ þ gðk�1Þðtþ tÞ�

lim
tf!1

gðkÞðtf Þ ¼ 0; k ¼ 1; 2; . . .

gð0ÞðtÞ ¼ 0; tX0, ð42Þ

where x(k)(t) satisfies the state vector differential equation as follows:

_xðkÞðtÞ ¼ ðAs � S0PsÞx
ðkÞðtÞ þ A3xðkÞðt� tÞ

þ ðD� S0PvÞvðtÞ � S0PovoðtÞ � S0g
ðkÞðtÞ; t40,

xðkÞðtÞ ¼ jðtÞ; �tptp0; k ¼ 0; 1; 2; . . . . ð43Þ

Proof. Let

lðtÞ ¼ PsxðtÞ þ PvvðtÞ þ PovoðtÞ þ gðtÞ. (44)

Proceeding in a manner similar to that of the case of finite-horizon in section A, we obtain Eqs. (36),
(38)–(43), which are analogs of Eqs. (34), (21), (11), (25), (24), (28) and (29), respectively.

Note that the triples ðA22; B2; Q
1=2
3 Þ and ðA0; B0; Q1=2

s Þ are controllable-observable completely, then
the algebraic Riccati matrix Eqs. (38) and (39) have unique positive definite matrix solutions Ps and Pf,
respectively.
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On the other hand, from the regulator theory of linear system, it follows that

Re go0; g 2 sðAs � S0PsÞ. (45)

Note the fact that Re mX0 for any mAs(O2), together with Eq. (45), we can obtain easily that l+m6¼0 for
any lAs[(As�S0Ps)

2] and mAs(O2). Thus, in view of Lemma 2, the Sylvester Eq. (40) has unique solution Po.
Further, we obtain the matrix Pv directly from Eq. (41).

Consequently, by the Lemma 1, g(k)(t) are uniquely determined by Eqs. (42) and (43). And the infinite-
horizon damping FFCC law is obtained uniquely by Eqs. (36) and (37). This completes the proof.

Remark 1. In practical applications, finding the FFCC laws in Eqs. (34) and (36) are almost impossible in the
case of k-N. By replacing N with integer M in Eqs. (34) and (36), we may obtain the finite-horizon
approximate FFCC law

uMðtÞ ¼ KxðtÞxðtÞ þ KzðtÞzðtÞ þ KtðtÞxðt� tÞ þ KcðtÞ PvðtÞvðtÞ þ PoðtÞvoðtÞ þ gðMÞðtÞ
� �

, (46)

and the infinite-horizon FFCC law

uMðtÞ ¼ KxxðtÞ þ KzzðtÞ þ Ktxðt� tÞ þ Kc PvvðtÞ þ PovoðtÞ þ gðMÞðtÞ
� �

, (47)

respectively, where the iteration times M is determined by the given tolerance error bound a, 0oao1.

Remark 2. In Eqs. (46) and (47), the action of the approximate terms Kcg
(M) is to compensate the effect of the

state delay terms to the system, while the terms Kc(Pvv+Povo) compensate the external sinusoidal
disturbances. Especially, if Pv(t) ¼ Po(t)�0 in Eq. (46) and Pv ¼ Po ¼ 0 in Eq. (47), then we, respectively,
obtain the finite- and infinite-horizon feedback composite control (FCC) laws with the forms:

uMðtÞ ¼ KxðtÞxðtÞ þ KzðtÞzðtÞ þ KtðtÞxðt� tÞ þ KcðtÞg
ðMÞðtÞ, (48)

uM ðtÞ ¼ KxxðtÞ þ KzzðtÞ þ Ktxðt� tÞ þ KcgðMÞðtÞ. (49)

4. A numerical example

To demonstrate the feasibility and effectiveness of the proposed FFCC, a numerical example is carried out
in this section. We consider the optimal damping control problems described by Eqs. (1) and (4) with the
specific matrices:

A11 ¼
�1 2

0 �1

" #
; A12 ¼

�3 0:5

�1 �2

" #
; B1 ¼

0

2

" #
,

A21 ¼
�0:5 0:8

0 �0:4

" #
; A22 ¼

�1 0

0 �0:5

" #
; B2 ¼

0

1

" #
,

A13 ¼
0:8 0

0 0:1

" #
; A23 ¼

0:2 0:1

�0:5 0

" #
; D ¼

1 0

0 1

" #
. ð50Þ

The initial conditions are jðtÞ ¼ 0 0
� �T

; �tptp0, zð0Þ ¼ 0 0
� �T

, the singularly perturbed parameter e
is to take 0.05, and the external sinusoidal disturbances is given by

vðtÞ ¼ sin
2

3
pt

� �
0:6 sin

5

6
pt

� �� 	T

; tX0. (51)

The QCF is chosen as

J ¼

Z 50

0

xðtÞ

zðtÞ

" #T
Q1

0

0

Q3

" #
xðtÞ

zðtÞ

" #
þ 5u2ðtÞ

8<
:

9=
;dt, (52)
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Fig. 1. Value of QCF Jk versus iteration number k.
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where

Q1 ¼
3 0

0 1

� 	
; Q3 ¼

2 0

0 1

� 	
.

It is easy to obtain that

Ps ¼
7:3954 �1:0168

�1:0168 1:6490

" #
; Pf ¼

1:0000 0

0 0:8541

" #
,

Pv ¼
1:3752 �0:4887

�0:1409 0:2844

" #
; Po ¼

1:4309 �0:0016

�0:2279 0:1879

" #
.

For the time-delay t ¼ 0.2, the curve of QCF Jk versus the iteration times k is shown in Fig. 1. It is shown
that when the iteration times increase, the values of QCF will converge to 50.4217, which is the optimal value
of QCF.

Letting the tolerance error bound to be a ¼ 0.001, then we have |(J6�J5)/J6|oa. Thus u6(t) may be
considered as a suboptimal control law. When the sixth FFCC law in Eq. (47) and the corresponding FCC law
in Eq. (49) are adopted to compare the effectiveness of external sinusoidal disturbances damping, the
simulation results of the composite control variable uc, the corresponding slow state components x1, x2, and
the fast state components z1, z2 are presented in Fig. 2, where the solid lines for the suboptimal trajectories of
the FFCC law, while the dash-dotted lines for the FCC law.

From Figs. 1 and 2, we can see clearly that the SAA proposed in this note is valid for the optimal control
problem for the singularly perturbed linear time-delay systems, and preserves very good convergence in this
example. Moreover, the control effect of the FFCC is much better than that of the FCC, and the former is
more effective with respect to rejecting the external sinusoidal disturbances than that of the latter.

5. Conclusion

In this paper, the approximation method for the finite- and infinite-horizon composite damping control
scheme of the linear time-delay singularly perturbed systems affected by external sinusoidal disturbances is
investigated. The optimization problem of the linear time-delay singularly perturbed systems is replaced by a
nondelay sequence of the singularly perturbed optimization problems via the SAA, and the feedforward and



ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

fa
st

 s
ta

te
 c

om
po

ne
nt

 z
2

time (s)

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40 45 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

co
m

po
si

te
 c

on
tr

ol
 in

pu
t u

sl
ow

 s
ta

te
 c

om
po

ne
nt

 x
1

sl
ow

 s
ta

te
 c

om
po

ne
nt

 x
2

fa
st

 s
ta

te
 c

om
po

ne
nt

 z
1

time (s) time (s)

time (s) time (s)

(a) (b)

(c) (d)

(e)

Fig. 2. Disturbances damping comparison curves of the system as t ¼ 0.2: (a) curves of composite control input uc; (b) curves of slow state

component x1; (c) curves of slow state component x2; (d) curves of fast state component z1; and (e) curves of fast state component z2:

(——) FFCC and (- - - - - -) FCC.
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feedback optimal control technique is proposed to reject the external sinusoidal disturbances. This method
avoids ill-defined numerical TPBV problem and reduces the size of computations. On the other hand, it is
shown that the FFCC laws proposed in this paper are effective and easy to implement, and more effective
about external sinusoidal disturbances.
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