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Abstract

Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire are presented. The
approximation is based on combining Newton’s method with the harmonic balance method. One iteration step can provide
very accurate analytical approximate solutions for both small and large values of oscillation amplitude and parameter.
© 2006 Elsevier Ltd. All rights reserved.

In dimensionless form, a mass attached to the center of a stretched elastic wire has the equation of motion

(1]

d*u Au du

which is an example of a conservative nonlinear oscillatory system having an irrational elastic item. The
system will oscillate between symmetric bounds [—A4, A], and its period and the corresponding periodic
solution are dependent on the amplitude 4. Note that for small and large u, Eq. (1) becomes
d*u , d’u
@—F(I—A)H%O, M<1 and @
respectively. Consequently, for small 4, w &~ +/1 — A while for large 4, o~ 1.
Rewriting Eq. (1) and applying the lowest order harmonic balance (HB) method [1,2], Mickens [1] obtained
the analytical approximate period and corresponding periodic solution:

+ur0, u>1, 2)

Tyu(A) =2n/wpy(A), upy(t) = A cos oy(A)t, wy(d)= \/1 — A\ 14 4%)2. (3)

The HB method [1,2] is very difficult to construct higher-order analytical approximations because it requires
analytical solutions of sets of complicated nonlinear algebraic equations. To improve the HB method, Wu and
Li [3] presented an approach, which combines the HB method and linearization of nonlinear oscillation
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equation with respect to displacement increment only. This approach has been generalized and applied to
other complex nonlinear oscillators [4-7]. For higher-order approximations, however, this approach results in
a complex nonlinear algebraic equation in terms of unknown frequency and its analytical solution is again
difficult. To overcome the problem, analytical approximations for oscillation of a mass attached to a stretched
elastic wire based on a new approach is presented in this Letter. This new approach is obtained by combining
Newton’s method with the harmonic balance method. By using the approach, one obtains linear algebraic
equations instead of nonlinear algebraic equations in each iteration. The complexity of the HB method is
simplified accordingly.
Introducing a new independent variable t = wt, Eq. (1) can be rewritten as
(1 4+ ) ( Q' +uy’ =72 =0, u0)=4, u(0)=0, (4)

where (') denotes differentiation with respect to 7 and Q = »”. The new independent variable is chosen such
that the solution of Eq. (4) is a periodic function of 7 of period 2z. The corresponding period of the nonlinear
oscillator is given by T = 21/+/Q. Since f(u) = u — u/~/1 + 2 is an odd function of u, the periodic solution
u(t) can be represented by a Fourier series containing only odd multiples of 7, i.e.,

u(t) = 200: h, cos[(2n — 1)1]. &)
n=1

Following the lowest order HB approximation, we set
uy(t) = A cos 7. (6)

which satisfies the initial conditions in Eq. (4). Substituting Eq. (6) into Eq. (4), expanding the resulting
expression in a trigonometric series and setting the constant term to zero yield

AP (4 — 407 —8Q, +407) + 4*(3 — 62, +30Q}) =0, ()

which can be solved for Q; as a function of A. There are two solutions for Q, i.e.,

Q(A)=1=%1/y/1+34%/4. (®)
Since an increase in the amplitude A results in increasing angular frequency as discussed earlier about Eq. (2),
the negative sign in Eq. (8) should be selected, i.e.,

Qu(A)=1—2/\/1+34%/4. 9)
Therefore, the first analytical approximate period and corresponding periodic solution are

T(A4) = 27‘[/\/ Q1(4), ui(t)=Acost, 7=1+/Q2(A4)1. (10)

Note that the solution in Eq. (10) is different from that in Eq. (3) obtained by Mickens [1].

Using u;(7) and Q,(A4) as initial approximations to the solution of Eq. (4), we combine Newton’s method
and the HB method to solve Eq. (4). The first step is the Newton procedure. The periodic solution and the
square of frequency of Eq. (4) can be expressed as

u=1u +Auy, Q=0 +AQ. (11)

Substituting Eq. (11) into Eq. (4) and linearizing with respect to the correction terms Awu; and AQ,;
lead to

(14 uj + 2uyAuy) (Q%u”? +u + 291u1u’1’) +2(1 + u7) (Qfu] A + QT AQ) + uy Auy

+ Qi A + Qi Auy + ul{ AQ, ) — 22 (u% + 2uyAuy) =0,
Aui(0) =0, Au,(0) =0, (12)

where Au; is a periodic function of t of period 27, and both Au; and AQ; are to be determined.
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The resulting linear equation in Au; and AQ; in Eq. (12) will be solved by the HB method. The second
approximate solution to Eq. (12) can be developed by setting Au;(t) as
Auy(t) = x1(cost — cos 31), (13)

which satisfies the initial condition in Eq. (12) at the outset. Substituting Eqgs. (10) and (13) into Eq. (12),
expanding the resulting expression in a trigonometric series and setting the constant term and the coefficients
of cos 27 to zero, respectively, yield

4(1 =27 =2Q1 + Q1) A% + (3 —6Q) +3Q7) 4% —2(44% + 34" — 44°Q, — 34°Q))AQ,
+8(A+ A% — AP =240, + AQ} — A£2Q})x; =0, (14)

(1-72 =20+ Q) A + (1 —2Q, + Q) 4" —2(4* + 4* — 47Q, — 4°Q))AQ,
+ (47 +164Q) — 16407 +104°Q, — 114°Q7)x; = 0. (15)
Solving Egs. (14) and (15) for x; and AQ,, and applying Eq. (9) obtain
L3 A4 (7;? — 44+ 3A2)
- - ) Ql -
4F(A) 2V 4+ 34%F(A)

(16)
where
F(A) = 2(16 42047 + 54*) V4 + 347 — (64 + 784 + 194%) 2.
Therefore, the second analytical approximations to period and periodic solution of the nonlinear oscillator is
Ty(A) = 21/v/Q2:(A4), ux(t) = ui(t) + Auy(t) = X(A)cost + Y(A)cos3t, t=+/Q(A), (17)
where
” +A4(722 —4/44347) o AL A3
V4 + 347 WaA3ALFU) 4F(4) 4F(A)

It should be clear how the procedure works for constructing further higher-order approximate solutions.
Higher-order approximate solutions are more accurate but somewhat complicated, hence they are omitted
here.

Q(A)=1—

Table 1
Comparison of the approximate periods with exact period

A T, Tail T, T\/T. T/ T, T, Toi/Ts T\/T, T/ T,
@2 =0.1 ) A =05

0.1 6.621688 1.000069 1.000000 1.000000 8.869257 1.000616 0.999999 1.000000
0.4 6.603056 1.000932 0.999974 1.000009 8.653029 1.008046 0.999729 1.000057
0.7 6.571430 1.002096 0.999842 1.000052 8.316817 1.016943 0.998530 1.000333
1 6.537508 1.002913 0.999622 1.000126 7.992133 1.021992 0.996803 1.000757
4 6.378382 1.001915 0.999027 1.000160 6.809366 1.010797 0.994236 1.000720
7 6.339461 1.001085 0.999288 1.000054 6.581398 1.005780 0.996078 1.000206
10 6.322939 1.000744 0.999462 1.000020 6.490208 1.003883 0.997119 1.000061
(1) 2 = 0.75 (IV) 2 =0.95

0.1 12.49674 1.001836 0.999994 1.000000 27.15679 1.011058 0.999889 0.999976
0.4 11.65250 1.022103 0.999029 1.000069 19.78073 1.084019 0.992948 0.998818
0.7 10.53734 1.041411 0.995671 1.000452 14.73436 1.106253 0.984488 0.998716
1 9.625405 1.048464 0.991951 1.001074 12.07528 1.098603 0.980077 0.999840
4 7.129819 1.017585 0.990244 1.000930 7.423433 1.023903 0.986242 1.000933
7 6.748172 1.009037 0.993718 1.000229 6.891635 1.011845 0.991589 1.000189

10 6.602092 1.005986 0.995480 1.000047 6.696117 1.007753 0.994057 1.000007
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For the nonlinear oscillator, the exact period is

—1/2

/2
T,(A) =4/ [1 —21/(\/1 + A%sin2 0+ /1 +A2)] do, (18)
0
with details of derivation presented in Appendix A.
Table 1 shows the ratios of the approximate periods Ty, T4, 7> in Egs. (3), (10) and (17), respectively, to the

exact period T, in Eq. (18). Furthermore, we have

lim M gim I oy D Dl Do 2
Asot To  Astoo To  anot To  Astoo T  dsot To AstooTo

L. (19)

From Table 1 and Eq. (19), it can be observed that Eq. (17) yield excellent analytical approximate periods for
both small and large values of oscillation amplitude 4 and parameter 1. Furthermore, it has shown that the
first analytical approximate period in Eq. (10) is more accurate than that in Eq. (3) obtained by Mickens [1].
For A=1, A=0.75,0.95 and 4 =4, / = 0.1, 0.5 the (numerical) exact periodic solution u,(f) obtained by
numerically integrating Eq. (1) and the approximate periodic solutions u;.(¢), u;(f) and u»(f) computed by
Eqgs. (3), (10) and (17), respectively, are plotted in Figs. 1-4. These figures show that the proposed solutions in

Periodic solutions u(¢)

periodic solutions u(f)

Fig. 2. Comparison of approximate and exact periodic solutions for 4 =1, 1 = 0.95.
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periodic solutions u(f)

Time ¢

Fig. 3. Comparison of approximate and exact periodic solutions for 4 =4, 1 =0.1.

periodic solutions u(?)

Time ¢

Fig. 4. Comparison of approximate and exact periodic solutions for 4 =4, 2 =0.5.

Egs. (10) and (17) are in excellent agreement with exact periodic solutions for both small and large values of
oscillation amplitude 4 and parameter /.

In summary, a new approach has been presented for analytically solving the oscillator describing a mass
attached to a stretched elastic wire. The iteration yields rapid convergence with respect to exact solution. The
result is valid for both small and large values of oscillation amplitude and parameter, including the limiting
cases of oscillation amplitude approaching zero and infinity.
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Appendix A. Derivation of the exact period

The exact period in Eq. (18) is derived here. Integrating the differential equation and using the
corresponding initial conditions in Eq. (1) yields the first integral as follows:

2
(Z‘) +ud =2V 1 +ud=A*—2)V1 + 4% (A1)
Solving Eq. (A.1) for dz gives

df— 4+ du (A.2)

\/(AZ =) [1 =22/ (VTH+@ + 1+ £7)] |

The exact period of the oscillation is four times the time taken by the mass to move from u =0 to u = A4.
Therefore,

A
To(A) = 4 / du . (A.3)
0 \/(A2 =) [1 =22/ (VT + V1 + 47)]
A new variable 6 is defined as
u=A4 sin 0. (A.4)
Introducing Eq. (A.4) into Eq. (A.3) leads to
n/2 -1/2
To(A) =4/ [1 -21/(\/1 + A%sin2 0+ /1 +A2)] do. (A.5)
0
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