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Abstract

Various types of sandwich beams with foam or honeycomb cores are currently used in the industry, indicating the need

for simple methods describing the dynamics of these complex structures. By implementing frequency-dependent

parameters, the vibration of sandwich composite beams can be approximated using simple fourth-order beam theory.

A higher-order sandwich beam model is utilized in order to obtain estimates of the frequency-dependent bending stiffness

and shear modulus of the equivalent Bernoulli–Euler and Timoshenko models. The resulting predicted eigenfrequencies

and transfer accellerance functions are compared to the data obtained from the higher-order model and from

measurements.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The type of sandwich structures considered in this article consist of two thin but relatively stiff sheets bonded to
each side of a thick and light-weight core, see Fig. 1. A typical setup could be two aluminum sheets glued to a foam
core, or— present in for example ship-building—steel plates bonded to a plastic core. Examples of widely used
laminate materials are glass-reinforced plastic, abbreviated GRP, and carbon fiber. The purpose of the core is to
maintain the distance between the laminates and to resist shear deformation, thus ideally maintaining pure bending
of the beam around the neutral axis. This achieves the sought-for high static bending stiffness. Typical core
configurations include plastic or metal foams and honeycomb materials. A different category of ‘‘sandwich’’
materials comprise plates consisting of two laminates separated by a visco-elastic layer designed to increase
damping. The visco-elastic core layer deforms in shear parallell to the beam, i.e. in-plane deformation, whereas for
the type of thick-core sandwich beams considered in this paper the principal shear deformation is in the lateral
direction. This type of shear deformation was considered by Timoshenko in his derivation of thick-beam theory,
see Refs. [1–3]. Constrained layer sandwich beams have been analyzed extensively for example in Refs. [4,5].

The dynamic response of a sandwich beam differs from that of an ordinary fourth-order beam in the high-
frequency region. This is due to the more complex constitution of the structure, being a coupled system of two
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. An asymmetric sandwich beam.
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thin beams and a thick core. The ordinary Bernoulli–Euler beam model neglects shear and rotational inertia
and can be shown to rapidly deviate from the real dynamics of a sandwich. More refined theories taking these
effects into account were presented by Lord Rayleigh and Timoshenko in Refs. [6,1], respectively. However,
neither of these models is suitable for describing transverse vibration of composite beams. Bernoulli–Euler
theory fails rapidly due to the assumption of an infinite shear modulus, and also Timoshenko theory fails since
the vibration of a sandwich beam will be governed by the bending dynamics of the laminates at high
frequencies; in terms of propagating waves, Timoshenko theory predicts that for high frequencies the
deformation of the beam will be governed by the effects of shear and rotation, while for a three-layer sandwich
beam with thin laminates and a soft core the high-frequency region is governed by pure bending of the
laminates. Modelling the dynamics of layered beams and plates can be achieved in three different ways:
�
 Using exact formulation for the core deformation and solving the governing equations by means of
numerical analysis.

�
 Imposing assumptions on the internal stress and deformation fields and thus obtaining finite-order

equations which can be solved analytically.

�
 By utilizing models developed for homogenous beams and plates, in combination with effective or apparent

parameters.

The first approach has been analyzed for example in Refs. [7,8] and compared to ‘‘elementary’’ methods in
Ref. [9]. It is concluded that for most applications in the industry, finite-order models yield satisfactory
solutions which make them attractive considering the increase of computational cost associated with ‘‘exact’’
models utilizing the general wave equation. The last item will be explored in this article and represents the
simplest way of obtaining estimates for the various dynamic properties of layered beams and plates, such as
vibration response, sound transmission loss and radiation.

Historically, research focusing on the flexural dynamics of composite beams and plates gained momentum
after the war, when sandwich structures became an important part of aircraft construction:
�
 Kerwin [4] analyzed the damping of flexural waves in composites with viscoelastic layers.

�
 Mead and Markus [5] presented a sixth-order (bi-cubic) theory neglecting rotational inertia. In their paper,

they investigated the response of a sandwich beam subject to ‘‘damped normal loadings’’ and presented
orthogonality relations for the displacement of the beam.

�
 Rao and Nakra [10] analyzed the vibration of unsymmetrical sandwich beams with special attention to the

effects of inertia.

�
 Mead [11] made a short review of different theories and also presented a model taking into account the

effects of inertia and shear deformation in the laminates. Sixth- and eighth-order (bi-cubic and bi-quartic)
equations of motion for symmetric and asymmetric sandwich beams were presented. However, no
boundary conditions or exciting force distributions were imposed.

�
 Nilsson [7] presented an ‘‘exact’’ field equations model of a sandwich with thin laminates. The properties

of this model were extensively investigated in Ref. [8], using laborious numerical methods to solve
ill-conditioned sets of equations.
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�
 Nilsson and Nilsson [12] instead suggested a sixth-order (bi-cubic) model derived using Hamilton’s
principle which describes the dynamics of a symmetric sandwich beam for frequencies below the
mass–spring–mass frequency where the laminates start to move independently. This model was shown to
yield accurate results when compared to measured data.

In the following section, a sixth-order sandwich beam theory for asymmetric beams is derived. This model will
provide the basis for the development of modified lower-order models. The purpose of these simpler models is
to provide means of analyzing the vibration of sandwich composite structures using existing tools developed
for ordinary beams, for example formulae for the estimation of the sound transmission loss or vibration level
of a sandwich panel. See Ref. [13] for a more detailed presentation, including the derivation of the tenth-order
model mentioned briefly in Section 2.4.
2. High-order theory

The model presented in Refs. [14,12] is generalized to cover asymmetric sandwich structures, i.e. when the
laminates are not equal. The governing set of equations are derived by applying Hamilton’s principle,
expressed as

d
Z t1

t0

Z L

0

ðU � T þ AÞdxdt ¼ 0, (1)

where d here denotes the variation operator, U is the potential energy per unit length of the beam, T the kinetic
energy per unit length and A the potential energy due to external forces (boundary conditions and applied
forces and bending moments) per unit length. The spatial integration is over the length L of the beam, and the
time integration limits t0 and t1 are arbitrary for an assumed stationary harmonic time dependence.

The total deformation w depends on x only since the core is assumed to be laterally incompressible, thus
forcing the laminates to move in phase. This is a valid assumption well below the cut-on frequency for
antiphase motion of the laminates, see Section 2.4. The geometric relation between w, the angle of pure
bending b and the angle of pure shear g is now given by

qw

qx
¼ bþ g, (2)

see Fig. 2.
The potential energy density U consists of three parts; energy due to pure bending b of the entire beam,

shear in the core g and pure bending of the thin laminates due to the shear deformation of the core. Thus, we
have

U1 ¼
1

2
Dtot

qb
qx

� �2

,

U2 ¼
1

2
ðD1 þD2Þ

qg
qx

� �2

, (3)

U3 ¼
1
2

Gchcg2,

where Dtot is the total bending stiffness per unit width of the sandwich beam, D1 and D2 are the bending
stiffnesses of the laminates, and Gc is the effective core shear modulus. The total bending stiffness Dtot can be
written as a weighted sum of the elasticity moduli of the laminates and the core,

Dtot ¼ c0E1 þ c1E2 þ c2Ec, (4)
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Fig. 2. Deformation mechanisms; g due to pure shear of the core and b due to pure bending of the entire beam section.
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where the c coefficients are given by

c0 ¼ � y0h
2
1 þ y2

0h1 þ
1
3

h3
1,

c1 ¼
1
3
ððh1 þ hc þ h2Þ

3
� ðh1 þ hcÞ

3
Þ þ y2

0h2 � y0ððh1 þ hc þ h2Þ
2
� ðh1 þ hcÞ

2
Þ,

c2 ¼ � y0ððh1 þ hcÞ
2
� h2

1Þ þ y2
0hc þ

1
3
ððh1 þ hcÞ

3
� h3

1Þ,

and the neutral layer coordinate y0 is

y0 ¼
h2
1E1 þ ð2h1 þ hcÞEchc þ ð2h1 þ 2hc þ h2ÞE2h2

2ðE1h1 þ Echc þ E2h2Þ
.

The bending stiffnesses per unit width of the laminates are

Di ¼
Eih

3
i

12
for i ¼ 1; 2. (5)

The total kinetic energy density T is due to the velocity distribution _w of the beam, and the angular velocity _b
of the sandwich cross-section:

T1 ¼
1

2
mtot

qw

qt

� �2

,

T2 ¼
1

2
I tot

qb
qt

� �2

, (6)

where mtot is the total mass per unit area of the beam, and I tot is the mass moment of inertia per unit width of
the cross-section.

Finally, the boundary conditions and applied forces are accounted for in A asZ L

0

Adx ¼ �

Z L

0

pðxÞwðxÞdx� ½Fw�Mb�Msg�L0 , (7)

where pðxÞ is an external pressure exciting the beam, F is the shear force, M is the total bending moment and
Ms is the bending moment acting on the laminates due to shear deformation in the core, all per unit width.
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2.1. Governing equations

By performing the variation in Eq. (1), the governing equations are obtained

ðD1 þD2Þ
q4w
qx4
�

q3b
qx3

� �
� Gchc

q2w
qx2
�

qb
qx

� �
þ mtot

q2w
qt2
� p ¼ 0, (8)

�Dtot
q2b
qx2
þ ðD1 þD2Þ

q3w

qx3
�

q2b
qx2

� �
� Gchc

qw

qx
� b

� �
þ I tot

q2b
qt2
¼ 0, (9)

with boundary conditions

F ¼ �Dtot
q2b
qx2
þ I tot

q2b
qt2

or w ¼ 0, (10)

M ¼ �Dtot
qb
qx

or b ¼ 0, (11)

Ms ¼ �ðD1 þD2Þ
q2w
qx2
�

qb
qx

� �
or

qw

qx
¼ 0. (12)

It can be verified that the above shear force and total bending moment satisfy basic equilibrium equations.
Now, by assuming a time and space dependence of eiðot�kxÞ, where o is the angular frequency and k the
wavenumber for flexural waves, and combining Eqs. (8) and (9) with p ¼ 0, the characteristic equation—or
dispersion relation—gives the relationship between the wavenumber k and the frequency o as

ðD1 þD2ÞDtotk
6
þ ðGchcDtot � o2I totðD1 þD2ÞÞk

4

� o2ðmtotðD1 þD2 þDtotÞ þ GchcI totÞk
2
þ mtoto

2ðo2I tot � GchcÞ ¼ 0. ð13Þ

This is a sixth-order (bi-cubic) polynomial equation of even powers of k, and can be transformed into a third-
order equation using a simple substitution. The magnitudes of the wavenumbers of a typical sandwich beam
are shown in Fig. 3.

The solid curve represents the main propagating mode, whereas the dashed curve represents a nearfield
below the cut-on frequency for rotational waves. The dotted curve represents a pure nearfield. The solutions to
the dispersion relation are denoted k ¼ �k1, �ik2 and �ik3. The k quantities are real below the cut-on
frequency for rotational waves, for systems without losses. This frequency, denoted by orot, is obtained by
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Fig. 3. Wavenumber magnitudes. —, k1, propagating; - -, k2, evanescent; - �, k2, propagating; � � �, k3, evanescent.
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setting k ¼ 0 in the dispersion relation. This yields

orot ¼

ffiffiffiffiffiffiffiffiffiffi
Gchc

I tot

s
. (14)

The displacement and shear solutions are now given as

wðx; tÞ ¼ eiot
X6
n¼1

Âne
�iknx; bðx; tÞ ¼ eiot

X6
n¼1

B̂ne
�iknx,

or, using a different notation, as

wðx; tÞ ¼ fA1 sin k1xþ A2 cos k1xþ A3e
�k2x þ A4e

k2ðx�LÞ þ A5e
�k3x þ A6e

k3ðx�LÞgeiot, (15)

bðx; tÞ ¼ fB1 sin k1xþ B2 cos k1xþ B3e
�k2x þ B4e

k2ðx�LÞ þ B5e
�k3x þ B6e

k3ðx�LÞgeiot. (16)

The spatial dependences of Eqs. (15) and (16) are real for loss-free systems for frequencies below orot.
Inserting the above solutions into Eq. (9) and equating all coefficients of x-depending functions to zero yields a
relationship between the A and B coefficients (or the corresponding Â and B̂ coefficients), reducing the
problem to 6 unknowns, for example An. A good reason for preferring Eqs. (15) and (16) is that they are
numerically more favorable.

2.2. Boundary conditions and mode shapes

The boundary conditions are given by Eqs. (10)–(12). Written in vector notation, where Ā and B̄ contain the
unknown coefficients, we have

Z1Āþ Z2B̄ ¼ 0̄, (17)

where the Z1 and Z2 matrices depend on the boundary conditions. The first three rows in Z1 and Z2 can be
chosen to contain the boundary conditions for x ¼ 0, and the last three rows the conditions for x ¼ L.
Further,

B̄ ¼ XĀ, (18)

where the matrix X is obtained by substituting Eqs. (15) and (16) into Eq. (9) and equating all coefficients of
x-dependent functions to zero. Thus, for free vibration, the non-trivial solutions are given by the frequency
condition

detðZ1 þ Z2XÞ ¼ 0, (19)

and the corresponding null space vector. As an example, consider the case of clamped boundary conditions.
From Eq. (10) we know that w ¼ 0 at both ends, so the first row in Z1 will be given by the values of each
subfunction in Eq. (15) for the displacement—i.e. sinðk1xÞ, cosðk1xÞ, e�k2x

y—evaluated at x ¼ 0. Similarly,
the fourth row would contain the corresponding values evaluated at x ¼ L. The second and fifth rows of Z2

are connected to Eq. (11). In this case, we have b ¼ 0 at x ¼ 0 and L. The final condition is given by Eq. (12) as
qw=qx ¼ 0, which occupies the third and sixth rows of Z1. Hence, with the rest of the elements being equal to
zero, we have

Z1 ¼

0 1 1 e�k2L 1 e�k3L

0 0 0 0 0 0

k1 0 �k2 k2e�k2L �k3 k3e�k3L

sinðk1LÞ cosðk1LÞ e�k2L 1 e�k3L 1

0 0 0 0 0 0

k1 cosðk1LÞ �k1 sinðk1LÞ �k2e�k2L k2 �k3e�k3L k3

0
BBBBBBBBB@

1
CCCCCCCCCA
,
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and

Z2 ¼

0 0 0 0 0 0

0 1 1 e�k2L 1 e�k3L

0 0 0 0 0 0

0 0 0 0 0 0

sinðk1LÞ cosðk1LÞ e�k2L 1 e�k3L 1

0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
.

The sought-for relationship between the A and B coefficients, yielding the X matrix, is obtained as

B1 ¼ X 2A2; B2 ¼ X 1A1; B3 ¼ X 3A3,

B4 ¼ X 4A4; B5 ¼ X 5A5; B6 ¼ X 6A6, (20)

where

X 1 ¼ � X 2 ¼
k1fðD1 þD2Þk21 þ Gchcg

ðDtot þD1 þD2Þk21 þ Gchc � o2I tot
,

X 3 ¼ � X 4 ¼ �
k2fðD1 þD2Þk22 þ Gchcg

ðDtot þD1 þD2Þk22 þ Gchc � o2I tot
,

X 5 ¼ � X 6 ¼ �
k3fðD1 þD2Þk23 þ Gchcg

ðDtot þD1 þD2Þk23 þ Gchc � o2I tot
.

Now, by computing the roots of Eq. (19)—using some numerical method like the secant method or Newton’s

method—the eigenfrequencies om of the sandwich configuration are obtained.
For simply supported boundary conditions, it can be seen directly from the corresponding system matrix

M ¼ Z1 þ Z2X that the eigenfrequencies will be given by inserting

kL ¼ mp; m 2 N

into the dispersion relation Eq. (13), yielding

om ¼
m2p2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtotfðD1 þD2Þp2m2 þ GchcL2g

mtotfðDtot þD1 þD2Þp2m2 þ GchcL2g

s
. (21)

By comparing Eq. (21) with the well-known expression for the eigenfrequencies of simply supported
Bernoulli–Euler beams,

oBE
m ¼

m2p2

L2

ffiffiffiffi
D

m

s
, (22)

where D is the bending stiffness and m is mass per unit area of the homogenous beam, one can readily identify
a discrete estimate of the apparent bending stiffness Dapp of the simply supported sandwich beam as

DðmÞapp ¼
DtotfðD1 þD2Þp2m2 þ GchcL2g

ðDtot þD1 þD2Þp2m2 þ GchcL2
. (23)

DðmÞapp is the apparent value of the bending stiffness of an ordinary Bernoulli–Euler beam, with the same
dimensions and mass, at the mth resonance. These modified lower-order beam models will be more carefully
analyzed later in this article.

Calculating the mode shapes of a sandwich configuration involves solving the nullspace problem MĀ ¼ 0̄,
where M ¼ Z1 þ Z2X is a known matrix. A simple way of doing this is to assume a unit first element of the Ā
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vector, so that the system can be written

a W̄
T

V̄ Msub

 !
1

Āsub

 !
¼ 0̄,

where a is a scalar, V̄ and W̄ are vectors, Msub a matrix and Āsub a vector. Now, by expanding, we obtain

V̄þMsubĀsub ¼ 0̄. (24)

This system can be solved in order to obtain the unknown elements given by the Āsub elements, defining the Ā
and B̄ coefficients. Predicted normalized modeshapes for a clamped sandwich beam are shown in Fig. 4.
2.3. Forced response

The inhomogenous problem—when a force or bending moment distribution is exciting the beam—can be
solved in terms of Green’s functions. Consider a beam excited by a lateral point force per unit width F0e

iot at
x ¼ x0, see Fig. 5.

Denote the deformation solutions for 0oxox0 by w� and b�, and the corresponding solutions for
x0oxoL by wþ and bþ. For numerical reasons, it is preferable to use the following sets of base functions for
0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

x [m]

w
/|w

| m
ax

 [−
]

Fig. 4. Mode shapes, clamped conditions: —, mode 1; - -, mode 2; � � �, mode 3.

Fig. 5. A point force acting on a sandwich beam.
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the solutions, as compared to that used in Eqs. (15) and (16)

b̄� ¼ ðsin k1x; cos k1x; e�k2x; ek2ðx�x0Þ; e�k3x; ek3ðx�x0ÞÞ
T,

b̄þ ¼ ðsin k1ðL� xÞ; cos k1ðL� xÞ; e�k2ðL�xÞ; ek2ðx0�xÞ; e�k3ðL�xÞ; ek3ðx0�xÞÞ
T. ð25Þ

We have to consider the fact that their respective Xmatrices are different; it is easy to see that in this particular
case Xþ ¼ �X� ¼ �X. Now, the boundary conditions at x ¼ 0 and x ¼ L together with the coupling
conditions at x ¼ x0 yields a system of 12 equations, sufficient to solve for the unknown coefficient vectors Ā�
and Āþ as functions of the exciting force amplitude F 0. In matrix notation, where M� and Mþ are the 3� 6
boundary condition matrices at x ¼ 0 and x ¼ L, respectively,

M� 0

Mc

0 Mþ

0
B@

1
CA Ā�

Āþ

 !
¼ F̄, (26)

where Mc is a 6� 12 matrix describing the coupling conditions. F̄ contains the force amplitude F0 as its only
non-zero element. The coupling conditions are obtained from Eqs. (10) to (12), together with conditions
regarding continuity in total deflection w, the total deflection angle qw=qx and the bending angle b.

This leads to the six coupling conditions at x ¼ x0, defining Mc and F̄:

w� ¼ wþ, (27)

qw�

qx
¼

qwþ

qx
, (28)

b� ¼ bþ, (29)

qb�
qx
¼

qbþ
qx

, (30)

q2w�

qx2
¼

q2wþ

qx2
, (31)

ðD1 þD2Þ
q3w�
qx3
�

q2b�
qx2

� �
� Gchc

qw�

qx
� b�

� �

� ðD1 þD2Þ
q3wþ
qx3
�

q2bþ
qx2

� �
þ Gchc

qwþ

qx
� bþ

� �
¼ F0. ð32Þ

Here, Eqs. (30) and (31) are obtained indirectly from combining Eqs. (11) and (12). Implementing the coupling
conditions in this order implies that the ninth element of F̄ contains F0, the other elements being equal to zero.
The result is a governing 12� 12 matrix system, which can be solved using some numerical software tool like
Matlab, obtaining the displacement fields w, b and indirectly g for any given point force exciting the beam

wðx; tÞ ¼
eiotĀ

T

�b̄�; xpx0

eiotĀ
T

þb̄þ; xXx0

8<
: bðx; tÞ ¼

eiotB̄
T

�b̄�; xpx0;

eiotB̄
T

þb̄þ; xXx0:

8<
: (33)

For more complex force distributions, the solution is given as an integral over the length of the beam

wðx; tÞ ¼ eiot

Z L

0

Gwðx; wÞF 0ðwÞdw, (34)

where Gwðx; wÞ is the displacement at x corresponding to a unit point force applied at w, obtained from Eq. (33),
and F 0ðwÞ is the force distribution (force per unit length and width) as a function of the position variable w.
Analogously, the bending angle field b can be obtained from the corresponding Green’s function Gbðx; wÞ.

The case of simply supported end conditions can be treated separately by expressing the solutions for w and
b in terms of sin and cos series expansions, respectively. This is due to the fact that these sets of functions
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satisfy the boundary conditions as well as provide a full base for the solutions. Thus, considering point
excitation, we let

w ¼ eiot
X1
n¼1

AnfnðxÞ; b ¼ eiot
X1
n¼1

BncnðxÞ, (35)

where the orthogonal f and c functions are given by

fnðxÞ ¼ sin
npx

L
; cnðxÞ ¼ cos

npx

L
. (36)

An and Bn are coefficient sets to be determined, and should not be confused with the An and Bn sets
introduced earlier. It can be noted that since n40, the cosine series expansion is incomplete. However, the B0

term corresponds to rigid body rotation and is of no interest.
Inserting these ansatzes into the governing Eqs. (8) and (9) yields, with time dependence excluded,

X1
n¼1

np
L

n2p2

L2
ðD1 þD2Þ þ Gchc

� �
np
L

An �Bn

� �
� o2mtotAn

( )
fnðxÞ ¼ pðxÞ, (37)

X1
n¼1

n2p2

L2
DtotBn � ðD1 þD2Þ

np
L

An �Bn

� �� �
� Gchc

np
L

An �Bn

� �
� o2I totBn

� �
cnðxÞ ¼ 0. (38)

By assuming a point excitation on the form pðxÞ ¼ F0dðx� x0Þ, where F0 is per unit width of the beam, and
taking the inner products over the length of the beam of Eqs. (37) and (38) with fqðxÞ and cqðxÞ, respectively,
we obtain

np
L

n2p2

L2
ðD1 þD2Þ þ Gchc

� �
np
L

An �Bn

� �
� o2mtotAn

� �
L

2
¼ F0fnðx0Þ, (39)

n2p2

L2
DtotBn � ðD1 þD2Þ

np
L

An �Bn

� �� �
� Gchc

np
L

An �Bn

� �
� o2I totBn ¼ 0. (40)

The result is a 2� 2 algebraic system which yields the An and Bn coefficients as functions of the exciting force
amplitude per unit width, F 0. Approximate mobility functions can be obtained numerically in terms of
truncated mode sums. Note also that by calculating the determinant of the matrix system—i.e the
denominator of each mode in the mode expansion—we obtain the ordinary frequency relationship of o2

n � o2,
where on is given by Eq. (21). The expression for the total displacement w can be shown to be identical to that
of the ordinary Bernoulli–Euler theory, the only difference being the values of the eigenfrequencies on:

wðx; tÞ ¼
2F0e

iot

Lmtot

X1
n¼1

sinðnpx0=LÞ sinðnpx=LÞ

o2
n � o2

. (41)
2.4. Notes on a tenth-order model including the effects of core compressibility

The effects of core compressibility was included in a more advanced model, where the core deflection and
shear deformation were described by linearly interpolating the deformations of the laminates. However, this
tenth-order model turned out to be numerically cumbersome and therefore not of great interest. It could
potentially become valuable for predicting the vibration of sandwich beams with heavy laminates and soft
cores, where the mass–spring–mass frequency of the system, i.e the cut-on frequency for independent vibration
of the laminates, is forced down into the considered frequency range. Another application could be for fluid-
loaded plates.
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2.5. Implementing losses

Losses can be easily implemented into the model by means of complex elasticity moduli, in accordance with
common practice. Thus,

En ¼ ReðEnÞð1þ iZnÞ; n ¼ 1; 2,

Ec ¼ ReðEcÞð1þ iZcÞ, (42)

Gc ¼ ReðGcÞð1þ iZcÞ,

where En and Zn denote the elasticity moduli and loss factors of the laminates, respectively, and Ec, Gc and Zc

the elasticity modulus, shear modulus and loss factor of the core.

3. Apparent bending stiffness

A different approach to modelling the flexural response of sandwich composites is provided by the concept
of apparent bending stiffness. The idea is to implement a frequency-dependent bending stiffness parameter,
denoted DappðoÞ, in the ordinary Bernoulli–Euler beam theory or the corresponding Kirchhoff plate theory.
The frequency dependence of Dapp is chosen such that the thin-beam theory as accurately as possible mimics
the true response of the composite beam.

However, it should be stressed that apparent bending stiffness is an approximate tool. Naturally, it is
impossible to correctly describe the combined effects of the propagating mode and the nearfields using only
one wavenumber. The most intuitive way to deal with this problem is to assume that Dapp depends on
boundary conditions, while another option is to discard1 the k3 wavenumber and implement Timoshenko
theory instead of Bernoulli–Euler theory. The latter possibility will be analyzed later.

It can also be mentioned that instead of implementing a single, frequency-dependent bending stiffness
parameter DappðoÞ to be shared by all modes, it is possible to assign a unique bending stiffness DðmÞapp to
each mode, using for example Eq. (23) in the case of a simply supported sandwich beam. The advantage of
this approach is that calculated mobilities will not suffer from ‘‘narrowing’’ of its peaks, which is otherwise
the case when using a frequency-dependent smooth bending stiffness curve. See the discussions in Sections 3.3
and 6.

In summary, the apparent bending stiffness concept is an approximate engineering approach, ‘‘translating’’
a sandwich beam into an ordinary homogenous beam. Various ways of obtaining estimates of DappðoÞ will be
given in the following section.

3.1. Different estimates of Dapp

3.1.1. Method of displacement error minimization

There are several possible estimates of the Dapp parameter. One definition could require the minimization of
the mean displacement error with respect to Dapp,

EðDapp;oÞ ¼
1

L

Z L

0

jw� wappjdx, (43)

where w is the ‘‘true’’ deflection as calculated by Eq. (33) and wapp is the deflection yielded by applying
Bernoulli–Euler theory with a frequency-dependent bending stiffness. However, this is a rather cumbersome
approach as it involves the full solution to the sixth-order problem. Further, once the full solution is obtained,
a numerical approach to solving the minimization problem is probably required if the absolute error definition
is to be used. As an alternative, the least-squares method could be considered.

Besides from the computational disadvantages of this definition, another problem lies in the fact that the
obtained estimate of Dapp must depend on the chosen type of excitation force distribution. In Fig. 6, point
1In a wide frequency region, the magnitude of k3 is much larger than those of the other wavenumbers. This implies that the nearfield

associated with k3 is highly localized to edges and discontinuities, and will not influence the displacement some distance away from these.
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excitation has been utilized. Also note that the chosen cost function could be replaced by for example kinetic
energy error, yielding a different estimate.

3.1.2. k1-method

In contrast to the previous definition, the simplest estimate of Dapp is obtained by inserting the main
propagating wavenumber k1 into the Bernoulli–Euler dispersion relation, solving for the bending stiffness.
This yields

Dapp ¼
mtoto

2

k41
. (44)

The problem with this approach is the discarding of the two other wavenumbers, implying that the effects of
nearfields are not described as accurately as they could be. As mentioned earlier, the apparent bending
stiffness—as applicable to Bernoulli–Euler theory—should depend on boundary conditions, in order to
achieve an accurate description of the problem. For example, using this approach one will obtain the same
eigenfrequencies for both clamped and free end conditions. This is true for Bernoulli–Euler beams, but not for
sandwich composites. Also, the low-frequency asymptote will in general be overestimated. This problem can
be illustrated as follows: consider the maximum static deflection for a sandwich beam subject to a central point
force F per unit width (obtained from thick beam statics, see for example Ref. [15]):

dmax ¼ F
qbL3

Dtot
þ

qsL

Gchc

� �
. (45)

Here, qb and qs are the bending deflection coefficient and shear deflection coefficient, respectively, and depend
on boundary conditions (see Table 1). For an equivalent Bernoulli–Euler beam the corresponding expression
is given by

dBEmax ¼ F
qbL3

Dstat
app

. (46)

By equating the maximum deflections and solving for the static equivalent bending stiffness Dstat
app, we obtain

Dstat
app ¼

Dtot

1þ
qsDtot

qbL2Gchc

. (47)
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Table 2

Approximate values of kmL for some simple boundary conditions

m 1 2 3 X4

Simply supported p 2p 3p mp
Free–free or clamped–clamped 4.730 7.853 10.996 2mþ 1

2
p

Clamped–simply supported 3.927 7.069 10.210 4mþ 1

4
p

Clamped–free 1.875 4.694 7.855 2m� 1

2
p

Table 1

Bending and shear coefficients for different boundary conditions, static deflection

q�1b q�1s

Simply supported (central load) 48 4

Clamped–clamped (central load) 192 4

Clamped–free (end load) 3 1
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It is clear that the apparent bending stiffness will converge to a value lower than Dtot, for finite values of the
shear modulus and beam length.

3.1.3. Method of equating eigenfrequencies

The most intuitive approach to obtaining a boundary condition dependent estimate is to consider
eigenfrequencies. These can be obtained in a relatively straight-forward way from the sixth-order method, see
Eq. (19). The eigenfrequencies of a Bernoulli–Euler beam is given, for different boundary conditions, by

oBE
m ¼ k2m

ffiffiffiffi
D

m

s
, (48)

where km
2depends on boundary conditions, see Table 2.

Now, by calculating the eigenfrequencies om of a given sandwich beam configuration, a discrete estimate of
Dapp can be obtained from Eq. (48) as

DðmÞapp ¼

Dstat
app; m ¼ 0;

o2
mmtot
k4m

; m40:

8><
>: (49)

This is consistent with earlier results, see Eq. (23). In order to obtain a continuous estimate, some type of
interpolation scheme can be used. In Fig. 6 piecewise cubic interpolation has been utilized.

In Fig. 7, the influence on the apparent bending stiffness of different boundary conditions is presented.

3.2. Apparent loss factor

By using complex valued elasticity and shear moduli the loss factors of the laminates and the core are
implemented in the full model. For the Bernoulli–Euler model, however, a frequency-dependent total loss
factor Zapp must be used. An estimate for this entity can be obtained from the dispersion relation by using the
complex-valued material parameters. It is intuitive to assume that the apparent loss factor is proportional to
2The eigenvalues km, m 2 N, should not be confused with the continuous k1, k2 and k3 solutions to the sixth-order dispersion relation.
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the imaginary part of the main wavenumber, as is done in Ref. [7], i.e.

k1 ¼ Reðk1Þ 1�
iZapp
4

� �
! Zapp ¼ �4

Imðk1Þ
Reðk1Þ

. (50)

The result is represented by the solid curve in Fig. 8.
Other possible ways of obtaining estimates of the apparent loss factor include analysis of measured or

calculated transfer functions or reverberation time—the half-power bandwidth method was used to obtain
estimates of the apparent loss factors for different boundary conditions, see Fig. 8. As could be expected,
clamped end conditions seem to imply a higher apparent loss factor than the simply supported case, and free
end conditions seem to imply a lower loss factor.
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The dashed curve represents the loss factor estimate given by Eq. (23), as the ratio of the imaginary part to
the real part. The prediction agrees well with the higher-order theory, for simply supported beams. As
mentioned earlier, the denominator of each mode amplitude can be written as o2

n2o2, where on is obtained
from Eq. (21) or indirectly Eq. (23). Using complex material parameters, the imaginary part of o2

n will be
proportional to the effective loss factor Zapp. Hence, it seems justified to use Eq. (23) with complex-valued
material parameters to describe the forced motion of lightly damped, simply supported sandwich beams.

Losses can now be implemented in the simplified model by assuming a complex apparent bending stiffness
Dapp ¼ ReðDappÞð1þ iZappÞ. The loss factors of the aluminum laminates were assumed to be approximately
equal to 10�3 while for the plastic foam core a value of 0:04 was used. The latter value was obtained by
comparing the results of the full model to measured data.

3.3. Implementing the apparent bending stiffness

Obtaining transfer function and mode shape estimates using the sixth-order theory involves complicated
numerical procedures. In contrast, the ‘‘equivalent’’ Bernoulli–Euler theory is simple to implement. For
example, the deflection of a beam subject to some force distribution F 0 per unit length is given by [3]

wðx; tÞ ¼ eiot
X1
m¼0

hF 0; fmifm

bðDk4m � mo2Þhfm;fmi
, (51)

where fm are the eigenfunctions and km the eigenvalues corresponding to the particular boundary conditions,
b is the width of the beam and h�; �i is the inner product operator. For a sandwich beam element, the bending
stiffness D is replaced by the frequency-dependent DappðoÞ or the discrete DðmÞapp. The latter option is preferable
in a mechanical viewpoint, since using a constant Dapp for each mode implies a better description of the width
of the resonance peaks. However, the frequency dependent estimate may be simpler to implement in various
applications.

It should be noted that using a constant value of the bending stiffness for each mode is not the same thing as
to let all modes share the same frequency-dependent bending stiffness. A close approximation to the mode-
discrete case could be achieved by implementing a piecewise constant bending stiffness curve, where the
bending stiffness is constant in a region around each eigenfrequency, allowing the width of the resonance
peaks to be correctly described locally. This could be what the error-minimizing numerical algorithm is trying
to show in Fig. 6. However, implementing a discontinuous bending stiffness would also imply discontinuous
mobility curves, phase velocities and so on.

4. An equivalent Timoshenko beam approach

As stated in the previous section, the greatest disadvantage of the equivalent Bernoulli–Euler beam is the
need for a boundary condition-dependent estimate of the apparent bending stiffness. By instead utilizing an
equivalent Timoshenko beam, where the k3 wavenumber is discarded, it is possible to find frequency-
dependent bending stiffness and shear modulus parameters such that the Timoshenko wavenumbers coincide
with k1 and k2. This effectively means dividing the sixth-order sandwich dispersion relation by k2

þ k23, which
yields a reduced fourth-order dispersion polynomial. This approach assumes that the effects of the nearfields
associated with k3 are negligible.

Consider a fourth-order polynomial of even powers in k, with roots equal to the wavenumbers �k1 and
�ik2 of the sixth-order sandwich theory (see Fig. 3 for frequencies well below orot):

ðk � k1Þðk þ k1Þðk � ik2Þðk þ ik2Þ ¼ k4
þ ðk22 � k21Þk

2
� k21k

2
2. (52)

This expression is compared to the dispersion relation of a Timoshenko beam, which is obtained from Eq. (13)
by setting D1 ¼ D2 ¼ 0. Assuming the rotational inertia I tot is negligible, we obtain

k4
�

mtoto
2

GT
apphc

k2
�

mtoto
2

DT
app

¼ 0, (53)
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where DT
app and GT

app are the apparent bending stiffness and shear modulus. Now, identifying the coefficients
of the polynomials yields

DT
appðoÞ ¼

mtoto
2

k21k
2
2

, (54)

GT
appðoÞ ¼

mtoto
2

hcðk21 � k22Þ
. (55)

Thus, by calculating k1 and k2 from Eq. (13) with I tot ¼ 0, we can obtain the equivalent bending stiffness and
shear modulus parameters for a Timoshenko beam with arbitrary boundary conditions. As can be seen in
Fig. 9, the equivalent shear modulus GT

app is approximately constant and equal to Gc for low frequencies, while
at the high-frequency end of the spectrum it increases rapidly. This is due to the fact that in ordinary
Timoshenko theory, the high-frequency asymptote of the main propagating wavenumber denotes a shear
wave, not a flexural wave as is the case for the sixth-order sandwich theory. It follows that the dynamic shear
modulus will yield an apparent k1 wavenumber equal to that of the higher-order theory.

Analogously, the high-frequency asymptote of the nearfield wavenumber is a constant and depends on the
ratio of GT

app to DT
app. Thus, the dynamic bending stiffness DT

app will display the same high-frequency behaviour
as GT

app, see Fig. 9.
The low-frequency asymptote converges towards the static pure bending stiffness Dtot.
Asymptotically, the ratio of GT

app to DT
app can be shown to be approximately equal to Gc=Dtot when o! 0 as

well as when o!1. In the mid-frequency range, the ratio depends on the behaviour of k1 and k2. An
approximate explicit expression for the normalized apparent bending stiffness and shear modulus can be given as

DT
appðoÞ

Dtot
	

GT
appðoÞ

Gc

	

1; o5omid;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mtotðD1 þD2Þ

p
Gchc

o; obomid;

8><
>: (56)

where omid is a limit frequency defined by the intersection of the asymptotes,

omid ¼
Gchcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mtotðD1 þD2Þ
p . (57)

Eigenfrequencies can be calculated from standard Timoshenko beam formulae using iterative methods,
see for example Ref. [15]. The results are shown in Figs. 10 and 11, from which it is clear that the ordinary
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constant-parameter Timoshenko formula deviates from the value yielded by the higher-order theory, while the
agreement between the dynamic parameter model and the higher-order theory is satisfactory over the entire
considered range. For the simply supported beam, the resonance frequencies corresponding to the sixth-order
theory were obtained from Eq. (21). In the case of the cantilever beam, the resonance frequencies were found by
calculating the roots of the determinant Eq. (19). In the latter case, numerical instability occurred above the 48th
mode, which is why the curve is truncated.
5. Measurements and validation

In order to validate the models presented in the previous sections, measurements on an asymmetric
sandwich beam with both ends free were performed. Material parameters and dimensions are given in Table 3.
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Fig. 12. Measurement setup.

Table 3

Approximate material and geometrical properties of the sample sandwich beam used in simulations and measurements

Property Value

L 1.2m

h1 0.75mm

h2 2mm

hc 10.2mm

E1;E2 70GPa

Ec 130MPa

Gc 45MPa

Z1; Z2 10�3

Zc 4� 10�2

r1; r2 2700 kg/m3

rc 74 kg/m3
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Using an accelerometer and an impact hammer connected to a two-channel signal analyzer, transfer
accelerance functions were obtained for a number of different positions of the accelerometer and excitation
point. These results were then compared to the predictions of the different models.

In addition, comparisons between the sixth-order model (referred to as ‘‘Full model’’) and the equivalent
Bernoulli–Euler model (referred to as ‘‘BE-model’’) were made for simply supported and clamped boundary
conditions. For these end conditions, no measured data was obtained due to practical considerations.

5.1. Measurement setup

The measurement setup consisted of a Brüel & Kjær type 4393 accelerometer (weighting 2.4 g) and
excitation hammer connected via signal amplifiers to a Hewlett-Packard 3562A signal analyzer, and an
asymmetric sandwich beam (see Table 3) suspended in one end by means of an elastic rubber band, imposing
approximate free–free boundary conditions (see Fig. 12). The sandwich beam consisted of two aluminum
laminates bonded to a plastic foam core. In the HP 3562A analyzer, the 2048-point time record is Fourier
transformed into a frequency resolution of 801 lines, from 2 to 1252Hz with a stepsize of 1.56Hz. An
exponential window was applied to the captured signals. The measurements were performed in the MWL
laboratory at KTH, at normal indoor conditions.

5.2. Error sources

The presence of different types of measurement error may influence the validity of the results. For a detailed
analysis of this problem, see for example Refs. [16,17]. Some of the possible error sources include the influence
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of the added mass of the accelerometer, fluid loading due to surrounding air, low signal-to-noise ratio due to
low excitation force impulse or if the accelerometer is close to a node point, possible nonlinear behaviour due
to high excitation force impulse and non-ideal boundary conditions. Some of these errors are easily detected;
for example, the coherence function—which is obtained for each measurement—will indicate poor quality if
the signal-to-noise ratio is low or if nonlinear phenomena are present. The influence of the added mass of the
attached accelerometer could potentially be important, especially close to resonance frequencies since the
apparent mass of the beam is very low in these regions. It is assumed that the influence of the utilized low-
weight accelerometer is negligible in the considered frequency range.

Possible effects of the rubber band supporting the beam are assumed to be negligible. Only free–free
boundary conditions were implemented due to the difficulty of achieving other types of configurations, i.e.
clamped, simply supported, etc.
5.3. Results

Complex transfer accelerance functions were obtained for a number of different combinations of excitation/
reponse coordinates (denoted by x1 and x2). The magnitudes of the transfer functions were then plotted
together with the predictions yielded by the sixth-order theory and the apparent bending stiffness model. As
can be seen in Fig. 13, both models provide reasonably accurate predictions of the transfer accelerance of a
free–free sandwich beam, with the exception of the fourth resonance peak. The reason for this behaviour is
that either the excitation point or the accelerometer is located close to a node point of the particular mode, and
thus the response may change drastically with a small change in position. Indeed, it can be shown that shifting
the x2 coordinate by a few millimeters has great influence on the peak level of the fourth resonance.

The higher-order theory provides near excellent agreement in most of the frequency region considered, while
the Bernoulli–Euler theory often fails between the resonances. However, in an acoustic viewpoint this is of no
great concern since the resonance peaks contain most of the kinetic energy and thus are of greater importance.
The measurement quality is indicated in the coherence plot shown in Fig. 14.
6. Model comparisons

Due to the previously mentioned problems of obtaining results for other than free end conditions during
measurements, the special cases of simply supported and clamped conditions were analyzed by comparing the
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Fig. 13. Transfer accelerance of a free–free beam, x1 ¼ 0:19m and x2 ¼ 0:1m. —, measured data; - -, sixth-order model; � � �, modified

Bernoulli–Euler theory. The fourth peak at around 380Hz is not well described by either model; this is due to the proximity of the

accelerometer or excitation position to a node point for this particular mode.
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Fig. 14. Coherence of transfer accelerance measurement, x1 ¼ 0:19 and x2 ¼ 0:1m.
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Fig. 15. Predicted transfer accelerance, simply supported ends, x1 ¼ 0:19m, x2 ¼ 0:1m. The peak levels in the high-frequency region are

better described using the loss factor estimate obtained from Eq. (23). —, sixth-order model; - -, modified Bernoulli–Euler theory, loss

factor from Eq. (23); � � �, modified Bernoulli–Euler theory, loss factor from k1.
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results of the sixth-order model and the modified Bernoulli–Euler model. As can be seen in the following
figures the models agree well, indicating that the simple equivalent Bernoulli–Euler beam theory could be
implemented also for these types of boundary conditions.

The loss factor estimate utilized in the calculation of the accelerance of the clamped beam was obtained
from the main propagating wavenumber of the higher-order dispersion relation, as described earlier. It could
be argued that some other estimate should be used; a lower value of Zapp in the upper half of the considered
frequency region—as indicated in Fig. 8—would improve the agreement of the models. In Fig. 15, curves
obtained using the two different estimates of Zapp are displayed. Note that the peaks of the curve obtained
from Eq. (23), using the frequency-dependent bending stiffness DappðoÞ, are narrower than those of the higher-
order theory—see Fig. 16; this phenomenon can be understood by considering the frequency response of a
simple mass–spring system, where the spring ‘‘constant’’ is frequency dependent. By instead using the discrete
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DðmÞapp set of bending stiffnesses—each corresponding to a mode—the problem with narrow peaks is avoided
(Fig. 17).

The band-average mobility levels—defined in Eq. (58)—of a simply supported sandwich beam configuration
are shown in Fig. 18, indicating again good agreement between the higher-order model and the modified
Bernoulli–Euler model. The apparent bending stiffness estimate was obtained from Eq. (23). The band-
average mobility levels are given by

L
ðmÞ
Y ¼ 10 log10

1

omþ1 � om

Romþ1

om
jY j2ðoÞdo

Y 2
ref

8>><
>>:

9>>=
>>;, (58)
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where m is the band number, om is the lower limit frequency of band m and Y ref ¼ 10�3 m/Ns is a reference
mobility value.

7. Conclusions

A sixth-order model has been derived which shows excellent agreement with measured data in the frequency
range considered. This model, obtained by applying Hamilton’s principle, takes into account the shear
deformation of the core and the effects of rotational inertia. Obtaining eigenfrequencies, mode shapes and
deformations due to external exciting forces using this method implies solving large matrix systems for each
frequency line considered. The calculations were performed on a standard PC using the numerical software
package Matlab.

In addition, the possibility of using modified lower-order methods—such as the Bernoulli–Euler or
Timoshenko beam theories, in combination with frequency-dependent parameters—to calculate the flexural
response of sandwich beams subject to different loading and end conditions has been evaluated. The models
have been verified by transfer accelerance measurements on a freely suspended asymmetric sandwich beam
with aluminum laminates and a plastic foam core, indicating good agreement.

7.1. Conditions for obtaining satisfactory results using the apparent bending stiffness approach

The following items should be carefully considered in order to obtain satisfactory results using the apparent
bending stiffness approach:
�
 The influence of rotational waves should be considered negligible. This condition is satisfied if o5orot,
where orot is defined in Eq. (14).

�
 The laminates should move in phase, i.e the frequency should be far below the mass–spring–mass frequency

of the sandwich beam.

�
 The laminates should be thin in comparison to the flexural wavelength, so that thin-beam theory is

applicable. This condition is satisfied if hjk151, where j ¼ 1; 2 and k1 is the wavenumber corresponding to
propagating flexural waves.

�
 In general, there might be problems close to junctions and discontinuities, due to the description of the

nearfields.
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�
 As the modes share the same frequency-dependent bending stiffness, the issue of modal overlap could arise
when consecutive eigenfrequencies become too close. This could be a complicating factor, especially when
modelling plates using the apparent bending stiffness technique.

�
 In order to avoid narrowing of the resonance peaks—and thus an underestimation of the kinetic energy of

the structure—the gradient dDapp=do of the apparent bending stiffness should be limited.
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