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Abstract

Adiabatic invariants for dynamical systems with one degree of freedom are derived. The method developed for linear
dynamical systems with constant parameters is extended to systems with slowly varying parameters. The method is based
on the field method concept of obtaining a conservation law from an incomplete solution of a partial differential equation.
The method results in a complete set of adiabatic invariants specifying the approximate solutions for motion. A few
examples, including the classical time-dependent oscillator and the Duffing oscillator with slowly varying parameters, are
given to illustrate the theory.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the knowledge of conserved quantities of a dynamical system deepens understanding of
its essence. This must have been and still is one of the reasons for a lasting interest in the study of adiabatic
invariants—quantities which remain approximately conserved during a slow variation of systems parameters
over a time scale long compared to a natural period. Namely, for a function I which is an adiabatic invariant
to O(e") with 0<e <1, the expression “approximately conserved” reflects the property that its time derivative
is of N 4+ 1 order. If that derivative is equal to zero, the function [ represents an exact invariant (the first
integral) [1].

Burgers [2] was a pioneer in adiabatic invariants research. Kruskal [3] and many others in after years [4-9]
dealt with adiabatic invariants of the Hamiltonian systems, which are the systems completely described by
Hamiltonian. In order to find adiabatic invariants of purely non-conservative systems, which cannot be
described by Hamiltonian canonical equations, Djukic [10] developed the theory which enables one to obtain
adiabatic invariants of dynamical systems with one degree of freedom and slowly varying parameters. This
theory, which is the combination of the Noether’s theory and Krylov—Bogolubov—Mitropolski method, was
also extended to two weakly coupled oscillators with slowly varying parameters [11] as well as to the systems
with one degree of freedom and large cubic nonlinearity [12].

In this paper, the procedure for obtaining adiabatic invariants of a system with one degree of freedom and
slowly varying parameters is proposed. It is based on the field method [13] and its extension to vibrational

*Tel.: +381216350122; fax: + 38 121458133.
E-mail address: ivanakov(@uns.ns.ac.yu.

0022-460X/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2006.08.036


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.08.036
mailto:ivanakov@uns.ns.ac.yu

696 L Kovacic | Journal of Sound and Vibration 300 (2007) 695-708

problems [13—15]. The field method is used since it does not have any limitation regarding conservative
character of the system being considered, i.e. it is applicable to any system whose equations of motion can be
written in the form of first-order ordinary differential equations. The basic field method concept is combined
with the multiple variable expansion procedure. Similar to Djukic’s results [10], the adiabatic invariant derived
in this paper has the leading term quadratic with respect to the state variables. However, this quadratic
invariant is derived by algebraic transformations from a complete set of new linear adiabatic invariants. These
linear adiabatic invariants specify the solution for motion so that the proposed procedure enables the complete
study of the system considered: qualitative (on the basis of the adiabatic invariants) and quantitative (on the
basis of the approximate solution for motion).

Three examples are given to illustrate the procedure developed: the classical harmonic oscillator with slowly
varying frequency, the Duffing oscillator with slowly varying parameters and the weakly and slowly pulsating
undamped oscillator.

2. The field method approach

Consider an oscillator with slowly varying parameters whose differential equation of motion can be
presented in the form:

X =y,

).} = —K(T)X + Sf(x7p7 T)’ (1)

where x and y are state variables, K(r) is an arbitrary function of slowly varying time 7 = &t ¢ is a small
constant parameter, ¢ is time, () = d()/d¢ and fis an arbitrary function of the variables x, p and 7.

According to the basic supposition of the field method, one of the state variables of the system, say the
coordinate x, can be expressed as a field depending on time ¢ and the other variable, in this case the variable y,
ie.

x=U(,y). (2)

Differentiating this expression totally with respect to time and using Eqs. (1), a partial differential equation,
the so-called basic field equation is derived:

oU oU
=+ = [-K@U+¢/(U,p,0)] —y = 0. 3)
or 0Oy

It has been shown [13,16] that an incomplete (single) solution of the basic field equation can be used for
deriving conservation laws of linear one degree of freedom dynamical systems with constant parameters.
Namely, for the case when K = const. and f = 0 the incomplete solution of the simplified basic field equation:

oU oU

— — —KU-—-y=0. 4

ot "y U-y=0 “4)
can be assumed as [16]

x=U=Ay+F@), ®)

where A is a constant, while F(¢) is an unknown function of time. Substituting Eq. (5) into Eq. (4), and
equating the terms containing y and the free terms with zero, one has:

1

Aip =+ —i, 6
12 i (6)

F(f) = Ce?™81, (7)

where 1 is an imaginary unit and C is a constant of integration.
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Using Egs. (6) and (7), the solution for the field (5) can be written down as:

iy —it /
x——le " =C,
A
iy it Z
X+ ——=le"=C", 8
7 ®
where C' = C(A4;) and C” = C(A4,). The values of these constants can be calculated from the initial values x(0)

and y(0).
Egs. (8) represent two independent conservation laws, which give the solution for motion X (the solution
along trajectory):

C it C’ —it
gote e )
2
The product of C" and C” yields the total energy conservation law:
Kx* + y* = 2E = const. (10)

So, on the basis of the incomplete solution of the basic field equation, two independent conservation laws can
be found. They specify the motion of the system with one degree of freedom, i.e. they represent a complete set
of invariants, enabling the construction of the solution for motion.

In order to harness the power of this approach, the previously given concept is to be adapted for
establishing a complete set of adiabatic invariants of the oscillator with slowly varying parameters (1). Firstly,
fast time is introduced [1]:

1 T
ng/ v/ K(s)ds. (11)
0
Then, both the field U and the variable y are developed in series with respect to the small parameter according

to the following expressions:
U([,y,S)Z UO(T’T’y0)+8U1(T3T>yO)+"' ) (12)

y(t,8) =yo(T, 1) + ey (T, 1) + - -+ . (13)

It is also assumed that the dependence of the field on the corresponding variable is not affected by the step of
approximation [13], that is:

oU U, U,

— === (14)
0y Oy
Besides, the function f can be expanded with respect to the small parameter:
f(Uapa‘E) =f0(x0,}70,1')+8f1()E(),)70,)2],}71,T)+"‘ . (15)
Using Eqgs. (11)—(15), the basic field equation (3) transforms to:
ol oUy
—VK(t) - —K — Y= 1
o7 VE@ =5 K@U~ 3 =0, (16)
6U1 6U1 aUO aUl - =
—VK(t)——K -y =———; — = . 1
a7 VKO = K@U =y = = s, = L0, 70,0) (17

Since the right-hand side of Eq. (17) depends on the firstly found quantity Uy, the notation 0U/0t|; means
that this derivative must be calculated for the solution along trajectory j, .

A trial incomplete solution of Eq. (16) will be assumed in the form analogous to the incomplete (5), but the
existence of slow and fast time requires assuming its terms as varying in times:

Uo = Fi1(my, + Fo(T, 7). (18)
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Substituting it into Eq. (16), equating the terms containing y, and the free terms with zero, and integrating
them, one has:

1
Fi=+ i (19)
v/ K(7)
Two forms of this function will be denoted as
F = #1 Y = ! i (20)
VR T VKD

As a consequence, the function F; has two forms:

Fy = Cy(0)e"WEOT  Fl = Cn)e"iVEOT, 1)

where C; and Cj are unknown functions of slow time t. The solutions along trajectory for the first
components Xp and j, are:
. CymeT + Cy(rye™T
xO - 2 )

(22)

o= ZOOTH GO s 03

The form of the functions Cj and Cj will be found from the equation for the component U, (17), whose
solution is assumed as

U, =F,(0)y, + C (T, 1)e'VEOT, (24)

with C; being unknown and having two values C} = C(F}) and C] = C(FY).
Now, Eq. (17) turns into:

dc dF, —Cje'T 4 Cjle T dC
/——‘K(T)TTI _ _ Tl 0€ ;; 0€ KD +d706FM/K(r)T e~ FIVEKOT _ FLfO()EO’J;O,,L_)efFM/K(r)T. (25)
T T

Taking into consideration two possible values of F (20), Eq. (25) yields two differential equations for C and
Cl:

VE@IC LK g 4G

= i oo T
dT ~ 4K de & Ry e Te e (26)

dc’ 1 dK . dcy 1 :
K L~ "7 1 21Ty 0 = s IT'
V K(7) 4T — 4K de [—Co+ Coe™] P + \/mfo(xo,%,f)e

Firstly, in order to find Cj, and Cj, the requirement of no appearance of the secular terms will be used. This
will result in the first-order differential equations for Cj, and Cj. The initial values C;(0) and C;(0) are defined
with the initial values of the state variables. If x(t = 0) = @ and y(t = 0) = b, Egs. (22) and (23) give:

Ch(0) =a— _b Cl0) =a+ _b_ (28)

VKO VEK©O)
Then, Eqgs. (26) and (27) are to be integrated with respect to 7. Since expression (24) implies:
_ CU(T, e + C{(T,1)e™'T
= 5 ,

27)

X1 (29)
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_ =C(T, 0T + CU(T,1)e T
= TGEAT T s 0
one derives:
C}(0,0) = C{(0,0) = 0. 31)

2.1. Adiabatic invariants
According to the assumed forms of components (18) and (24), the field U (12) can be expressed as
x=U = Fi(0)y, + Co(@e" VEOT 4 o[F(1)y; + Ci(T, 1)e VEOT], (32)

Replacing two possible values of F|, Cy and C,, and using Eq. (13), one has:

[x - ]e_iT = C) +eCl(T, 1), (33)

v/ K(7)

X+

cld 1eiT = C} +eCl(T, 7). (34)

v/ K (1)

These relations represent two independent adiabatic invariants of system (1).
Multiplying them, the following adiabatic invariant is obtained:

K(t)x> + 7
K(7)

The leading term is obviously the energy of the linear harmonic oscillator (the double one) divided by
frequency squared. The correction for the arbitrary oscillator (1) is defined by the terms in the brackets, that is,
by C;-C. Consequently, this correction will depend on slow and fast time only, which is the basic difference
between this term and those derived by some other authors who obtained them in the mixed form of the state
variables and time (for example, Refs. [6,10,17]). Since the product C;;C;j may depend on slow time, it might be
expected that, after transforming Eq. (35) in such a way that a pure constant appears on the right-hand side,
the leading term will become the ratio of the energy and some function of slowly varying frequency.

— ¢[Cy(r)C{(T,7) + Cy(1)C\(T, )] + O(e*) = Cy(1)Cy(). (35)

2.2. Solution for motion

With a sufficient number of independent invariants in hand (33)—(34), one can effectively find the
approximate solution for motion in the second approximation:
_ CeT + Cpe' T ClelT + Cle'T

x= 5 +e 5 . (36)

Further consideration is based on the function f(x,p, 7). Hence, some forms will be assigned to it and the
adiabatic invariants (33)—(35) as well as the solution for motion (36) will be found completely.

3. Examples
3.1. Classical time-dependent harmonic oscillator

Consider the classical time-dependent harmonic oscillator, whose differential equation of motion is given by
Eq. (1), where f = 0.
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The corresponding differential equation (25) for the second component of the field is

/—dC1 dF, _ dCy Fi/KQOT | .—F1s/K(x)T
K( ) dT d'E y0+ dT € € 5 (37)
ie.
——dC) 1 dK__, 2T .. dCy
K@ dTr 4K(r) dr [Coe ~ Gl dr ’ (38)
dc¢i 1 dK , dcy
K il SR 24 1 S21T7 _ _0.
VEO G5 = ikmac O+ G - (39)
The elimination of secular terms from Egs. (38) and (39) imposes:
d¢ 1 dK
- o= 4
dr + 4K(r) dr 0, (40)
dcy 1 dK
—_— 41
dt +4K(r) dz “h)
Their solutions are:
4K 4K
C/ (0) (0)’ C// C//(()) (0) (42)
K() K(t)

where C;,(0) and C(j(0) are defined by Eq. (28).
Integrating what remained in Eqs. (38) and (39) with respect to T and considering slow time 7 as a constant,
one finds:

' 1 dK 1 —2iT /
C = 81K3/2(’L') d‘C C +P(T) (43)

1 dK
C' = _C/ 21T P// T 44
1 8iK3/2(‘L’) dr () ( )
where P'(t) and P’(t) are arbitrary functions of slow time. They must be of such forms that the initial values of
C} and C{ (31) are satisfied. Underlining that these forms are not unique, we will suppose them as:

1 dK .,

8iK3/2(r) dt “43)

P(r)=

1 dK ,

—8iK3/2(‘C) E 0° (46)

P//(T) —

They were derived from Eqgs. (43) and (44) by substituting 7 = 0.

3.1.1. Adiabatic invariants
The complex adiabatic invariants (33), (34) of the classical time-dependent harmonic oscillator are:

L iy T ib \ 4+/K(0)
VK () VK(©0)) \ K

dK b \JKO[ 1 e 1
T de <a+m> K(T)|: 8iK3/2(1:)e +8iK3/2(’L') > (47)
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- I - ib '\ 4/K(0)
VK1) VK(©0)) \ K(z)

dK ib K(0) [ 1 ’iT 1 }
+e—(a— - e +—0p—|. 48
dr ( \ /K(O)) K@) [ 8iK*(x) 8iK3/%(1) “8)
The corresponding first-order adiabatic invariant (35) is
24 2 2 72
K(t)x*+y _dK K(0)a* — 312 12T — Zzb2 c0s 2T + 211)2 _ K@)a"+ b (49)
VK@) s/K(O 4K3/ (‘c) 2K (1) 2K (1) V/K(0)

To the best of author’s knowledge, this adiabatic invariant in which the terms next to the small parameter
depend only on time is unknown in the literature.

3.1.2. Solution for motion
From Egs. (22), (28) and (42), the solution in the first approximation is obtained:

K
x0=a4ﬂcosT—i—#sinT. (50)

K(7) Y/K(0)K(7)
This is the same solution as one usually given in the literature (see, for example, Ref. [1] or [19]). Here,
following the proposed field method technique and using Eqs. (43)—(46) the solution for motion in the second
approximation (36) is also found:

K(0) b . {/K(0) dK
_T)cosT—l—WmnT%-s 4K7/4()dr nT.

In Fig. 1 the numerical solution xy of the Eq. (1) for the case f= 0 is compared with the approximate
solution xr (51) and x4 according to Ref. [10] (Egs. (9), (45), (30) therein). The values of the parameters and
the initial conditions are: K(t)=1471, ¢=0.01, a=1 and b=0. For smaller values of time, both
approximate solutions agree well with the numerical result xy. As time passes, the solution obtained by using
the field method xp agrees excellently with the numerical one, while the solution x4 shows some deviation.

4
XFp=d

(1)

1

0.8

X
06 | A

04
AN
0.2

. /

X
02 +

04
-0.6
-0.8

-1

0 1 2 3 4 5 6 7 8

Fig. 1. Approximate analytical xz, x4 and numerical solutions xy of the classical time-dependent harmonic oscillator for K(t) = 1 4,
¢ =0.01 and the initial values x(0) = 1 and y(0) = 0.
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It is interesting to note that by using Eq. (50) for the case when b = 0 and deriving y, = a+/K(0)K(r)sin T,
the terms in the square brackets of Eq. (49) can be transformed into the form making the adiabatic invariant
Eq. (49) equal to that given in Ref. [10] (Eq. (32) therein).

Zeroth-order invariants: For the case when ¢ = 0, the adiabatic invariants (47)—(48) become the invariants of
the zeroth order:

by Sr_ [, b K(0)
e = (- ) o “2)

iy T ib +/K(0)
x+ el =la+ . 53
\/K(ﬂ:)] ( ,/K(O)) K(7) 53)
If one multiplies Egs. (52) and (53) mutually, the following exact invariant is obtained:
K@x?+y*  K(0)a* + b’

VK@ JK(©O)

This is a classical invariant for a linear harmonic oscillator with slowly varying parameters [1,18]—the energy
of the oscillator (in this case the double one) divided by frequency.
The complex invariants (52), (53) can be written down as:

V/K(t)xcos T — é/%sin T = av/K(0), (55)

b
YK@xsin T+ —2—cosT = . 56
\/T) 4/K(T) 4/K(0) ( )
When K = const., these invariants become equal to a general form of the exact invariants of a simple
harmonic oscillator [7].

(54)

3.2. Duffing oscillator with slowly varying parameters

In this case the characteristic function f'is nonlinear with respect to the coordinate:
f(U) = () U%, (57)

where o is an arbitrary function of z. The initial conditions are x(z = 0) = a, y(t = 0) = 0.
Since f, = —aX3, where X is given by Eq. (22), Eq. (25) becomes:

dc, dF, —C{)eiT + CgeiiT dCy FiJK@OT | —F 1 JKOT
Kogr=- Lu 2 vE@+5e e
Coe'” + Cpe TV ks
+ Fro(t) {%} e FivKOT, (58)

In accordance with Egs. (26) and (27), it can be separated into:

\/mdc 1 d_K[CN 2T C/] dCO

dT ~ 4K(r) dt de
N 8 105521) [CRAT 4 3C2C) +3C)Cl2e AT 4 P 4T], (59)

acl 1 dK_ ., oy dCl
VKOG = qg g -G+ Gl

ia(r) [CReMT 1+ 3C2CYT +3C,CP2 + CPe 7). (60)

- 8/K(@)
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The elimination of secular terms leads to:

d¢, 1 dK 3io(t)

dc, ar ) 2 — 1
=0+ K & 5 Uk CyCy =0, (61)
dCO 1 dX " 3106(‘[) C, C//z 0. (62)

dr 4Ky de ° T8 /K()

Integrating them, and using Eq. (28) for b = 0, one has:
K(O) 2l K(O) _
C. =a 4 lA(‘r)’ C! = IA(T) 63

. 3a>\/K(©0) [T as)
A(r) = g L KG) ds. (64)

where

Now, the integration of Eqgs. (59) and (60) with respect to T is to be done. The assumed form of the function
C (24) as the one depending on fast and slow time, implies that after this integration, the unknown functions
of 7 are to be added to C| and Cj. Each of these functions will be separated into two terms: the first ones
existing because of slowly varying frequency, i.e. dK/dz, and the second ones existing because of the
characteristic function f; i.e. a(t). The first terms will be assumed analogously as P'(t) and P’(t) in the previous
example. At this level of approximation, the dependence of the second terms on slow time is assumed in the
same form as the dependence of Cj and C{ on slow time, that is, proportional to €4® and e~ Further,
these functions must have such initial values that C}(0,0) = C7(0,0) = 0. So, the solution for the functions C
and C] are as follows:

1 dK ; OC(‘E) ; i CN3 i
4 1 —2iT 13 217 /2 =207 0 4T
. e Cre —3CLC/e —— e
8iK3/2(-5) dr 0 16K( )[ 00 2 ]

1 dK _,,  5da(t)K34(0) i)

as 65
8iK2(rydr * " 32K7/4(x) (65)
7 1 dK _, 2T () o3 T 12 o AT "3 21T
1T Sk dr 16K(1) FIC e~ Coe
1 dK_,  Sa oc(r)K3/4(0)e_,A(z) (66)

S8k de 0 32K

3.2.1. Adiabatic invariants
The complex adiabatic invariants (33) and (34) of the Duffing oscillator with slowly varying parameters are:

Y _ iy il — 4 K(O) REIC T a\/ K(0) dK e—i2T+4(x)
VK () K@) ~ 8iK7/A(r) dt

2
ay/K(0) dK IA(T)+5a3oc(‘c)K3/4(O)eiA(T)] @)

a>o(1)KV/*(0) [ei(2T+3A(r)) _ 3e-iCTHA@) _ 1 ei(4T+3A(r)):|
16K7/4(1)

8iK7/4(7) dr € 32K74(7)
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X+

iy ol — 4! K(O)e_m(f) +e a\/ K(0) dK l2T+A()
VK1) K(7) 8iK7/4(7) dt.

_a 3a(1)K/4(0) [ GUTH3A@) | 3IQT+A@) _ o—iCT+34(0)
16K7%(1) |2

ay/KO) dK 5au@K0) iy (68)
8iK7/A(r) do 32K7/4(7)

Their product, after some transformations, yields the adiabatic invariant:

o Koy laz v K(O)d—Ksin(zT +24(1)) — GAVASOLLN n(24(v))

VK@ 4K (1) dr 4K*(r) de
a*a(1)K(0) a*a(t)K(0)
- 16T/2(‘5)COS(4T +44(7)) — WCOSQT + 24(1))
SatuOKO] _ »
T 6K (r) ] = VKO (69)

The leading term of this adiabatic invariant is the energy divided by frequency. The terms next to the small
parameter depend only on slow and fast time explicitly, unlike those given for example, in Refs. [6,10], which
are of the mixed form of time, coordinate and momentum.

In Fig. 2 the adiabatic invariant 7 (69) is plotted for the case in which K(t) = a(t) =1+ r7,a=1,b=0and
different values of the small parameter ¢. It is shown that each corresponding adiabatic invariant has a
tendency of slow increase.

3.2.2. Solution for motion
Solution for motion (36) is

+[K(0)

av/K(0)d
K@) KO Ks n(T + A(z))

——=cos(T + A(7)) + ¢ SK7/(7) d

xA=a

1.03

1.02 ¢

1.01 ¢

099 |

098 |

0.97

0 5 10 15 20 25 30 35 40
t

Fig. 2. Adiabatic invariants for the Duffing oscillator with slowly varying parameters for K(t) = a(t) = 1 + 7 and the initial values
x(0)=1, p(0)=0: ---. 6 =0.01, . . .. e=0.05 —¢e=0.1.
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1

(@) t

(b)

Fig. 3. Approximate analytical x4 (. . .) and numerical solutions xy (—) of the Duffing oscillator with slowly varying parameters for
K(1) = a(t) = 1 + 1, the initial values x(0) = 1, y(0) = 0: (a) the small parameter is ¢ = 0.01, (b) the small parameter is ¢ = 0.1.

4 3 3/4
%%%%%gﬁMT—Aﬁ»+£§%?%£QGmGT+3A@»
aBa(t)K>4(0)

— 32K74(q)
In Fig. 3 the approximate analytical solution x4 defined by Eq. (70) and the numerical solution xy are

plotted for the case when K(t) = a(t) = 1 +1,a =1, b = 0 and two different values of the small parameter:
¢=0.01 and ¢ = 0.1. In both cases the difference between the solutions is negligible.

cos(T + A(1))|. (70)

3.3. Weakly and slowly pulsating undamped oscillator

In Ref. [7], invariants of the damped weakly pulsating oscillator are derived. Here, we will consider the
undamped weakly and slowly pulsating oscillator with mass m:

m = mOeZ sin(vr), (71)

where my and v are constant parameters.

Its equation of motion:
i+ v ke =0, (72)
m
can be presented in the form:
X=y,

y = —Kx — 2evy cos(v). (73)

The mathematical model (73) is a special case of Eq. (1) with K = const. and f = —2vy cos(vt).
For such oscillator the function F in Eq. (19) is constant, as a result of which Eq. (25) reads as

Y iT " N\a—iT
\/K% = — ? + 2vF| cos(vt) Goloe ;; Go()e \/Ke*F”/_IET, (74)
T
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ie.:
dc, dC; »
«/E% =— % + veos(vo)[—Cp(r) + Cy(r)e 7], (75)
dC// dC// .
JEd—Tl =— dTO — veos(v)[—Ch(v)e T + Cj()]. (76)
To eliminate the secular terms one requires that:
dC;
d—TO + Cy(t)vcos(vr) = 0, (77)
u
d(ﬁo + Cj(x)vcos(vt) = 0. (78)
Integrating these equations and using Eq. (28) one has:
ib ; ib ;
C-=a—— e sm(vr)’ C! = (a + _) e sm(vr). 79
° ( ﬁ) 0 VK (79)
On the basis of Egs. (75), (76) and (31), the solutions for the functions C} and C] can be taken in the form:
i =—_(a+ b e~ S0 cos(v)[—e AT + 1] (80)
N VK ’
% v ib —sin(vr) 2T
1= m a— ﬁ € COS(VT)[C — 1] (81)

Invariants (33) and (34) yield:

— _ L : sin(vt) __ va. . _ ﬁ ﬁ _
I, = (x cosT \/Esm T) e & [( sin2T cos 2T | cos(vt) + K cos(vi)| = a, (82)
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Fig. 4. Adiabatic invariants for the weakly and slowly pulsating undamped oscillator for ¢ = 0.01, v = 1, K = 1 and the initial conditions
x(0) =1, y(0) = 1.5: (a) — the adiabatic invariant I, (b) -.-.-. the adiabatic invariant I,, (c) . . . . the adiabatic invariant /5.
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— : y sin(vr) |:< va vb . ) va :| _ b
I,=|(xsinT+—=cosT |e + & cos2T + —sin2T | cos(vt) — =—cos(v1)| = —, 83
= ( Jeees7) WK 2K AT S I S
while Eq. (35) becomes:
KX? +37 54 v b\ . 2ab 2ab]  Ka*+b*
[;=— 2 >0 _ ¢ cos(vt Kaz - —) sin27T — —=cos2T —i——] = 34
UK N/ K JK N (84)

In Fig. 4 the adiabatic invariants I,—I5 are shown for the case when ¢ =0.01, v=1, K =1, x(0) =1,
y(0) = 1.5. Tt can be seen that all adiabatic invariants are almost constant.

4. Conclusion

In this paper a procedure for obtaining adiabatic invariants of oscillators with one degree of freedom and
slowly varying parameters has been proposed. The procedure is based on the field method approach to
deriving exact invariants for the systems with constant parameters. This approach is combined with the
multiple variable expansion technique. As a result, two linear time-dependent adiabatic invariants are derived.
Combining them, the solution for motion in the second approximation can be found. Besides, multiplying
them, the adiabatic invariant whose leading term is quadratic with respect to the state variables can be
obtained. The term next to the small parameter in the expression for this invariant is the function of time,
unlike those derived previously by some other authors who obtained them in the mixed form of the state
variables and time.
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