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Abstract

This paper is concerned with the derivation of SEA equations from structural ray equations. Rays are assumed to be

uncorrelated leading to the additivity of energy. Inside all subsystems, the energy density is the sum of a direct field from

driving forces, a reflected field from the boundary and a transmitted field from adjacent subsystems. Assuming a ‘‘rain-on-

the-roof’’ excitation and a compact shape for subsystems, actual and fictitious sources on the boundary are found to be

constant. Furthermore, if the attenuation of rays during a mean free path (normalized attenuation factor) is light, the field

becomes diffuse, i.e. homogeneous and isotropic. The net exchanged power between two adjacent subsystems is then

proportional to the difference of energy densities and therefore, to the difference of modal energies. The derived

proportionality coefficient is consistent with the well-known formula for coupling loss factor in terms of transmission

factors. These results are illustrated by a numerical simulation for a multi-plate system. Finally, the validity domains of

SEA and the ray theory are discussed and particularly the diffuse field assumption.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Several approaches have been adopted to derive SEA equations. The historical approach is based on the
study of a pair of coupled resonators randomly excited for which the famous proportionality between the
energy flow and the difference of vibrational energies has been first published [1,2]. The generalization to two
sets of oscillators in interaction requires four further assumptions. Firstly, oscillators within the same set do
not exchange energy and thus, the power exchanged between the two sets is the sum of exchanged powers of
each pair of resonators, one in each set. Secondly, the excitation forces are uncorrelated and, in the case of
continuous structures, the force field is assumed to be ‘‘rain-on-the-roof’’ that is the random force is a white
noise at any point and also that the field is spatially d-correlated. Thirdly, the coupling between the two sets is
weak. Finally, the vibrational energy is equally shared by oscillators of the same set. This equirepartition of
energy turns out to be the key concept of SEA and it means that each set of oscillators is in thermal
equilibrium.Under all these assumptions, the exchanged power is proportional to the difference of modal
energies of the sets of oscillators [3]. The modal approach of SEA may be compared with the statistical
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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approach of molecular physics and until today, it has been an attractive method leading to new theoretical
results [4,5].

At the same time, the wave approach has been developed on the concept of travelling waves rather than
modes [6,7]. All previously enunciated assumptions have their equivalent in the wave approach although the
debate about their strict equivalence seems not to be closed. The two main assumptions of the wave approach
are that waves are uncorrelated and that the vibrational field is diffuse. This last assumption is equivalent to
the equirepartition of energy in the modal approach. This equivalence is highlighted by the proportionality
between modal energy and energy density (or intensity) stemming from the proportionality of modal density
and length, surface or volume of a subsystem. The wave approach has proved its efficiency to solve some
questions where the modal approach was difficult to apply. This is the case for the relationships giving the
coupling loss factor in terms of the transmission efficiency at junctions [8,9]. Extensive reviews of SEA with
more complete bibliographies are available in the standard books [10–12]. An historical review and a criticism
approach of SEA may be found in Ref. [13].

Adopting the spirit of SEA, some generalizations have been proposed for non-diffuse fields. In the wave
intensity analysis [14], the assumption of isotropy is relaxed whereas in the vibrational conductivity approach
[15] homogeneity and isotropy are both relaxed. Another method is proposed in Ref. [16] to relax homogeneity
and isotropy. Based on the assumption that all rays are uncorrelated, the method consists to write the power
balance on incoming and outcoming waves on the boundary. Introducing a fictitious source layer on the
boundary, the power of these sources is governed by an integral equation (radiative transfer equation) exactly
as it is in the view factor method in thermics [17] or in the radiosity method in acoustics [18]. The method
applies from diffuse to largely non-diffuse field in assembled plates. A last generalization of SEA is proposed
by Maxit and Guyader [19] when the equirepartition of modal energy does not hold. The method named the
statistical modal energy distribution analysis is based on the energy balance of individual modes instead of sets
of modes as in SEA.

The question of the consistency of these generalizations with SEA itself naturally arises. Any candidate for
generalizing SEA must embody SEA as a particular case. If the answer is somewhat obvious for the wave
intensity analysis [14], the vibrational conductivity [20] and the statistical modal energy distribution analysis
[19], it is not for radiative exchanges. There are several reasons to examine the derivation of SEA from
radiative exchanges beyond the mathematical requirement of consistency. Firstly, since radiative exchanges
are formally equivalent to the ray-tracing technique [21], it highlights the link between geometrical acoustics
including structural rays and SEA. Secondly, SEA may be viewed as the theory of thermal equilibrium of
mechanical vibrations whereas the theory of rays could rather be compared with the kinetic theory of gas so
that it is valid beyond equilibrium. To derive SEA from radiative transfer is thus a way to investigate the
transition from non-equilibrium state to equilibrium state. This question has some immediate consequences of
practical interest for SEA. The stakes are to be able to recognize the situations where equilibrium is reached,
i.e. when diffuse field is established. This rises the important question of the validity of SEA.

The purpose of the present paper is therefore to derive the basic relationships of SEA by the wave approach
of Ref. [16]. In particular, this paper focuses on the net exchanged power between two subsystems with a
common boundary. Starting from radiative exchanges of uncorrelated rays, it is found that the diffuse field
assumption leads to the expected equation. The obtained proportionality coefficient is consistent with the well-
known coupling loss factor for adjacent subsystems of the traditional wave approach of SEA.

The outline of this paper is as follows. In Section 2, the basic integral equations of uncorrelated rays are
given for any fields, diffuse or not diffuse. In Section 3, the equations for energy, intensity and exchanged
power are investigated for the case of constant domain sources and boundary sources. The diffuse field is
obtained in Section 4 when the direct field is negligible and the well-known equations of SEA are finally
derived. A numerical simulation is proposed in Section 5 and finally, a discussion on the validity of both
methods is done in Section 6.

2. Equations of uncorrelated ray fields

In the framework of SEA, vibrating systems are divided into several subsystems. In general, a subsystem is
defined as a set of modes of the same structural component for which the equirepartition of energy applies and
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which are lightly coupled with other subsystems. As present paper focuses on the case of assembled plates, the
subsystems, noted Oi, i ¼ 1; . . . ; n are the flexural, the longitudinal and the transverse modes of each plate.
However, the demonstration can be straightforwardly generalized to the case of beam networks, or adjacent
rooms provided that the solid angle of space and the law of decrease of energy and some other minor
modifications have been achieved. The important assumption of the demonstration is that subsystems can
only exchange energy with other subsystems through their boundaries. Thus, radiation of sound, structural
response or the coupling of plates with their reinforcing beams are excluded of the present demonstration.

The main assumption of the wave approach of SEA is that fields are diffuse in all subsystems. The
conditions which lead to diffuse field are studied by the mathematical theory of billiards. It is found that some
shapes, the so-called ‘‘mixing’’ billiards, naturally give a diffuse field by mixing the rays after several reflections
on boundaries [22]. Uncorrelation of rays and Lambert’s law for reflection are then two statistical
consequences of mixing of rays even if individual rays have a deterministic phase and specularly reflect on the
boundaries. Uncorrelation of rays also implies the additivity of energy of individual rays.

We then start from a ray theory whose primary variables are energy and intensity and which admits the
cosine Lambert’s law for the energy reflected on boundaries. This is exactly the assumptions of the so-called
‘‘factor view method’’ or ‘‘standard method’’ in thermics. An adaptation of this method to the case of
assembled plates coupled by their edges is achieved in Ref. [16]. In the rest of this section, all basic
relationships and the theoretical material necessary for this paper is introduced without full demonstrations.

Let us consider a stationary point source of unit power in a two-dimensional system. The energy density at a
distance R is e�mR=2pcR where m is the attenuation factor responsible of dissipation during propagation and c

is the group speed. In presence of several sources whose power density is noted ri, the energy density W i at any
point r in the subsystem Oi, is not only the sum of direct fields rie

�mR=2pcR but also reflected and transmitted
fields introduced by some fictitious sources si located over the boundary Gi,

W iðrÞ ¼

Z
Oi

riðsÞ
e�mR

2pcR
dOs þ

Z
Gi

siðpÞ cos y
e�mR

2pcR
dGp, (1)

where y is the emission angle at point p measured with the normal of the boundary and R ¼ js� rj or jp� rj is
the source-receiver distance. As it was previously claimed, the boundary sources si radiate energy in
accordance with the cosine Lambert’s law.

When evaluating the energy density at any point p on the boundary Gi, an additional term appears,

W iðpÞ ¼

Z
Oi

riðsÞ
e�mR

2pcR
dOs þ

Z
Gi

siðqÞ cos y
e�mR

2pcR
dGq þ

siðpÞ

2c
. (2)

The presence of the last term will be clarified in the next section.
A further concept useful for our purpose is the so-called ‘‘radiative intensity’’ or ‘‘specific intensity’’. This is

the power per unit angle and unit length normal to the ray. Consider a point r 2 Oi and an infinitesimal angle
dj (Fig. 1). The power per unit length passing through that point is the sum of contributions of all sources ri

located inside the cone of vertex r and angle dj and the sources si on the part of boundary inside this cone.

dP ¼

Z
ri

e�mR

2pR
dOþ si cos y

e�ml

2pl
dG, (3)

where the first integral is performed over the cone, dG is the piece of boundary inside the cone and lðr;jÞ is the
r

�i

p
l

ϕ

�i

�i

d�
�

Fig. 1. Radiative intensity.
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distance from r to the boundary in direction j (Fig. 1). Since dO ¼ RdjdR and dG ¼ ldj= cos y, it yields,

dP ¼

Z
ri

e�mR

2pR
RdjdRþ si cos y

e�ml

2pl

ldj
cos y

. (4)

Therefore, the radiative intensity I i ¼ dP=dj is,

I iðr;jÞ ¼
Z lðr;jÞ

0

riðsÞ
e�mR

2p
dRþ

siðpÞ

2p
e�mlðr;jÞ, (5)

where p is the first point on the boundary encountered from r in direction �j.
At the interface of length L between two subsystems j and i, a part of the incident power is transmitted while

the other part is reflected. Introducing the transmission efficiency tjiðjÞ depending on the incidence angle j
and which is defined as the ratio of the transmitted power over the incident power, the power transmitted from
subsystem j to subsystem i is,

Pj!i ¼ L

Z p=2

�p=2
tjiðjÞI jðp;jÞ cosjdj, (6)

where the integration is performed over all possible incidence angles. In this expression, I i cosj is the incident
power per unit length from direction j, tjiðjÞI i cosj is the part of this power which is transmitted and Pj!i is
the total transmitted power from all directions.

The last question which has not yet been tackled is how to determine the fictitious source strength si.
Consider a point p 2 Gi on the boundary. The incident power stemming from Oi is

R
I i cosjdj. So, if the

boundary has an absorption coefficient a and therefore, a reflection coefficient 1� a, the energy balance reads,

siðpÞ

p
¼ ð1� aÞ

Z p=2

�p=2
I iðp;jÞ cosjdj, (7)

where the left-hand side is the power per unit length of boundary radiated by the fictitious source si.
Substitution of Eq. (5) into Eq. (7) and a change of variable leads to,

1

p
siðpÞ ¼ ð1� aÞ

Z
Oi

riðsÞ
e�mR

2pR
cosjdOs þ

Z
Gi

siðqÞ cos y
e�mR

2pR
cosjdGq

� �
. (8)

This Fredholm equation of second kind gives the unknown si at point p in terms of all structural sources ri

and other boundary sources siðqÞ. It is similar to the radiative transfer equation in thermics which gives the
radiative intensity in terms of power incident from all other directions.

Now, if the point p is located on the common edge of several subsystems, the radiated power per unit length
si=p stems from all other adjacent subsystems and therefore the power balance reads,

siðpÞ

p
¼
X

j

dPj!i

dL
. (9)

Successive substitution of Eqs. (6) and (5) into Eq. (9) leads to

1

p
siðpÞ ¼

X
j

Z
Oj

tjiðjÞrjðsÞ
e�mR

2pR
cosjdOs þ

Z
Gj

tjiðjÞsjðqÞ cos y
e�mR

2pR
cosjdGq. (10)

Once again, siðpÞ is given in terms of all other unknowns sjðqÞ.

3. Energy, intensity and power with constant sources

A rain-on-the-roof excitation means that the subsystem is entirely covered by some random driving forces.
These forces are spatially d-correlated and have a power spectrum density constant in frequency (white noise)
and in space (uniformity). In the framework of the theory of the previous section, rain-on-the-roof excitation
means that ri is constant over the subsystem Oi.
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Rain-on-the-roof excitation is generally not sufficient to ensure a diffuse field. Mixing of rays requires a
large number of reflections only possible when their energy does not decrease too fast. Light damping loss
factors and coupling loss factors is therefore a necessary condition. But in addition, a certain geometrical
condition on the shape of subsystems is necessary. We first assume that this condition is satisfied and leads a
constant value of the fictitious sources si. After the expressions for energy and intensity have been derived, it
will be possible to find this condition and therefore to define the validity domain of these expressions.

Assuming that ri and si are constant and neglecting the attenuation factor m (light damping), the energy
density is from Eq. (1),

W iðrÞ ¼ ri

Z
Oi

dO
2pcR

þ si

Z
Gi

cos y
2pcR

dG, (11)

at any point r inside Oi, and from Eq. (2),

W iðpÞ ¼ ri

Z
Oi

dO
2pcR

þ si

Z
Gi

cos y
2pcR

dGþ
si

2c
, (12)

at any point p on the boundary Gi. In Eqs. (11) and (12) appear two integrals,

AðrÞ ¼

Z
O

dO
2pR

, (13)

BðrÞ ¼

Z
O

cos y
2pR

dG, (14)

which are functions of the receiver point r.
By expanding dO ¼ RdRdj in polar coordinates, the first integral becomes,

AðrÞ ¼

Z 2p

0

Z lðr;jÞ

0

RdRdj
2pR

¼
1

2p

Z 2p

0

lðr;jÞdj, (15)

where lðr;jÞ is the distance from r to G in direction j. lðr;jÞ þ lðr;�jÞ is the boundary to boundary distance
and therefore AðrÞ is half the mean boundary to boundary distance viewed from r. This average distance is
expected to be close to the mean free path l̄. The definition of the mean free path is,

l̄ ¼
1

P

Z
G
dGp

Z p=2

�p=2
lðp;jÞ

cosj
2

dj ¼ p
S

P
, (16)

where S is the area of the domain O and P is the perimeter of the boundary G. This last equality is the classical
expression for mean free path in bi-dimensional systems. It is obtained from the first equality after few algebra.
A difference appears between the integral involved in Eq. (15) and those of Eq. (16). The function cosj=2 is
the probability density for a ray to have an incidence j. Thus, let us introduce the function z defined as the
ratio z ¼

R
ldj=pl̄, that is,

AðrÞ ¼
l̄

2
zðrÞ. (17)

z is a dimensionless function confined in the neighbourhood of unity. When r! p 2 G, lðp;jÞ is the boundary
to boundary distance for inward direction j whereas lðp;�jÞ ¼ 0. AðrÞ is therefore a continuous function
when r goes to p 2 G.

For the second integral, consider the change of variable dG ¼ Rdj= cos y where, as usual, dG is the measure
of boundary length and R;j are the polar coordinates of the current point of boundary in the framework
centred in r 2 O (Fig. 2a). Any interior point r 2 O is surrounded by G and therefore j runs from �p to p
(Fig. 2b),

BðrÞ ¼

Z p

�p

dj
2p
¼ 1. (18)
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Fig. 2. Polar coordinates centred in r: (a) relationship between the boundary length dG and dj; (b) for r 2 O, j runs from �p to p; (c) for
p 2 G, j runs from �p=2 to p=2.
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But, for a boundary point p 2 G, j is limited to the range �p=2, p=2 (Fig. 2c),

BðpÞ ¼

Z p=2

�p=2

dj
2p
¼

1

2
. (19)

BðrÞ is then a discontinuous function when r goes to p 2 G.
With these results, Eqs. (11) and (12) become,

W iðrÞ ¼ ri

l̄

2c
zþ

si

c
, (20)

W iðpÞ ¼ ri

l̄

2c
zþ

si

2c
þ

si

2c
. (21)

W i is a continuous function, as should be all physical quantities. The explanation of the presence of the
additional term in Eq. (2) is now apparent. This term compensates the discontinuity of the integralR
s cos ye�mR=2pRdG when r 2 O goes to p 2 G, and then ensures the continuity of W i.
For constant sources ri and si, the radiative intensity is from Eq. (5),

I iðr;jÞ ¼ ri

Z lðr;jÞ

0

dR

2p
þ

si

2p
¼

rilðr;jÞ
2p

þ
si

2p
. (22)

The mean radiative intensity is,

Ī iðrÞ ¼
1

2p

Z 2p

0

I iðr;jÞdj ¼
1

2p
ri

1

2p

Z 2p

0

lðr;jÞdjþ si

� �
(23)

and therefore,

Ī iðrÞ ¼
1

2p
ri

l̄

2
zþ si

� �
. (24)

It results from Eq. (20),

Ī i ¼
cW i

2p
. (25)

This is the equation usually written in the wave approach of SEA by assuming homogeneity and isotropy of
field. It is found here that this equality applies in an average sense for constant ri and si.

As the point r approaches the boundary G, it is necessary to distinguish the outward directions jjj4p=2 for
which lðp;jÞ is the boundary to boundary distance and inward directions jjjop=2 for which lðp;jÞ ¼ 0. In
the limit r! p 2 G,

Ī
þ

i ðpÞ ¼
1

p

Z
jjj4p=2

I iðp;jÞdj ¼
1

2p
ri l̄zþ si

� �
, (26)

Ī
�

i ðpÞ ¼
1

p

Z
jjjop=2

I iðp;jÞdj ¼
1

2p
si. (27)
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Indeed, the mean of these two quantities is the mean radiative intensity of Eq. (24). But Eqs. (26) and (27)
show that near the boundary the radiative intensity is no longer equally shared among inward and outward
components.

Finally, the transmitted power given by Eq. (6) is, with the additional condition of constant ri and si,

Pj!i ¼ L

Z p=2

�p=2
tjiðjÞ cosjdj� Ī

þ

j , (28)

where the mean incident radiative intensity Ī
þ

j has been substituted for the exact radiative intensity I jðpÞ.
Introducing the average transmission efficiency,

t̄ji ¼
1

2

Z p=2

�p=2
tjiðjÞ cosjdj, (29)

the transmitted power is

Pj!i ¼ L
t̄ji

p
ðrj l̄zþ sjÞ. (30)

Eqs. (20), (22) and (30) constitute a set of equations on the energy quantities valid for constant sources. But
we have not yet investigated the condition for si to be constant. si is related to domain sources ri by Eq. (8)
for reflection and by Eq. (10) for transmission. Let consider Eq. (8) with constant ri and si,

si

p
¼ ð1� aÞe�ml̄ ri

Z
Oi

cosj
2pR

dOþ si

Z
Gi

cos y cosj
2pR

dG
� �

, (31)

where the term e�mR has been substituted by its average value e�ml̄ . Once again, it appears as two integrals
which only depend on the shape of O,

CðpÞ ¼

Z
O

cosj
2pR

dO, (32)

DðpÞ ¼

Z
G

cos y cosj
2pR

dG. (33)

By the change of variable dG cos y=R ¼ dj, the second integral is constant,

DðpÞ ¼

Z p=2

�p=2

cosj
2p

dj ¼
1

p
. (34)

For the first integral, the change of variable dO ¼ RdRdj leads to,

CðpÞ ¼

Z p=2

�p=2

cosj
2p

dj
Z lðp;jÞ

0

dR ¼
1

2p

Z p=2

�p=2
lðp;jÞ cosjdj. (35)

This is the average of the distances from p to other points of G weighted by the function cosj=2 and divided
by p. From Eq. (34), Eq. (31) becomes,

si

p
¼

1� ae�ml̄

1� ð1� aÞe�ml̄
riCðpÞ. (36)

The question of constancy of si is equivalent to the constancy of CðpÞ. By virtue of symmetry, CðpÞ is constant
for a disk and therefore si too (see Eq. (31)). When O is not a disk, CðpÞ and therefore si are approximately
constant when O has a compact shape in the sense that it has not a size much larger than the other ones. But,
Eq. (36) rather shows the inverse. The only way for si to be constant is that CðpÞ is constant and therefore that
O has a compact shape.
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By comparing Eq. (35) and Eq. (16), the mean free path is l̄ ¼ p
R

CdG=P and therefore, the constancy of
CðpÞ reads,

CðpÞ ¼
l̄

p
. (37)

Finally,

si ¼
1� ae�ml̄

1� ð1� aÞe�ml̄
ri l̄. (38)

In summary, Eqs. (20), (22) and (30), respectively, derived for energy, intensity and power apply when O has
a compact shape with no dimension much greater than the mean free path. In this case, si is constant and si

and ri are related by Eq. (38).
4. SEA equation in diffuse field

Diffuse field means that energy is homogeneous and isotropic. The question of homogeneity and isotropy
can be discussed from Eq. (22). In Eqs. (20), (22) and (30) respectively for energy, intensity and transmitted
power, the first term involving ri is the direct field whereas the second term involving si is the reverberant field.
In Eq. (22) the constancy of I iðp;jÞ requires that lðr;jÞ is constant, i.e. independent of both r and j which is
impossible for any bounded geometry. In a bounded domain, the direct field is neither homogeneous nor
isotropic. Thus, the only chance for the energy and the intensity to be constant is that the direct field is
negligible compared with the reverberant field. That is,

rilðr;jÞ5si. (39)

Assuming that this inequality holds at any point and in any direction, Eqs. (20), (22) and (30), respectively,
give

W i ¼
si

c
, (40)

I i ¼
si

2p
, (41)

Pi!j ¼ L
t̄ij

p
si. (42)

Eqs. (40)–(42) are the fundamental relationships of energy quantities in diffuse field. By eliminating the
unknown si, it yields,

I i ¼
ci

2p
W i, (43)

Pi!j ¼ L
ci t̄ij

p
W i. (44)

Equality (43), in opposition with Eq. (25) is now valid at any point r and for any direction j. Furthermore, by
denoting Si the area of subsystem i, the transmitted power is

Pi!j ¼ L
c

pSi

t̄ijEi, (45)

where Ei ¼W iSi is the total vibrational energy of subsystem i with area Si. By introducing the coupling loss
factor,

Zij ¼ L
ct̄ij

poSi

, (46)
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the power transmitted from subsystem i to subsystem j is

Pi!j ¼ ZijoEi (47)

and finally the net exchanged power is

Pij ¼ oðZijEi � ZjiEjÞ. (48)

This is the fundamental equation of SEA. The expression for the coupling loss factor given in Eq. (46) is
exactly the same one derived in the conventional wave approach of SEA [10].

The validity domain of SEA is usually evaluated by introducing several parameters. The modal density ni is
defined as the number of eigenfrequencies per rad/s,

ni ¼
Sio
2pcc0

, (49)

where c is the group speed and c0 the phase speed. In order to allow a statistical treatment of modes, the mode
count Ni,

Ni ¼ niDob1, (50)

that is the number of modes within the frequency band Do, must be large. The modal overlap Mi must also be
large,

Mi ¼ Zionib1, (51)

where Zi is the damping loss factor of subsystem i. A high modal overlap means that modes overlap each other
and therefore that the dynamic behaviour is not dominated by a particular mode. This is the condition for rays
to be uncorrelated.

In addition to these two parameters, condition (39) is necessary for direct field to be negligible. By denoting
Pi ¼ riSi the power being injected in subsystem i and since si ¼ cW i ¼ cEi=Si, Eq. (39) may be re-written as

Pi

l̄

c
5Ei. (52)

This form of condition (39) is useful for SEA models since it allows to check a posteriori whether the field is
diffuse or not. But, it is also possible to check the condition (39) before SEA equation has been solved, i.e.
before Pi and Ei are known. From Eq. (38), it is apparent that ri l̄ is much smaller than si if m̄i=ð1� m̄iÞ51
where m̄i ¼ 1� ð1� aÞe�ml̄ . At the first order, for small a and ml̄, this is equivalent to m̄i51 with m̄i ¼ aþml̄.
Let us consider the damping loss factor Zi of subsystem i. The energy being dissipated per unit time is
Pdiss ¼ ZioEi. On the other hand, the energy lost by a single reflection is aEi and since the number of
reflections per second is c=l̄ the power being absorbed by boundaries is ac=l̄ � Ei. In addition, the attenuation
of rays during propagation introduces a further dissipation mcEi. The total power being dissipated is thus,
Pdiss ¼ ZioEi ¼ ðmcþ ac=l̄Þ � Ei. The condition m̄i51 now reads,

m̄i ¼
Zio

c
l̄51. (53)

This last form of the diffuse field condition introduces a dimensionless factor m̄i which is a normalized
attenuation factor in opposition with the attenuation factor m which has the dimension of the reciprocal of
length. In room acoustics, this factor is called absorption exponent and noted a� in Eq. (5–43) of Ref. [23]
whereas in Ref. [24], Eq. (20), it is called the reflectance of plate. The normalized attenuation factor gives the
ratio of energy which is absorbed during the propagation to length the mean free path. A ratio greater than
one simply means that the energy of rays is totally absorbed in a distance less than the mean free path. A ratio
much smaller than one means that the lost of energy of rays is not significant before a large amount of
reflections, creating the condition of diffuse field.

The final condition for SEA to apply is that the coupling is weak. Several definitions of the weak coupling
can be found in the literature. For instance, in Ref. [24] it is proposed to define the weak coupling of adjacent
plates by comparing the mean transmission efficiency t̄ij and the reflectance of plate m̄i (the normalized
attenuation factor in this text). In the context of the radiative exchanges, it is natural to define the weak
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coupling as the situation where the transmitted power Pi!j ¼ ZijoEi is lower than the dissipated power ZioEi

or, in other words,

Zij5Zi. (54)

With Eq. (46) the condition becomes t̄ij5poZiSi=cL and introducing the normalized attenuation factor
t̄ij5m̄ipSi=l̄L. Finally, Eq. (16) leads to

t̄ij5
P

L
m̄i. (55)

This is the definition we adopt in this text for the weak coupling. It is similar to the one of Ref. [24] excepted
the presence of the ratio P=L of the perimeter and the coupling length.

These four criteria, mode count N, modal overlap M, the normalized attenuation factor m̄ and the
strength of coupling Lt̄ij=Pm̄ are all necessary to define the validity domain of SEA. The population
of modes N must be large in each subsystem for the statistical method to apply. A modal overlap
guarantees that rays are uncorrelated (the condition necessary for energy to be additive) or, in other words,
that mode peaks are not too acute. In room acoustics, the so-called Shroeder’s frequency f ¼ 2000

ffiffi
ð

p
V=TÞ

where V is the room volume and T the reverberation-time is the frequency for which the modal
overlap is 3. Beyond the Shroeder’s frequency, modes sufficiently overlap to ensure the validity of the
geometrical acoustics approach. The modal overlap is thus related to fluctuations of the actual vibrational
level in pure tone compared with the mean value in broadband predicted by SEA. The necessity of
the third criterion, the normalized attenuation factor m̄, clearly appears in the proof of SEA equations
presented in this section. The condition m̄o1 ensures that the vibrational field is diffuse that is each subsystem
is in thermal equilibrium. Finally a light coupling means that two coupled subsystems can be individually in
thermal equilibrium but in the mean time, they are not jointly in thermal equilibrium and therefore they can
exchange a vibrational power.

5. Numerical simulation

In order to test the validity of previous theoretical developments, a numerical simulation is proposed on the
structure shown in Fig. 3a. This structure is made of seven square plates. All plates are identical and are made
of aluminium, volumic mass r ¼ 2700 kg=m3, Young’s modulus E ¼ 71GPa, Poisson’s coefficient n ¼ 0:3,
size L ¼ 1m and thickness h ¼ 1mm.

The assembly is realized with four L-junctions and two T-junctions. The junctions are assumed to be
massless and infinitely rigid. The transmission and reflection efficiencies are calculated on the basis of the
continuity of displacements and rotations and the equilibrium of forces and moments. All details are available
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Fig. 3. Geometry of the seven plates structure: (a) general view; (b) position of the driving points (small hammers) and the receiver

points (+).
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Table 1

Number of wavelengths l̄=l, mode count N and mean efficiencies t̄ij for L- and T-junctions

1 kHz 2 kHz 4kHz 8 kHz

l̄=l 8 11 15 22

N 303 607 1215 2430

t̄14 0.33 0.32 0.32 0.32

t̄12 0.15 0.15 0.15 0.15

t̄15 0.15 0.14 0.13 0.13

Table 2

Modal overlap M versus frequency and damping loss factor

M 1 kHz 2 kHz 4kHz 8 kHz

Z ¼ 0:1% 0.3 0.6 1.2 2.4

Z ¼ 1% 3 6 12 24

Z ¼ 10% 30 60 120 240

Table 3

Normalized attenuation factor m̄ versus frequency and damping loss factor

m̄ 1 kHz 2 kHz 4kHz 8 kHz

Z ¼ 0:1% 0.02 0.03 0.05 0.07

Z ¼ 1% 0.2 0.3 0.5 0.7

Z ¼ 10% 2 3 5 7
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in Refs. [8,9]. All uncoupled edges of plates are assumed to be simply supported. This condition is indeed
chosen in order to simplify the reference calculation (Appendix A).

The wavelength is about 10 cm at 1 kHz and 4 cm at 8 kHz for the bending wave. This is large
enough compared with the thickness to apply the Love plate equation. Table 1 summarizes the
number of wavelengths in the mean free path from 1 to 8 kHz which is always greater than eight. This
value ensures that a high frequency model makes sense. The modal density from Eq. (49) is constant
and has the value 0:048 meaning that 2p� 1000� n ¼ 303 modes are included within the octave band
centred on 1 kHz and more for other octave bands. This is an assessment of the population of modes we are
dealing with.

The modal overlaps are summarized in Table 2. It can be seen that the condition of Eq. (51) is fulfilled when
ZX1%. Beyond this value, modes are expected to sufficiently overlap to be lost in the frequency average. This
condition is necessary for both, SEA and non-diffuse equations of Section 2 to apply. The normalized
attenuation factors are summarized in Table 3. The condition of Eq. (53) is fulfilled when Zp1%. This is the
additional condition for SEA to apply. Thus, it is expected that SEA gives correct results in the only case
Z ¼ 1%. When Z ¼ 10% the modal overlap is large enough meaning that no mode dominates the dynamics.
But m̄41 and therefore the field is not diffuse. When Z ¼ 0:1%, the normalized attenuation factor is correct
but not the modal overlap.

The mean efficiencies are about 0:13 for the T-junction and 0:3 for the L-junction. With a ratio P=L ¼ 2, the
coupling is weak (Eq. (55)) for Z ¼ 1% and 10% (t̄ijo2m̄i) but the coupling is strong for Z ¼ 0:1% (t̄ij42m̄i).
This result also holds when adopting the definition of Ref. [24].

Plate 1 (bottom right) is excited by 16 driving points located at x ¼ 0:2, 0:4, 0:6, 0:8 and y ¼ 0:2, 0:4, 0:6, 0:8
in the frame of Fig. 3. The receiver points are located at the centre of each plate. Each driving point applies a
force of F ¼ 1N (peak value). The resulting injected power is assessed with the impedance of infinite plates,
Pinj ¼ jF j

2=16
ffiffiffiffiffiffiffiffiffi
Drh

p
¼ 14:8mW where D is the bending stiffness of the plate. This relationship shows that the

injected power does not depend on the frequency neither the damping loss factor.
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Three calculations have been done for each octave band (1–8 kHz) and each damping loss factor (Z ¼ 0:1%,
1% and 10%). The first one is a SEA calculation with the coupling loss factors given in Eq. (46). Indeed
some other more elaborated coupling loss factors are available in the literature [24]. However, the purpose
is to demonstrate the convergence of radiative exchange equations to SEA in same conditions rather than
to test SEA itself. This is the motivation of this choice. The equation of SEA of this system is a linear
set of seven equations. The second calculation is based on equations of Section 2. The system of Eqs. (8), (10)
is first solved by using the collocation method with sources being constant on the segments. Once the
unknowns si have been determined, the energy density is computed with Eq. (1). The description of this
algorithm is available in Ref. [25]. For this system, the boundary is discretized with 322 boundary elements
that is more than 10 elements per edge of plate. The third calculation is the reference one. It is based on a semi-
analytical solution of the governing equation of a Love plate. The deflection is developed in a Fourier series
along the y-axis. The simply supported conditions are then fulfilled. Along the x-axis (or z-axis for vertical
plates), the deflection is the sum of four travelling waves. The total number of unknowns coefficients
is thus 28. The coupling conditions at both edges of the plates give 4 equations for a L-junction and 6
equations for a T-junction giving the 28 expected conditions (Appendix A). This calculation is done from
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Fig. 4. Vibrational response of: (a) plate 1; (b) plate 3; (c) plate 6; (d) plate 7 for a damping loss factor Z ¼ 0:1%.
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Fig. 5. Vibrational response of: (a) plate 1; (b) plate 3; (c) plate 6; (d) plate 7 for a damping loss factor Z ¼ 1%.
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707Hz up to 11312Hz (4 octaves), one step per Hertz, and for the 16 loading cases. The final result on
each plate is the RMS-response over each octave band, and the sum of the 16 loading cases assuming to be
uncorrelated.

Figs. 4–6 show the energy density for plates 1, 3, 6 and 7 versus octave band for each damping loss factor.
It can be observed that both, SEA and radiative exchanges lead to similar results when Z ¼ 0:1% and 1%.
In these two cases, the normalized attenuation factor m̄ is less than unity (Table 3) showing that the
energy field is diffuse. However, an important discrepancy can be seen for the case Z ¼ 10%. The differ-
ences can reach up to 40 dB for plate 6 which is the most distant plate from driving points. In this case,
the normalized attenuation factor is greater than unity showing that the field is not diffuse and thus,
an important assumption of SEA is violated. On the other hand, the reference results show that for Z ¼ 0:1%
some slight differences may appear with the energy methods. This is the case when the modal overlap
(Table 2) is low. However, the agreement between the reference calculation and both energy methods
is quite good for Z ¼ 1% for which the modal overlap is high and the normalized attenuation factor
is low. When Z ¼ 10%, reference calculation and radiative exchanges are still in good agreement, but
not with SEA, showing that the validity domain of radiative exchange equations is larger than the one
of SEA.
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Fig. 6. Vibrational response of: (a) plate 1; (b) plate 3; (c) plate 6; (d) plate 7 for a damping loss factor Z ¼ 10%.
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6. Diagram of validity

The validity domain of the energy methods may be assessed. Both methods require to have a large number
of modes N. But, the modal density n is constant in frequency for plates and since the bandwidth is doubled
for successive octave bands, it yields N / f where f is the central frequency. The limit N ¼ 100 is then a
vertical line in the Z; f -plane of Fig. 7. According to Eq. (51), M / Zf . The boundary of the domain M41 is
therefore the hyperbolic line Z ¼ 1=2pnf which is the bottom solid line of Fig. 7. Finally, the group speed c is
proportional to the square root of the frequency. From Eq. (53), it results in m̄ / Z

ffiffiffi
f

p
. The upper solid line of

Fig. 7 is therefore Z ¼ a=
ffiffiffi
f

p
where a is a proportionality constant. The validity domain of the energy

exchanges is N4100 and M41 and is thus quarter plane shown in Fig. 7. The validity domain of SEA is
limited by N4100, M41 and m̄o1 and is therefore the half-strip shown in Fig. 7. The only case located
within the strip is Z ¼ 1% where the three methods well agree.

7. Conclusion

In conclusion, the present paper has shown that the radiative exchange equations in structural
ray theory converge to SEA equations when the field becomes diffuse. The coupling loss factor
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M41 and m̄o1; (//), domain of rays defined by N4100 and M41; (+), position of the 12 calculations of Figs. 4–6.
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derived by this convergence process matches with the simplest one commonly derived in SEA
literature and the well-known proportionality of exchanged power with the difference of energy densities is
recovered.

The numerical simulations proposed in this paper highlight how it is important to check the validity
domain of a method before to use it. Diagrams such as the one presented in Section 6 can be useful
to this end. Validity of SEA and the ray method is confined within a domain defined by three boundary curves
in the f ; Z-plane (constant mode count, modal overlap and normalized attenuation factor). The
two first conditions delimit the validity of the ray method whereas the three conditions are necessary for
SEA. To use SEA or the ray method on the left side of N ¼ cste is simply meaningless. Both methods
require to be in the high-frequency range. This is a shortcoming commonly encountered in SEA models that a
subsystem has a too low mode count for instance, when a subsystem is stiffer than the adjacent
subsystems. This difficulty is the main motivation for the studies on the coupling of the finite element
method with SEA. Below the curve M ¼ cste is the domain of large fluctuations. SEA and the ray method
apply in principle but are inaccurate. Their use is therefore unwise. A low modal overlap is encountered in
undamped structures made of metal for instance. A dominating mode within a single subsystem can
affect not only the structural response of this subsystem but also the transmission through this subsystem. The
entire system can therefore be affected. The prediction of fluctuations around the mean value of
SEA is a crucial question in this regard. This has inspired many studies on confidence and SEA. The line
m̄ ¼ cste is the boundary between SEA and the ray method. To increase the damping loss factor
leads to a non-diffuse field which can damage SEA results. But, this is also the case by increasing the
frequency. This fact is inconsistent with the widely spread idea that SEA results are better as the frequency
increases. SEA is valid in high frequencies indeed, but provided that the field remains diffuse. From this point
of view, the normalized attenuation factor appears to be an appropriate criterion of the validity of the diffuse
field assumption. The knowledge of this limit is obviously useful for SEA but also for the ray method. In
principle, the ray method applies in diffuse field but its use instead of SEA would be inappropriate since it
requires more computation than SEA.

Appendix A

The reference calculation for the structure shown in Fig. 3 is considered in this appendix. As stated in
Section 5, Love’s equation D2v� k4v ¼ F 0=D� dðx� x0Þdðy� y0Þ applies for the transverse deflection vðx; yÞ.
D is the bending stiffness of the plate, F 0 the transverse force at frequency o applied to point x0, y0 and k the
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wavenumber at same frequency. For each plate i, the transverse deflection vi is developed in a Fourier series,

viðx; yÞ ¼
X1
n¼1

vi;nðxÞ sin
npy

L

� �
. (A.1)

The boundary conditions along the simply supported edges y ¼ 0 and L are satisfied. Introducing the
Fourier’s series into Love’s equation leads to a fourth-order differential equation for each Fourier’s term vi;n

whose solution is

vi;nðxÞ ¼ Ai;ne
�bnx þ Bi;ne

�bnðL�xÞ þ Ci;ne
�gnx þDi;ne

�gnðL�xÞ

þ Ei;ne
�bnjx0�xj þ F i;ne

�gnjx0�xj. ðA:2Þ

The four first terms in the right-hand side are the solution of the homogeneous fourth-order differential
equation and bn, �bn, gn, �gn are the four roots of its characteristic equation,

X 4 � 2
np
L

� �2
X 2 � k4

�
np
L

� �4	 

¼ 0. (A.3)

The two last terms in the right-hand side of Eq. (A.2) are proportional to the fundamental solution of
the fourth-order differential equation with the conditions Ei;nbn þ F i;ngn ¼ 0 and Ei;nb

3
n þ Fi;ng3n ¼

�F 0=LD� sinðnpy0=LÞ.
The constants Ai;n, Bi;n, Ci;n and Di;n are determined by applying the coupling conditions

at the interfaces x ¼ 0 and L. For the L-coupling between subsystems 5 and 6 of Fig. 3, these
conditions are:

v5;nðLÞ ¼ 0, (A.4)

v6;nð0Þ ¼ 0, (A.5)

qxv5;nðLÞ ¼ qxv6;nð0Þ, (A.6)

D5½q
2
xv5;nðLÞ þ nq2yv5;nðLÞ� ¼ D6½q

2
xv6;nð0Þ þ nq2yv6;nð0Þ�, (A.7)

where due to the Fourier’s series development, q2y denotes a multiplication by �ðnp=LÞ2 and Di is the bending
stiffness of plate i. While for the T-coupling 1-2-5 of Fig. 3, the conditions are:

v1;nðLÞ ¼ 0, (A.8)

v2;nð0Þ ¼ 0, (A.9)

v5;nð0Þ ¼ 0, (A.10)

qxv1;nðLÞ ¼ qxv2;nð0Þ, (A.11)

qxv1;nðLÞ ¼ qxv5;nð0Þ, (A.12)

D1½q
2
xv1;nðLÞ þ nq2yv1;nðLÞ� ¼ D2½q

2
xv2;nð0Þ þ nq2yv2;nð0Þ� þD5½q

2
xv5;nð0Þ þ nq2yv5;nð0Þ�. ðA:13Þ

Finally, the energy density at any receiver point is given by

W ðx; yÞ ¼
ro2

4
jvj2 þ

D

4

q2v

qx2

����
����
2

þ
q2v

qy2

����
����
2

þ 2nRe
q2v

qx2

q2v�

qy2

� �
þ 2ð1� nÞ

q2v
qxqy

����
����
2

" #
, (A.14)

where Re designates the real value, * the complex conjugate and r the mass per unit area.
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[9] Th. Beckmann, W. Wöhle, H. Schreckenbach, Coupling loss factors for statistical energy analysis of sound transmission at

rectangular slab joints, part II, Journal of Sound and Vibration 77 (3) (1981) 335–344.

[10] R.H. Lyon, Statistical Energy Analysis of Dynamical Systems, MIT Press, Cambridge, MA, 1975.

[11] L. Cremer, M. Heckl, E.E. Ungar, Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, Springer,

Berlin, 1990.

[12] A.J. Keane, W.G. Price, Statistical Energy Analysis, An Overview with Applications in Structural Dynamics, Cambridge University

Press, Cambridge, 1997.

[13] F. Fahy, Statistical energy analysis: a critical overview, Philosophical Transactions of the Royal Society of London A 346 (1994)

431–447.

[14] R.S. Langley, A wave intensity technique for the analysis of high frequency vibrations, Journal of Sound and Vibration 159 (1992)

483–502.

[15] O.M. Bouthier, R.J. Bernhard, Simple models of energy flow in vibrating plates, Journal of Sound and Vibration 182 (1995) 149–164.

[16] A. Le Bot, Energy transfer for high frequencies in built-up structures, Journal of Sound and Vibration 250 (2) (2002) 247–275.

[17] M.F. Modest, Radiative Heat Transfer, McGraw-Hill Inc., New York, 1993.
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